1
|
Xu Q, Shi M, Ding L, Xia Y, Luo L, Lu X, Zhang X, Deng DYB. High expression of P-selectin induces neutrophil extracellular traps via the PSGL-1/Syk/Ca 2+/PAD4 pathway to exacerbate acute pancreatitis. Front Immunol 2023; 14:1265344. [PMID: 37841279 PMCID: PMC10568494 DOI: 10.3389/fimmu.2023.1265344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Background Excessive neutrophil extracellular traps (NETs) is involved in the progression of acute pancreatitis (AP) but the mechanisms controlling NETs formation in AP are not fully understood. Therefore, our study sought to investigate the mechanism of the highly expressed P-selectin stimulating the formation of NETs in AP. Methods NETs formation was detected by flow cytometry, immunofluorescence staining, and cf-DNA and MPO-DNA complexes were measured as biomarkers of NETs formation. Neutrophils treated with P-selectin and pharmacological inhibitors were examined by western blot, immunofluorescence staining and flow cytometry. Mouse model of AP was established by caerulein and the effect of inhibiting P-selectin by PSI-697 on the level of NETs and PAD4 in pancreatic tissue was observed. The severity of AP was evaluated by histopathological score and the detection of serum amylase and lipase. Results Patients with AP had elevated levels of NETs and P-selectin compared with healthy volunteers. Stimulation of P-selectin up-regulated the expression of PSGL-1, increased the phosphorylation of Syk, mediated intracellular calcium signal and led to the activation and expression of PAD4, which modulated NETs formation in neutrophils. Pretreament with PSI-697 blunted NETs formation and PAD4 expression in the pancreatic tissue, and ameliorated the severity of AP in mice. Conclusion Taken together, these results suggest that P-selectin induces NETs through PSGL-1 and its downstream Syk/Ca2+/PAD4 signaling pathway, and that targeting this pathway might be a promising strategy for the treatment of AP.
Collapse
Affiliation(s)
- Qi Xu
- Department of Scientific Research Center, Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Ming Shi
- Department of Scientific Research Center, Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Lu Ding
- Department of Scientific Research Center, Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yu Xia
- Department of Scientific Research Center, Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Liang Luo
- Department of Critical Care Medicine, Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Xiaofang Lu
- Department of Pathology, Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Xiaoying Zhang
- Department of Health Management Center, Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - David Y. B. Deng
- Department of Scientific Research Center, Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- Department of Critical Care Medicine, Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
2
|
Gui M, Huang J, Sheng H, Chen Y, Yang Z, Ma L, Wang D, Xu L, Sun W, Liu J, Xu Y, Chen E, Zhao B, Mao E. High-Dose Vitamin C Alleviates Pancreatic Necrosis by Inhibiting Platelet Activation Through the CXCL12/CXCR4 Pathway in Severe Acute Pancreatitis. J Inflamm Res 2023; 16:2865-2877. [PMID: 37456783 PMCID: PMC10348372 DOI: 10.2147/jir.s415974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Background Platelet activation in the early stage of pancreatitis is the key step developing into pancreatic necrosis. Studies suggested that vitamin C (Vit C) can inhibit platelet activity by targeting CXCL12/CXCR4 pathway. High-dose Vit C were showed to reduce pancreatic necrosis in severe acute pancreatitis (SAP) but the mechanism remains unclear. Here we speculate high-dose Vit C reduce pancreatic necrosis by inhibiting platelet activation through downregulating CXCL12/CXCR4 pathway. Methods The pancreatic microcirculation of rats was observed by intravital microscopy. The platelet activity of SAP rats treated with or without high-dose Vit C was analyzed by platelet function test. Besides, the activity of platelets preincubated with high-dose Vit C or vehicle from SAP patients was also evaluated. Then, the TFA (CXCR4 agonist) and rCXCL12 were used to neutralize the effect of high-dose Vit C in SAP rats treated with high-dose Vit C. Meanwhile, the levels of enzymes and inflammatory cytokines in rat plasma, and rats' pancreatic histopathology and mortality were assessed. Results Platelets from animals and patients with SAP are more sensitive to agonists and are more easily activated. Administration of high-dose Vit C significantly ameliorated excessive activation of platelets in SAP rats, ultimately increasing the microvessel density and inducing microthrombus and blood stasis; these results were consistent with clinical sample analysis. Moreover, high-dose Vit C significantly inhibited the release of amylase, lipase, TNF-α, and IL-6 in SAP rat plasma, reducing pancreatic damage and the mortality of SAP rats. However, using TFA and rCXCL12 significantly reversed the effect of high-dose Vit C on excessive activation of platelets, aggravating microcirculation impairment and pancreatic damage. Conclusion The present study suggests that high-dose Vit C can ameliorate pancreatic necrosis by improving microcirculation disorders of SAP. For the first time, the underlying mechanism is related with inhibiting platelet activation through the CXCL12/CXCR4 pathway.
Collapse
Affiliation(s)
- Menglu Gui
- Department of Emergency in Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Jun Huang
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Huiqiu Sheng
- Department of Emergency in Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Ying Chen
- Department of Emergency in Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Zhitao Yang
- Department of Emergency in Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Li Ma
- Department of Emergency in Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Daosheng Wang
- Department of Laboratory Medicine in Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Lili Xu
- Department of Emergency in Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Wenwu Sun
- Department of Emergency in Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Yanyan Xu
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Erzhen Chen
- Department of Emergency in Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Bing Zhao
- Department of Emergency in Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Enqiang Mao
- Department of Emergency in Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| |
Collapse
|
3
|
Zhang X, Zhu M, Jiang XL, Liu X, Liu X, Liu P, Wu XX, Yang ZW, Qin T. P-selectin glycoprotein ligand 1 deficiency prevents development of acute pancreatitis by attenuating leukocyte infiltration. World J Gastroenterol 2020; 26:6361-6377. [PMID: 33244198 PMCID: PMC7656215 DOI: 10.3748/wjg.v26.i41.6361] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/13/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is rapid-onset pancreatic inflammation that causes local and systemic inflammatory response syndrome (SIRS) with high morbidity and mortality, but no approved therapies are currently available. P-selectin glycoprotein ligand 1 (PSGL-1) is a transmembrane glycoprotein to initiate inflammatory responses. We hypothesized that PSGL-1 may be involved in the development of AP and would be a new target for the treatment of AP.
AIM To investigate the role and mechanism of PSGL-1 in the development of AP.
METHODS The PSGL-1 expression on leukocytes was detected in peripheral blood of AP patients and volunteers. Pancreatic injury, inflammatory cytokines expression, and inflammatory cell infiltration was measured in AP mouse models induced with PSGL-1 knockout (PSGL-1-/-) and wild-type (PSGL-1+/+) mice. Leukocyte-endothelial cell adhesion was measured in a peripheral blood mononuclear cell (PBMC)-endothelial cell coculture system.
RESULTS The expression of PSGL-1 on monocytes and neutrophils was significantly increased in AP patients. Compared with PSGL-1+/+ mice, PSGL-1-/- AP mice induced by caerulein exhibited lower serum amylase, less Interleukin-1beta (IL-1beta) and Interleukin-6 (IL-6) expression, less neutrophil and macrophage infiltration, and reduced peripheral neutrophil and monocyte accounts. PSGL-1 deficiency alleviated leukocyte-endothelial cell adhesion via IL-6 but not IL-1beta.
CONCLUSION PSGL-1 deficiency effectively inhibits the development of AP by preventing leukocyte-endothelial cell adhesion via IL-6 stimulation and may become a potential therapeutic target for treating AP.
Collapse
Affiliation(s)
- Xu Zhang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450003, Henan Province, China
- Department of Hepato-Biliary-Pancreatic Surgery, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou 450003, Henan Province, China
| | - Ming Zhu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510000, Guangdong Province, China
| | - Xiao-Liang Jiang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical Collage (PUMC), Beijing 100021, China
| | - Xing Liu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical Collage (PUMC), Beijing 100021, China
| | - Xue Liu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical Collage (PUMC), Beijing 100021, China
| | - Pan Liu
- Department of Hepato-Biliary-Pancreatic Surgery, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou 450003, Henan Province, China
| | - Xian-Xian Wu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical Collage (PUMC), Beijing 100021, China
| | - Zhi-Wei Yang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical Collage (PUMC), Beijing 100021, China
| | - Tao Qin
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450003, Henan Province, China
- Department of Hepato-Biliary-Pancreatic Surgery, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou 450003, Henan Province, China
| |
Collapse
|
4
|
Long L, Deng L, Wang L, Wen S, Luo L, Liang L, Ding L, Wu J, Ye Z, Deng DYB. P-Selectin-Based Dual-Model Nanoprobe Used for the Specific and Rapid Visualization of Early Detection toward Severe Acute Pancreatitis in Vivo. ACS Biomater Sci Eng 2020; 6:5857-5865. [PMID: 33320563 DOI: 10.1021/acsbiomaterials.0c00596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Identifying severe acute pancreatitis (SAP) as soon as possible is critical for achieving optimal outcomes and saving lives. In this study, a novel P-selectin-targeted, NIR fluorescent dye (Cy 5.5)-labeled dual-modal nanoprobe based on diethylenetriaminepentaacetic chelates (Gd-DTPA-Cy5.5-PsLmAb) was constructed for the bimodal imaging of SAP at the early stage. Gd-DTPA-Cy5.5-PsLmAb was prepared, and its structure was characterized by Fourier transform infrared spectroscopy, UV-vis spectroscopy, and fluorescence spectroscopy, and its stability was evaluated. Biocompatibility was evaluated by the hemolysis and cytotoxicity assays. The enzyme-linked immunosorbent assay was used to detect and evaluate the expression of P-selectin in the peripheral blood of 11 patients with acute pancreatitis (AP) and 5 healthy volunteers. The bimodal imaging ability of Gd-DTPA-Cy5.5-PsLmAb nanoprobes was evaluated via near-infrared fluorescence (NIRF) and magnetic resonance imaging (MRI) in AP animal models in vivo. Gd-DTPA-Cy5.5-PsLmAb showed low toxicity to human embryonic kidney cells (293T cells) and good blood compatibility. The P-selectin levels of humans and rats in the mild acute pancreatitis (MAP)/SAP stage were significantly higher than those in the control group and reached the highest level at the SAP stage. Furthermore, Gd-DTPA-Cy5.5-PsLmAb nanoprobes showed clear NIRF imaging of mouse pancreas at the MAP stage and SAP stage by a fluorescence signal at 6.09 × 108 and 1.95 × 109, respectively. Meanwhile, Gd-DTPA-Cy5.5-PsLmAb nanoprobes also successfully showed the T1-weighted MR signal of rat pancreas at the MAP stage, but Gd-DTPA seldom showed any signal increase at the MAP stage; Gd-DTPA-Cy5.5-PsLmAb and Gd-DTPA could show an increasing MR signal of rat pancreas at the SAP stage. Gd-DTPA-Cy5.5-PsLmAb proved to offer a stronger signal than Gd-DTPA.Our findings indicate that Gd-DTPA-Cy5.5-PsLmAb is an effective and specific MR/NIRF dual nanoprobe for bimodal imaging, providing a promising diagnostic approach for early SAP in clinic.
Collapse
Affiliation(s)
- Lingli Long
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.,Scientific Research Center and Department of Orthopedic, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Lingna Deng
- Scientific Research Center and Department of Orthopedic, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Liqin Wang
- Department of Interventional Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Shihong Wen
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Liang Luo
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Liqun Liang
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Lu Ding
- Scientific Research Center and Department of Orthopedic, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jianfeng Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Zhizhong Ye
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen 518040, China
| | - David Y B Deng
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.,Scientific Research Center and Department of Orthopedic, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
5
|
Ferrero-Andrés A, Panisello-Roselló A, Serafín A, Roselló-Catafau J, Folch-Puy E. Polyethylene Glycol 35 (PEG35) Protects against Inflammation in Experimental Acute Necrotizing Pancreatitis and Associated Lung Injury. Int J Mol Sci 2020; 21:917. [PMID: 32019239 PMCID: PMC7036920 DOI: 10.3390/ijms21030917] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
Acute pancreatitis is an inflammatory disorder of the pancreas. Its presentation ranges from self-limiting disease to acute necrotizing pancreatitis (ANP) with multiorgan failure and a high mortality. Polyethylene glycols (PEGs) are non-immunogenic, non-toxic, and water-soluble chemicals composed of repeating units of ethylene glycol. The present article explores the effect of PEG35 administration on reducing the severity of ANP and associated lung injury. ANP was induced by injection of 5% sodium taurocholate into the biliopancreatic duct. PEG35 was administered intravenously either prophylactically or therapeutically. Three hours after ANP induction, pancreas and lung tissue samples and blood were collected and ANP severity was assessed. To evaluate the inflammatory response, gene expression of pro-inflammatory cytokines and chemokine and the changes in the presence of myeloperoxidase and adhesion molecule levels were determined in both the pancreas and the lung. To evaluate cell death, lactate dehydrogenase (LDH) activity and apoptotic cleaved caspase-3 localization were determined in plasma and in both the pancreatic and lung tissue respectively. ANP-associated local and systemic inflammatory processes were reduced when PEG35 was administered prophylactically. PEG35 pre-treatment also protected against acute pancreatitis-associated cell death. Notably, the therapeutic administration of PEG35 significantly decreased associated lung injury, even when the pancreatic lesion was equivalent to that in the untreated ANP-induced group. Our results support a protective role of PEG35 against the ANP-associated inflammatory process and identify PEG35 as a promising tool for the treatment of the potentially lethal complications of the disease.
Collapse
Affiliation(s)
- Ana Ferrero-Andrés
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Barcelona, 08036 Catalonia, Spain; (A.F.-A.); (A.P.-R.)
| | - Arnau Panisello-Roselló
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Barcelona, 08036 Catalonia, Spain; (A.F.-A.); (A.P.-R.)
| | - Anna Serafín
- PCB Animal Facility-Parc Científic de Barcelona, Barcelona, 08028 Catalonia, Spain;
| | - Joan Roselló-Catafau
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036 Catalonia, Spain;
| | - Emma Folch-Puy
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036 Catalonia, Spain;
| |
Collapse
|
6
|
Tong H, Wu S, Song K, Liu J, Song X, Zhang X, Huang L, Wu M. Characterization of a P-selectin-binding moiety from Bupleurum chinense polysaccharide and its antagonistic effect against P-selectin-mediated function. Carbohydr Polym 2018; 196:110-116. [PMID: 29891277 DOI: 10.1016/j.carbpol.2018.05.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/14/2018] [Accepted: 05/11/2018] [Indexed: 12/11/2022]
Abstract
P-selectin is a promising therapeutic target for acute inflammation-related diseases, and interest has been growing in the search for high-affinity glycoconjugate ligands that can target the initial P-selectin-mediated recruitment of neutrophils to the site of inflammation. In our previous study, we isolated a water-soluble polysaccharide (BCPS) from Bupleurum chinense and showed that it exhibits anti-inflammatory effect by antagonizing P-selectin-mediated adhesion of HL-60 cells to CHO-P cells. In this study, we prepared a P-selectin-based affinity chromatography medium and used it to purify the P-selectin-binding moiety of BCPS. The purified P-selectin-binding moiety of BCPS, designated as BCPS-m, was mainly composed of arabinose, galactose and glucose, and had a relative molecular weight of 3600 Da. The backbone of BCPS-m was composed of 1,5-linked arabinose, 1,4-linked and 1,4,6-linked glucose, and with branched 1-linked glucose or galactose terminal. BCPS-m could disrupt the P-selectin-mediated binding of HL-60 cells to CHO-P cells (CHO cells that stably expressed an exogenous P-selectin). It also blocked the interaction between P-selectin and its physiological ligand PSGL-1 significantly, resulting in much greater reduction (77%) in P-selectin-PSGL-1 binding than that caused by BCPS (35%). The data suggested that BCPS-m could be the key P-selectin-binding moiety of BCPS, and that it may be a better P-selectin antagonist than BCPS.
Collapse
Affiliation(s)
- Haibin Tong
- Center for Post-doctoral Research, Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Siya Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Kangxing Song
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Jian Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xindan Song
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xu Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Luqi Huang
- Center for Post-doctoral Research, Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
7
|
Abstract
OBJECTIVES Acute pancreatitis (AP) is commonly associated with the release of adhesion molecules such as E and P selectins. We designed the present study to evaluate the role of selectins as potential markers that could reflect the severity of the disease. METHODS One hundred fifty patients with AP constituted the patient group, whereas 70 healthy volunteers established the control group. In both groups, blood samples were taken for measurements of E selectin, P selectin, caspase-cleaved cytokeratin 18, and total soluble cytokeratin 18 levels on admission and days 1, 2, 4, and 6. RESULTS Values of E and P selectins on admission were both elevated compared with control subjects (P < 0.01). The nonsurvivors had higher values of E selectin (P < 0.04) and P selectin (P < 0.03) on admission. Levels of E and P selectin showed positive correlation with the length of stay (P < 0.05). E selectin on admission yielded a sensitivity of 75% and 78% specificity, whereas P selectin had a sensitivity of 67% and 91% specificity. CONCLUSIONS Selectin values in the early course of AP may play a role as indicators of overall prognosis, which may help physicians in better understanding the pathophysiology of a benign disease that may have serious and detrimental complications.
Collapse
|
8
|
Inhibition of inflammatory injure by polysaccharides from Bupleurum chinense through antagonizing P-selectin. Carbohydr Polym 2014; 105:20-5. [PMID: 24708947 DOI: 10.1016/j.carbpol.2014.01.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 01/10/2014] [Accepted: 01/12/2014] [Indexed: 12/21/2022]
Abstract
P-selectin-mediated adhesion between endothelium and neutrophils is a crucial process leading to acute inflammatory injure. Thus, P-selectin has been considered as promising target for therapeutics of acute inflammatory-related diseases. In the present study, the water-soluble polysaccharides (BCPs) were isolated from Bupleurum chinense, and we evaluated their therapeutical effects on acute inflammatory injure and antagonistic function against P-selectin-mediated neutrophil adhesion. Our results showed that BCPs significantly impaired the leukocyte infiltration and relieve lung injury in LPS-induced acute pneumonia model. BCPs significantly blocked the binding of P-selectin to neutrophils and inhibited P-selectin-mediated neutrophils rolling along CHO-P cell monolayer. The result from in vitro protein binding assay showed a direct evidence indicating that BCPs-treatment significantly eliminated the interaction between rhP-Fc and its physiological ligand PSGL-1 at protein level. Together, these results provide a novel therapeutical strategy for amelioration of inflammation-related disease processes by polysaccharides from B. chinense.
Collapse
|
9
|
Abstract
OBJECTIVES The aim of this study was to assess the functional state of platelets in patients with mild acute pancreatitis and severe acute pancreatitis (S-AP). METHODS The number of platelets and their morphological parameters were measured with Advia 2120. β-Thromboglobulin and platelet factor 4 concentrations were determined by enzyme-linked immunosorbent assay method. To evaluate the expression of platelet glycoproteins, flow cytometry method was used. RESULTS At the time of admission, a multiparameter evaluation of the platelets' function in AP patients showed enhanced platelet activation, which was reflected by an increase in the number of large platelets, concentration of degranulation markers (platelet factor 4 and β-thromboglobulin), expression of glycoprotein (Gp) IIb/IIIa, and decreased mean platelet component. Only in S-AP patients at day 1 a decreased number of platelets and high expression of P-selectin and GpIa were observed, which may suggest their prognostic value. At day 30, the procoagulation state was still present in S-AP patients, because of increased platelets and number of large platelets as well as high GpIIb/IIIa expression. CONCLUSIONS These results may indicate an important role of platelet activation in the pathogenesis of acute pancreatitis and the development of complications in S-AP.
Collapse
|
10
|
Abdulla A, Awla D, Thorlacius H, Regnér S. Role of neutrophils in the activation of trypsinogen in severe acute pancreatitis. J Leukoc Biol 2011; 90:975-82. [PMID: 21810937 DOI: 10.1189/jlb.0411195] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The relationship between inflammation and proteolytic activation in pancreatitis is an unresolved issue in pancreatology. The purpose of this study was to define the influence of neutrophils on trypsinogen activation in severe AP. Pancreatitis was induced by infusion of taurocholate into the pancreatic duct in C57BL/6 mice. For neutrophil depletion, an anti-Gr-1 antibody was administered before pancreatitis induction. Administration of the anti-Gr-1 antibody reduced circulating neutrophils by 97%. Pancreatic TAP and serum amylase levels increased 2 h and 24 h after induction of pancreatitis. Neutrophil depletion reduced pancreatic TAP and serum amylase levels at 24 h but not at 2 h after pancreatitis induction. Pancreatic MPO and infiltration of neutrophils, as well as MIP-2 levels, were increased 24 h after taurocholate infusion. Two hours after taurocholate administration, no significant pancreatic infiltration of neutrophils was observed. Injection of the anti-Gr-1 antibody abolished MPO activity, neutrophil accumulation, and MIP-2 levels, as well as acinar cell necrosis, hemorrhage, and edema in the pancreas at 24 h. Moreover, taurocholate-provoked tissue damage and MPO activity in the lung were normalized by neutrophil depletion. Intravital fluorescence microscopy revealed a 97% reduction of leukocytes in the pancreatic microcirculation after administration of the anti-Gr-1 antibody. Our data demonstrate that initial trypsinogen activation is independent of neutrophils, whereas later activation is dependent on neutrophils in the pancreas. Neutrophils are critical in mediating pancreatic and lung tissue damage in severe AP.
Collapse
Affiliation(s)
- Aree Abdulla
- Department of Surgery, Clinical Sciences, Lund University, Malmö, Sweden
| | | | | | | |
Collapse
|