1
|
Tóth S, Szlávik MF, Mandel R, Fekecs F, Tusnády G, Vajda F, Varga N, Apáti Á, Bényei A, Paczal A, Kotschy A, Szakács G. Synthesis and Systematic Investigation of Lepidiline A and Its Gold(I), Silver(I), and Copper(I) Complexes Using In Vitro Cancer Models and Multipotent Stem Cells. ACS OMEGA 2024; 9:32226-32234. [PMID: 39072085 PMCID: PMC11270681 DOI: 10.1021/acsomega.4c05020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024]
Abstract
The imidazole alkaloid lepidiline A from the root of Lepidium meyenii has a moderate to low in vitro anticancer effect. Our aim was to extend cytotoxicity investigations against a panel of cancer cells, including multidrug-resistant cancer cells, and multipotent stem cells. Lepidiline A is a N-heterocyclic carbene precursor, therefore a suitable ligand source for metal complexes. Thus, we synthesized lepidiline A and its copper(I), gold(I), and silver(I) complexes and tested them against ovarian, gastrointestinal, breast, and uterine cancer cells and bone marrow-derived and adipose-derived mesenchymal stem cells. Lepidiline A and its copper complex demonstrated moderate cytotoxicity, while silver and gold complexes exhibited significantly enhanced and consistent cytotoxicity against both cancer and stem cell lines. ABCB1 in the multidrug-resistant uterine sarcoma line conferred significant resistance against lepidiline A and the copper-lepidiline A complex, but not against the silver and gold complexes. Our results indicate that only the copper complex induced a significant and universal increase in the production of reactive oxygen species within cells. In summary, binding of metal ions to lepidiline A results in enhanced cytotoxicity with the nature of the metal ion playing a critical role in determining its properties.
Collapse
Affiliation(s)
- Szilárd Tóth
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Márton F. Szlávik
- Servier
Research Institute of Medicinal Chemistry, Záhony utca 7, Budapest H-1031, Hungary
- Hevesy
György PhD School of Chemistry, Eötvös
Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
| | - Réka Mandel
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Fanni Fekecs
- Servier
Research Institute of Medicinal Chemistry, Záhony utca 7, Budapest H-1031, Hungary
| | - Gábor Tusnády
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Flóra Vajda
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
- Doctoral
School of Molecular Medicine, Semmelweis
University, Budapest H-1089, Hungary
| | - Nóra Varga
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
- Creative
Cell Ltd., Puskas Tivadar
u. 13, Budapest H-1119, Hungary
| | - Ágota Apáti
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Attila Bényei
- Department
of Physical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Attila Paczal
- Servier
Research Institute of Medicinal Chemistry, Záhony utca 7, Budapest H-1031, Hungary
| | - András Kotschy
- Servier
Research Institute of Medicinal Chemistry, Záhony utca 7, Budapest H-1031, Hungary
| | - Gergely Szakács
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
- Center
for Cancer Research, Medical University
of Vienna, Spitalgasse 23, Vienna A-1090, Austria
| |
Collapse
|
2
|
Cheng Y, Li S, Hou Y, Wang W, Wang K, Fu S, Yuan Y, Yang K, Ye X. Glioma-derived small extracellular vesicles induce pericyte-phenotype transition of glioma stem cells under hypoxic conditions. Cell Signal 2023:110754. [PMID: 37315748 DOI: 10.1016/j.cellsig.2023.110754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Glioblastoma (GBM) is the most common and lethal primary brain tumor characterized by extensive vascularization. Anti-angiogenic therapy for this cancer offers the possibility of universal efficacy. However, preclinical and clinical studies suggest that anti-VEGF drug such as Bevacizumab actively promotes tumor invasion, which ultimately leads to a therapy-resistant and recurrent phenotype of GBMs. Whether Bevacizumab can improve survival over chemotherapy alone remains debated. Herein, we emphasized the importance of small extracellular vesicles (sEVs) internalization by glioma stem cells (GSCs) in giving rise to the failure of anti-angiogenic therapy in the treatment of GBMs and discovered a specific therapeutic target for this damaging disease. METHODS To experimentally prove that hypoxia condition promotes the release of GBM cells-derived sEVs, which could be taken up by the surrounding GSCs, we used an ultracentrifugation strategy to isolate GBM-derived sEVs under hypoxic or normoxic conditions, performed bioinformatics analysis and multidimensional molecular biology experiments, and established a xenograft mouse model. RESULTS The internalization of sEVs by GSCs was proved to promote tumor growth and angiogenesis through the pericyte-phenotype transition. Hypoxia-derived sEVs could efficiently deliver TGF-β1 to GSCs, thus resulting in the activation of the TGF-β signaling pathway and the consequent pericyte-phenotype transition. Specifically targeting GSC-derived pericyte using Ibrutinib can reverse the effects of GBM-derived sEVs and enhance the tumor-eradicating effects when combined with Bevacizumab. CONCLUSION This present study provides a new interpretation of the failure of anti-angiogenic therapy in the non-operative treatment of GBMs and discovers a promising therapeutic target for this intractable disease.
Collapse
Affiliation(s)
- Yue Cheng
- Institute of Pathology Department, Basic Medical College, Chongqing Medical University, Chongqing 400038, PR China
| | - Shijie Li
- Institute of Pathology Department, Basic Medical College, Chongqing Medical University, Chongqing 400038, PR China
| | - Yongying Hou
- Institute of Pathology Department, Basic Medical College, Chongqing Medical University, Chongqing 400038, PR China
| | - Weijun Wang
- Institute of Pathology Department, Basic Medical College, Chongqing Medical University, Chongqing 400038, PR China
| | - Ke Wang
- Institute of Pathology Department, Basic Medical College, Chongqing Medical University, Chongqing 400038, PR China
| | - Shihui Fu
- Department of Cardiology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, Hainan Province, PR China
| | - Ye Yuan
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, PR China.
| | - Kaidi Yang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China; Department of Oncology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, Hainan Province, PR China.
| | - Xiufeng Ye
- Institute of Pathology Department, Basic Medical College, Chongqing Medical University, Chongqing 400038, PR China.
| |
Collapse
|
3
|
Pouliquen DL, Boissard A, Henry C, Coqueret O, Guette C. Curcuminoids as Modulators of EMT in Invasive Cancers: A Review of Molecular Targets With the Contribution of Malignant Mesothelioma Studies. Front Pharmacol 2022; 13:934534. [PMID: 35873564 PMCID: PMC9304619 DOI: 10.3389/fphar.2022.934534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
Curcuminoids, which include natural acyclic diarylheptanoids and the synthetic analogs of curcumin, have considerable potential for fighting against all the characteristics of invasive cancers. The epithelial-to-mesenchymal transition (EMT) is a fundamental process for embryonic morphogenesis, however, the last decade has confirmed it orchestrates many features of cancer invasiveness, such as tumor cell stemness, metabolic rewiring, and drug resistance. A wealth of studies has revealed EMT in cancer is in fact driven by an increasing number of parameters, and thus understanding its complexity has now become a cornerstone for defining future therapeutic strategies dealing with cancer progression and metastasis. A specificity of curcuminoids is their ability to target multiple molecular targets, modulate several signaling pathways, modify tumor microenvironments and enhance the host’s immune response. Although the effects of curcumin on these various parameters have been the subject of many reviews, the role of curcuminoids against EMT in the context of cancer have never been reviewed so far. This review first provides an updated overview of all EMT drivers, including signaling pathways, transcription factors, non-coding RNAs (ncRNAs) and tumor microenvironment components, with a special focus on the most recent findings. Secondly, for each of these drivers the effects of curcumin/curcuminoids on specific molecular targets are analyzed. Finally, we address some common findings observed between data reported in the literature and the results of investigations we conducted on experimental malignant mesothelioma, a model of invasive cancer representing a useful tool for studies on EMT and cancer.
Collapse
Affiliation(s)
- Daniel L. Pouliquen
- Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
- *Correspondence: Daniel L. Pouliquen,
| | - Alice Boissard
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Cécile Henry
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Olivier Coqueret
- Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Catherine Guette
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| |
Collapse
|
4
|
Aksan A, Farrag K, Aksan S, Schroeder O, Stein J. Flipside of the Coin: Iron Deficiency and Colorectal Cancer. Front Immunol 2021; 12:635899. [PMID: 33777027 PMCID: PMC7991591 DOI: 10.3389/fimmu.2021.635899] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Iron deficiency, with or without anemia, is the most frequent hematological manifestation in individuals with cancer, and is especially common in patients with colorectal cancer. Iron is a vital micronutrient that plays an essential role in many biological functions, in the context of which it has been found to be intimately linked to cancer biology. To date, however, whereas a large number of studies have comprehensively investigated and reviewed the effects of excess iron on cancer initiation and progression, potential interrelations of iron deficiency with cancer have been largely neglected and are not well-defined. Emerging evidence indicates that reduced iron intake and low systemic iron levels are associated with the pathogenesis of colorectal cancer, suggesting that optimal iron intake must be carefully balanced to avoid both iron deficiency and iron excess. Since iron is vital in the maintenance of immunological functions, insufficient iron availability may enhance oncogenicity by impairing immunosurveillance for neoplastic changes and potentially altering the tumor immune microenvironment. Data from clinical studies support these concepts, showing that iron deficiency is associated with inferior outcomes and reduced response to therapy in patients with colorectal cancer. Here, we elucidate cancer-related effects of iron deficiency, examine preclinical and clinical evidence of its role in tumorigenesis, cancer progression and treatment response. and highlight the importance of adequate iron supplementation to limit these outcomes.
Collapse
Affiliation(s)
- Aysegül Aksan
- Institute of Nutritional Science, Justus-Liebig University, Giessen, Germany.,Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Interdisziplinäres Crohn Colitis Centrum, Rhein-Main, Frankfurt, Germany
| | - Karima Farrag
- Interdisziplinäres Crohn Colitis Centrum, Rhein-Main, Frankfurt, Germany.,DGD Kliniken Sachsenhausen, Frankfurt, Germany
| | - Sami Aksan
- Interdisziplinäres Crohn Colitis Centrum, Rhein-Main, Frankfurt, Germany.,DGD Kliniken Sachsenhausen, Frankfurt, Germany
| | - Oliver Schroeder
- Interdisziplinäres Crohn Colitis Centrum, Rhein-Main, Frankfurt, Germany.,DGD Kliniken Sachsenhausen, Frankfurt, Germany
| | - Jürgen Stein
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Interdisziplinäres Crohn Colitis Centrum, Rhein-Main, Frankfurt, Germany.,DGD Kliniken Sachsenhausen, Frankfurt, Germany
| |
Collapse
|
5
|
Lv B, Li F, Liu X, Lin L. The tumor-suppressive role of microRNA-873 in nasopharyngeal carcinoma correlates with downregulation of ZIC2 and inhibition of AKT signaling pathway. Cancer Gene Ther 2020; 28:74-88. [PMID: 32555352 DOI: 10.1038/s41417-020-0185-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSCs) are responsible for tumor initiation, relapse, and metastasis. Thus, residual CSCs after chemotherapy may result in poor prognosis for nasopharyngeal carcinoma (NPC). Emerging evidence suggests that differentially expressed microRNAs (miRNAs) regulate genes that carry out important functions in CSCs. Here we investigate the interaction of microRNA-873 (miR-873) with the Zic family member 2 (ZIC2) and the effects on downstream serine-threonine protein kinase (AKT) signaling pathway in CSCs in the context of NPC. Initially, microarray-based gene expression profiling identified ZIC2 as a key differentially expressed gene in NPC, which was subsequently confirmed to be upregulated in clinical NPC tissue samples. NPC cells were subjected to sphere-formation conditions in low-attachment plates, followed by sorting of CD133+ cells, which were selected as NPC stem cells after further characterization of stem cell biomarkers. ZIC2 was then shown to be enriched in NPC stem cells at both mRNA and protein levels. However, loss of ZIC2 was associated with the self-renewal, proliferative and tumorigenic properties of NPC stem cells. Next, miRNAs potentially able to target ZIC2 were predicted by the intersection of mirDIP and TargetScan database results, and miRNA miR-873 was found to be downregulated in NPC tissues in general but especially in NPC stem cells. Upregulation of miR-873 inhibited the stem-like properties and tumorigenicity of NPC stem cells, which was found to take place through downregulation of ZIC2 and disruption of the AKT signaling pathway. Collectively, the results obtained suggest that overexpression of miR-873 could aid NPC tumor suppression through reduction of the malignant potential of CSCs.
Collapse
Affiliation(s)
- Baotao Lv
- Department of Radiology, Linyi People's Hospital, 276000, Linyi, P.R. China
| | - Fuzhou Li
- Department of Radiology, Linyi People's Hospital, 276000, Linyi, P.R. China
| | - Xiaoli Liu
- Department of Psychology, Linyi Rongjun Hospital, 276003, Linyi, P.R. China
| | - Liqiang Lin
- Department of E.N.T., Linyi People's Hospital, 276000, Linyi, P.R. China.
| |
Collapse
|
6
|
Alhabbab RY. Targeting Cancer Stem Cells by Genetically Engineered Chimeric Antigen Receptor T Cells. Front Genet 2020; 11:312. [PMID: 32391048 PMCID: PMC7188929 DOI: 10.3389/fgene.2020.00312] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
The term cancer stem cell (CSC) starts 25 years ago with the evidence that CSC is a subpopulation of tumor cells that have renewal ability and can differentiate into several distinct linages. Therefore, CSCs play crucial role in the initiation and the maintenance of cancer. Moreover, it has been proposed throughout several studies that CSCs are behind the failure of the conventional chemo-/radiotherapy as well as cancer recurrence due to their ability to resist the therapy and their ability to re-regenerate. Thus, the need for targeted therapy to eliminate CSCs is crucial; for that reason, chimeric antigen receptor (CAR) T cells has currently been in use with high rate of success in leukemia and, to some degree, in patients with solid tumors. This review outlines the most common CSC populations and their common markers, in particular CD133, CD90, EpCAM, CD44, ALDH, and EGFRVIII, the interaction between CSCs and the immune system, CAR T cell genetic engineering and signaling, CAR T cells in targeting CSCs, and the barriers in using CAR T cells as immunotherapy to treat solid cancers.
Collapse
Affiliation(s)
- Rowa Y. Alhabbab
- Division of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Jabbarpour Z, Kiani J, Keshtkar S, Saidijam M, Ghahremani MH, Ahmadbeigi N. Effects of human placenta-derived mesenchymal stem cells with NK4 gene expression on glioblastoma multiforme cell lines. J Cell Biochem 2020; 121:1362-1373. [PMID: 31595570 DOI: 10.1002/jcb.29371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/13/2019] [Indexed: 12/11/2022]
Abstract
Poor prognosis and low survival are commonly seen in patients with glioblastoma multiforme (GBM). Due to the specific nature of solid tumors such as GBM, delivery of therapeutic agents to the tumor sites is difficult. So, one of the major challenges in the treatment of these tumors is a selection of appropriate method for drug delivery. Mesenchymal stem cells (MSCs) have a unique characteristic in migration toward the tumor tissue. In this regard, the present study examined the antitumor effects of manipulating human placenta-derived mesenchymal stem cells (PDMSCs) with NK4 expression (PDMSC-NK4) on GBM cells. After separation and characterization of PDMSCs, these cells were transduced with NK4 which was known as the antagonist of hepatocyte growth factor (HGF). The results indicated that engineered PDMSCs preferably migrate into GBM cells by transwell coculture system. In addition, the proliferation of the GBM cells significantly reduced after coculture with these cells. In fact, manipulated PDMSCs inhibited growth of tumor cells by induction of apoptosis. Our findings suggested that besides having antitumor effects, PDMSCs can also be applied as an ideal cellular vehicle to target the glioblastoma multiforme.
Collapse
Affiliation(s)
- Zahra Jabbarpour
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Somayeh Keshtkar
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad H Ghahremani
- Department of Pharmacology-Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Ahmadbeigi
- Cell-Based Therapies Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Butturini E, Carcereri de Prati A, Boriero D, Mariotto S. Tumor Dormancy and Interplay with Hypoxic Tumor Microenvironment. Int J Mol Sci 2019; 20:ijms20174305. [PMID: 31484342 PMCID: PMC6747268 DOI: 10.3390/ijms20174305] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 12/16/2022] Open
Abstract
The tumor microenvironment is a key factor in disease progression, local resistance, immune-escaping, and metastasis. The rapid proliferation of tumor cells and the aberrant structure of the blood vessels within tumors result in a marked heterogeneity in the perfusion of the tumor tissue with regions of hypoxia. Although most of the tumor cells die in these hypoxic conditions, a part of them can adapt and survive for many days or months in a dormant state. Dormant tumor cells are characterized by cell cycle arrest in G0/G1 phase as well as a low metabolism, and are refractive to common chemotherapy, giving rise to metastasis. Despite these features, the cells retain their ability to proliferate when conditions improve. An understanding of the regulatory machinery of tumor dormancy is essential for identifying early cancer biomarkers and could provide a rationale for the development of novel agents to target dormant tumor cell populations. In this review, we examine the current knowledge of the mechanisms allowing tumor dormancy and discuss the crucial role of the hypoxic microenvironment in this process.
Collapse
Affiliation(s)
- Elena Butturini
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy.
| | - Alessandra Carcereri de Prati
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy.
| | - Diana Boriero
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy.
| | - Sofia Mariotto
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy.
| |
Collapse
|
9
|
KIBRA Team Up with Partners to Promote Breast Cancer Metastasis. Pathol Oncol Res 2019; 26:627-634. [DOI: 10.1007/s12253-019-00660-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023]
|
10
|
Zendehdel E, Abdollahi E, Momtazi‐Borojeni AA, Korani M, Alavizadeh SH, Sahebkar A. The molecular mechanisms of curcumin’s inhibitory effects on cancer stem cells. J Cell Biochem 2019; 120:4739-4747. [DOI: 10.1002/jcb.27757] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 09/06/2018] [Indexed: 08/30/2023]
Abstract
AbstractCurcumin is a dietary polyphenol and a bioactive phytochemical that possesses anti‐inflammatory, antioxidant, anticancer, and chemopreventive properties, which make it capable of affecting multiple sites along the stem cell pathways to induce apoptosis in these cells. Curcumin’s function is through suppression of cytokine release, especially the secretion of interleukins. Some of the predominant activities of stem cells include regeneration of identical cells and the ability to maintain the proliferation and multipotentiality. However, these cells could be stimulated to differentiate into specific cell types, leading to the development of tumors. Cancer stem cells (CSC) are capable of sustaining tumor formation and differentiation, and are normally characterized by self‐renewal mechanisms. Furthermore, these cells might be responsible for tumor relapse and resistance to therapy. Several studies have focused on the mechanisms of curcumin action in manipulating transcription factors, signaling pathways, CSC markers, microRNAs related to CSCs functions and apoptosis induction in various human cancer cells. In the present review, we aimed to summarize the reported molecular mechanisms of curcumin’s effects on CSCs.
Collapse
Affiliation(s)
- Elham Zendehdel
- Department of Biochemistry and Biophysics, Faculty of Sciences, Mashhad Branch Islamic Azad University Mashhad Iran
| | - Elham Abdollahi
- Department of Medical Immunology, Student Research Committee, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Amir Abbas Momtazi‐Borojeni
- Nanotechnology Research Center, Bu‐Ali Research Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Medical Biotechnology, Student Research Committee, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Mitra Korani
- Nanotechnology Research Center, Bu‐Ali Research Institute Mashhad University of Medical Sciences Mashhad Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center Mashhad University of Medical Sciences Mashhad Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
11
|
Desai A, Yan Y, Gerson SL. Concise Reviews: Cancer Stem Cell Targeted Therapies: Toward Clinical Success. Stem Cells Transl Med 2019; 8:75-81. [PMID: 30328686 PMCID: PMC6312440 DOI: 10.1002/sctm.18-0123] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/04/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) are a subpopulation of cells within tumors that possess the stem cell characteristics of self-renewal, quiescence, differentiation, and the ability to recapitulate the parental tumor when transplanted into a host. CSCs are correlated with poor clinical outcome due to their contribution to chemotherapy resistance and metastasis. Multiple cell surface and enzymatic markers have been characterized to identify CSCs within a heterogeneous tumor, and here we summarize ongoing preclinical and clinical efforts to therapeutically target these cells and improve patient outcomes. Stem Cells Translational Medicine 2019;8:75-81.
Collapse
Affiliation(s)
- Amar Desai
- Department of MedicineCase Western Reserve UniversityClevelandOhioUSA
- Case Comprehensive Cancer CenterCase Western Reserve UniversityClevelandOhioUSA
| | - Yan Yan
- Department of MedicineCase Western Reserve UniversityClevelandOhioUSA
- Case Comprehensive Cancer CenterCase Western Reserve UniversityClevelandOhioUSA
| | - Stanton L. Gerson
- Department of MedicineCase Western Reserve UniversityClevelandOhioUSA
- Case Comprehensive Cancer CenterCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
12
|
Bao B, Prasad AS. Targeting CSC in a Most Aggressive Subtype of Breast Cancer TNBC. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1152:311-334. [DOI: 10.1007/978-3-030-20301-6_17] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Hsu FT, Wei ZH, Hsuan YCY, Lin W, Su YC, Liao CH, Hsieh CL. MRI tracking of polyethylene glycol-coated superparamagnetic iron oxide-labelled placenta-derived mesenchymal stem cells toward glioblastoma stem-like cells in a mouse model. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S448-S459. [PMID: 30198338 DOI: 10.1080/21691401.2018.1499661] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mesenchymal stem cells (MSCs) that display homing and infiltration properties towards tumor cells are a promising cellular targeting vector for brain tumor therapy but are limited to local-regional delivery in current preclinical models. Here, we investigated whether placenta-derived MSCs (P-MSCs) are a superior cellular vector for systemic targeting of glioblastoma stem-like cells (GSCs), with an imaging modality to real-time monitor the trafficking P-MSCs to glioblastoma sites. Results demonstrated that P-MSCs had greater migratory activity towards GSCs and across blood-brain barrier compared with bone marrow-derived MSCs, and this activity was enhanced by hypoxia precondition. Chemokine ligand 5 was identified as a chemoattractant responsible for the glioblastoma tropism of P-MSCs. Polyethylene glycol-coated superparamagnetic iron oxide (PEG-SPIO) was synthesized for cellular labelling and imaging P-MSCs, displaying high cellular uptake and no cytotoxic effect on P-MSCs cell proliferation or stemness property. The homing effects of intravenously administered PEG-SPIO-labelled P-MSCs towards intracerebral GSCs were able to be detected in mice models through T2-weighted magnetic resonance imaging (MRI). This study suggests the possibility of innovative systemic P-MSC-based cell therapy for aggressive GSCs, developing a state-of-the-art theranostic technique for real-time tracking of therapeutic P-MSCs tumor infiltration through cellular MRI.
Collapse
Affiliation(s)
- Fei-Ting Hsu
- a Department of Radiology , School of Medicine, College of Medicine, Taipei Medical University , Taipei , Taiwan.,b Department of Biological Science and Technology , China Medical University , Taichung , Taiwan.,c Department of Medical Imaging , Taipei Medical University Hospital , Taipei , Taiwan.,d Research Center of Translational Imaging , College of Medicine, Taipei Medical University , Taipei , Taiwan
| | - Zung-Hang Wei
- e Department of Power Mechanical Engineering , National Tsing Hua University , Hsinchu , Taiwan
| | | | - Willie Lin
- f Meridigen Biotech Co., Ltd. , Neihu, Taipei City , Taiwan
| | - Yu-Chin Su
- f Meridigen Biotech Co., Ltd. , Neihu, Taipei City , Taiwan
| | - Chia-Hui Liao
- g The PhD Program for Translational Medicine , College of Medical Science and Technology, Taipei Medical University , Taipei , Taiwan
| | - Chia-Ling Hsieh
- g The PhD Program for Translational Medicine , College of Medical Science and Technology, Taipei Medical University , Taipei , Taiwan.,h Clinical Research Center , Taipei Medical University Hospital, Taipei Medical University , Taipei , Taiwan.,i TMU Research Center of Cancer Translational Medicine , Taipei Medical University , Taipei , Taiwan
| |
Collapse
|
14
|
Choi SH, Lee SW, Ok M, Kim KS, Kim S, Ahn SH. Gene Expression Profiling of Hepatocellular Carcinoma Derived Cancer Stem Like Cell under Hypoxia. Yonsei Med J 2017; 58:925-933. [PMID: 28792135 PMCID: PMC5552646 DOI: 10.3349/ymj.2017.58.5.925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/17/2017] [Accepted: 05/22/2017] [Indexed: 01/16/2023] Open
Abstract
PURPOSE Cancer stem like cells (CSCs), with unlimited self-renewal potential and other stem cell characteristics, occur in several cancers including hepatocellular carcinoma (HCC). Although CSCs can initiate tumors, malignant proliferation, relapse and multi-drug resistance, the ways how to activate them still remain unknown. This study aims to evaluate whether CSC acquire tumorigenic characters under tumor hypoxia, analyzed by microarray analysis. MATERIALS AND METHODS CSCs were purified from HCC patients and Affymetrix microarray was used to investigate their gene expression profiles. The results were validated by real-time polymerase chain reaction (PCR). RESULTS The results of the microarray indicated that 18 genes were up-regulated and 10 genes were down-regulated in CSCs. Several genes were identified to be significantly involved in the regulation of CSCs such as HCC. Furthermore, the up-regulated genes were related with metabolism, angiogenesis and hypoxia, whereas the down-regulated genes were related with apoptosis and inflammation. CONCLUSION The results may help to understand the mechanisms of tumor development through CSCs which acquired their distinctive tumorogenic properties by hypoxic stimulation.
Collapse
Affiliation(s)
- Sung Hoon Choi
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Division of Bioconvergence, Drug and Disease Target Group, Korea Basic Science Institute, Ochang, Korea
| | - Sang Woo Lee
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Minseon Ok
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Sik Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
- BK21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Yonsei University Health System, Seoul, Korea
| | | | - Sang Hoon Ahn
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- BK21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Yonsei University Health System, Seoul, Korea.
| |
Collapse
|
15
|
Shao Y, Zhu W, Da J, Xu M, Wang Y, Zhou J, Wang Z. Bisdemethoxycurcumin in combination with α-PD-L1 antibody boosts immune response against bladder cancer. Onco Targets Ther 2017; 10:2675-2683. [PMID: 28579805 PMCID: PMC5449128 DOI: 10.2147/ott.s130653] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Curcumin was recently discovered to strengthen immune response through multiple mechanisms. Cytotoxic CD8+ T-cells play a critical role in modulating anticancer immune response, but is severely restricted by T-cell exhaustion. Bladder carcinomas express PD-L1 and can abrogate CD8+ T-cell response. Thus, we hypothesized that bisdemethoxycurcumin, a natural dimethoxy derivative of curcumin, may provide a favorable environment for T-cell response against bladder cancer when used in combination with α-PD-L1 antibody. Immunocompetent C56BL/6 mouse models bearing subcutaneous or lung metastasized MB79 bladder cancer were established to validate this conjecture. We found that bisdemethoxycurcumin significantly increased intratumoral CD8+ T-cell infiltration, elevated the level of IFN-γ in the blood, and decreased the number of intratumoral myeloid-derived suppressor cells. Furthermore, α-PD-L1 antibody protected these amplified CD8+ T-cells from exhaustion, and therefore facilitated the secretion of IFN-γ, granzyme B, and perforin through these CD8+ T-cells. As a result, this combination treatment strategy significantly prolonged survival of intraperitoneal metastasized bladder cancer bearing mice, suggesting that bisdemethoxycurcumin in combination with α-PD-L1 antibody may be promising for bladder cancer patients.
Collapse
Affiliation(s)
- Yiqun Shao
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Wenjing Zhu
- Department of Urology, Yueyang Hospital of integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jun Da
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Mingxi Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Yiwei Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Juan Zhou
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Zhong Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
16
|
Zubair H, Azim S, Ahmad A, Khan MA, Patel GK, Singh S, Singh AP. Cancer Chemoprevention by Phytochemicals: Nature's Healing Touch. Molecules 2017; 22:molecules22030395. [PMID: 28273819 PMCID: PMC6155418 DOI: 10.3390/molecules22030395] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 12/28/2022] Open
Abstract
Phytochemicals are an important part of traditional medicine and have been investigated in detail for possible inclusion in modern medicine as well. These compounds often serve as the backbone for the synthesis of novel therapeutic agents. For many years, phytochemicals have demonstrated encouraging activity against various human cancer models in pre-clinical assays. Here, we discuss select phytochemicals—curcumin, epigallocatechin-3-gallate (EGCG), resveratrol, plumbagin and honokiol—in the context of their reported effects on the processes of inflammation and oxidative stress, which play a key role in tumorigenesis. We also discuss the emerging evidence on modulation of tumor microenvironment by these phytochemicals which can possibly define their cancer-specific action. Finally, we provide recent updates on how low bioavailability, a major concern with phytochemicals, is being circumvented and the general efficacy being improved, by synthesis of novel chemical analogs and nanoformulations.
Collapse
Affiliation(s)
- Haseeb Zubair
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Shafquat Azim
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Aamir Ahmad
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Mohammad Aslam Khan
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Girijesh Kumar Patel
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
- Department of Molecular Biology and Biochemistry, College of Medicine, University of South Alabama, Mobile, AL 36688, USA.
| | - Ajay Pratap Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
- Department of Molecular Biology and Biochemistry, College of Medicine, University of South Alabama, Mobile, AL 36688, USA.
| |
Collapse
|
17
|
Zhou S, Zhang S, Shen H, Chen W, Xu H, Chen X, Sun D, Zhong S, Zhao J, Tang J. Curcumin inhibits cancer progression through regulating expression of microRNAs. Tumour Biol 2017; 39:1010428317691680. [PMID: 28222667 DOI: 10.1177/1010428317691680] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Curcumin, a major yellow pigment and spice in turmeric and curry, is a powerful anti-cancer agent. The anti-tumor activities of curcumin include inhibition of tumor proliferation, angiogenesis, invasion and metastasis, induction of tumor apoptosis, increase of chemotherapy sensitivity, and regulation of cell cycle and cancer stem cell, indicating that curcumin maybe a strong therapeutic potential through modulating various cancer progression. It has been reported that microRNAs as small noncoding RNA molecules are related to cancer progression, which can be regulated by curcumin. Dysregulated microRNAs play vital roles in tumor biology via regulating expressions of target genes and then influencing multiple cancer-related signaling pathways. In this review, we focused on the inhibition effect of curcumin on various cancer progression by regulating expression of multiple microRNAs. Curcumin-induced dysregulation of microRNAs may activate or inactivate a set of signaling pathways, such as Akt, Bcl-2, PTEN, p53, Notch, and Erbb signaling pathways. A better understanding of the relation between curcumin and microRNAs may provide a potential therapeutic target for various cancers.
Collapse
Affiliation(s)
- Siying Zhou
- The First Clinical Medical College, Nanjing University of Traditional Chinese Medicine, Nanjing, China
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Sijie Zhang
- Department of Breath Internal Medicine, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Hongyu Shen
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
- The Fourth Clinical School of Nanjing Medical University, Nanjing, China
| | - Wei Chen
- Graduate School, Xuzhou Medical College, Xuzhou, China
| | - Hanzi Xu
- The First Clinical Medical College, Nanjing University of Traditional Chinese Medicine, Nanjing, China
- Department of Radiotherapy, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Xiu Chen
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
- The Fourth Clinical School of Nanjing Medical University, Nanjing, China
| | - Dawei Sun
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Shanliang Zhong
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Jianhua Zhao
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Jinhai Tang
- The First Clinical Medical College, Nanjing University of Traditional Chinese Medicine, Nanjing, China
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
- Jiangsu Province Hospital, Nanjing, China
| |
Collapse
|
18
|
Zhang X, Liu X, Luo J, Xiao W, Ye X, Chen M, Li Y, Zhang GJ. Notch3 inhibits epithelial-mesenchymal transition by activating Kibra-mediated Hippo/YAP signaling in breast cancer epithelial cells. Oncogenesis 2016; 5:e269. [PMID: 27841855 PMCID: PMC5141289 DOI: 10.1038/oncsis.2016.67] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/06/2016] [Accepted: 09/19/2016] [Indexed: 02/05/2023] Open
Abstract
Invasion, metastasis and chemoresistance are leading causes of death in breast cancer patients. A vital change of epithelial cells, epithelial-mesenchymal transition (EMT), is involved in these processes. Unfortunately, the molecular mechanisms controlling EMT remain to be elucidated. Our previous studies have shown that ectopic N3ICD expression inhibits EMT in MDA-MB-231, a triple-negative breast cancer (TNBC) epithelial cell line. To decipher the mechanism, we performed in-depth studies. Specifically, we found that overexpressing N3ICD transcriptionally upregulated the expression of Kibra, an upstream member of the Hippo pathway. Correspondingly, we also observed that phosphorylated Hippo pathway core kinases, including Lats1/2 and MST1/2, were increased and decreased by overexpressing and knocking down Notch3, respectively. Furthermore, we found that the oncogenic transcriptional coactivator yes-associated protein (YAP), which is negatively regulated by the Hippo pathway, was inhibited by overexpressing N3ICD in breast cancer epithelial cells. The ability of Kibra to inhibit EMT has been previously reported. We thus speculated that Notch3 inhibition of EMT is mediated by upregulated Kibra. To verify this hypothesis, a rescue experiment was performed. Evidently, the ability of Notch3 to inhibit EMT can be countered by knocking down Kibra expression. These data suggest that Notch3 inhibits EMT by activating the Hippo/YAP pathway by upregulating Kibra in breast cancer epithelial cells, and Kibra may be a downstream effector of Notch3. These findings deepen our understanding of EMT in both development and disease, and will undoubtedly help to provide new therapeutic strategies for interfering with cancer invasion and metastasis, especially for TNBC.
Collapse
Affiliation(s)
- X Zhang
- Changjiang Scholar's Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - X Liu
- Changjiang Scholar's Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - J Luo
- Changjiang Scholar's Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - W Xiao
- Changjiang Scholar's Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - X Ye
- Changjiang Scholar's Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - M Chen
- Changjiang Scholar's Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Y Li
- Changjiang Scholar's Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
- Changjiang Scholar's Laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou 515041, China. E-mail: or
| | - G-J Zhang
- Changjiang Scholar's Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, China
- Changjiang Scholar's Laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou 515041, China. E-mail: or
| |
Collapse
|
19
|
Carnero A, Lleonart M. The hypoxic microenvironment: A determinant of cancer stem cell evolution. Bioessays 2016; 38 Suppl 1:S65-74. [DOI: 10.1002/bies.201670911] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Amancio Carnero
- Oncohematology and Genetic Department, Molecular Biology of Cancer Group; Instituto de Biomedicina de Sevilla (IBIS/HUVR/CSIC/Universidad de Sevilla); Seville Spain
| | - Matilde Lleonart
- Pathology Department, Oncology and Pathology Group; Institut de Recerca Hospital Vall d'Hebron; Barcelona Spain
| |
Collapse
|
20
|
Ramasamy TS, Ayob AZ, Myint HHL, Thiagarajah S, Amini F. Targeting colorectal cancer stem cells using curcumin and curcumin analogues: insights into the mechanism of the therapeutic efficacy. Cancer Cell Int 2015; 15:96. [PMID: 26457069 PMCID: PMC4599442 DOI: 10.1186/s12935-015-0241-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 09/07/2015] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer is one of the commonest cancers in the world and it is also a common cause of cancer-related death worldwide. Despite advanced treatment strategies, the disease is rarely cured completely due to recurrence. Evidence shows that this is due to a small population of cells, called cancer stem cells (CSCs), in the tumour mass that have the self-renewal and differentiation potential to give rise to a new tumour population. Many pre-clinical and clinical studies have used curcumin and its analogues as anti-cancer agents in various types of cancer, including colorectal cancer. Intriguingly, curcumin and its analogues have also recently been shown to be effective in lowering tumour recurrence by targeting the CSC population, hence inhibiting tumour growth. In this review, we highlight the efficacy of curcumin and its analogues in targeting colorectal CSC and also the underlying molecular mechanism involved. Curcumin, in the presence or absence of other anti-cancer agents, has been shown to reduce the size of tumour mass and growth in both in vivo and in vitro studies by affecting many intracellular events that are associated with cancer progression and CSC formation. An insight into the molecular mechanism has unraveled the mode of action via which curcumin could affect the key regulators in CSC, importantly; (1) the signaling pathways, including Wnt/β-catenin, Sonic Hedgehog, Notch and PI3K/Akt/mTOR, (2) microRNA and (3) the epithelial-mesenchymal transition at multiple levels. Therefore, curcumin could play a role as chemosensitiser whereby the colorectal CSCs are now sensitised towards the anti-cancer therapy, therefore, combination therapy using anti-cancer agent with curcumin could be much more effective than treatment using a single cancer agent. This potential treatment modality can be further developed by employing an effective delivery system using a nanotechnology based approach to treat colorectal cancer.
Collapse
Affiliation(s)
- Thamil Selvee Ramasamy
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia ; Cell and Molecular Biology Laboratory, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ain Zubaidah Ayob
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia ; Cell and Molecular Biology Laboratory, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hsu Hsu Lynn Myint
- Faculty of Medicine and Health Science, School of Healthy Aging, Medical Aesthetics and Regenerative Medicine, UCSI University, Kuala Lumpur, Malaysia
| | - Sharmanee Thiagarajah
- Faculty of Medicine and Health Science, School of Healthy Aging, Medical Aesthetics and Regenerative Medicine, UCSI University, Kuala Lumpur, Malaysia
| | - Farahnaz Amini
- Faculty of Medicine and Health Science, School of Healthy Aging, Medical Aesthetics and Regenerative Medicine, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Molecular targets of naturopathy in cancer research: bridge to modern medicine. Nutrients 2015; 7:321-34. [PMID: 25569626 PMCID: PMC4303842 DOI: 10.3390/nu7010321] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/23/2014] [Indexed: 01/10/2023] Open
Abstract
The relevance of naturopathy (defined as the practice of medicine for the treatment of human diseases with natural agents) in human cancer is beginning to be appreciated, as documented by renewed interest in nutraceutical research, the natural anticancer agents of dietary origin. Because of their pleiotropic effects and the ability to modulate multiple signaling pathways, which is a good attribute of natural agents, nutraceuticals have frequently been demonstrated to re-sensitize drug-resistant cancers. The effectiveness of nutraceuticals can be further enhanced if the tools for the relative assessment of their molecular targets are readily available. Such information can be critical for determining their most effective uses. Here, we discuss the anticancer potential of nutraceuticals and the associated challenges that have interfered with their translational potential as a naturopathic approach for the management of cancers. In the years to come, an efficient screening and assessment of molecular targets will be the key to make rapid progress in the area of drug design and discovery, especially focusing on evidence-based development of naturopathy for the treatment of human malignancies.
Collapse
|
22
|
Isolation and characterization of progenitor mesenchymal cells in human pituitary tumors. Cancer Gene Ther 2014; 22:9-16. [PMID: 25525036 DOI: 10.1038/cgt.2014.63] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 10/30/2014] [Accepted: 10/31/2014] [Indexed: 01/06/2023]
Abstract
The Cancer Stem Cells (CSCs) theory suggests that genetic alterations in stem cells are the direct cause for cancer. The evidence for a CSC population that results in pituitary tumors is poor. Some studies report the isolation of CSCs, but a deep characterization of the stemness of these cells is lacking. Here, we report the isolation and detailed characterization of progenitor mesenchymal cells (PMCs) from both growth hormone-secreting (GH(+)) and non-secreting (NS) pituitary adenomas, determining the immunophenotype, the expression of genes related to stemness or to pituitary hormone cell types, and the differentiative potential towards osteo-, chondro- and adipogenic lineages. Finally, the expression of CD133, known as a marker for CSCs in other tumors, was analyzed. Isolated cells, both from GH(+) and NS tumors, satisfy all the criteria for the identification of PMCs and express known stem cell markers (OCT4, SOX2, KLF4, NANOG), but do not express markers of pituitary hormone cell types (PITX2, PROP1, PIT1). Finally, PMCs express CD133. We demonstrated that pituitary tumors contain a stem cell population that can generate cell types characteristic of mesenchymal stem cells, and express CD133, which is associated with CSCs in other tumors.
Collapse
|
23
|
Zhu Y, Cheng M, Yang Z, Zeng CY, Chen J, Xie Y, Luo SW, Zhang KH, Zhou SF, Lu NH. Mesenchymal stem cell-based NK4 gene therapy in nude mice bearing gastric cancer xenografts. Drug Des Devel Ther 2014; 8:2449-62. [PMID: 25525335 PMCID: PMC4267519 DOI: 10.2147/dddt.s71466] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been recognized as promising delivery vehicles for gene therapy of tumors. Gastric cancer is the third leading cause of worldwide cancer mortality, and novel treatment modalities are urgently needed. NK4 is an antagonist of hepatocyte growth factor receptors (Met) which are often aberrantly activated in gastric cancer and thus represent a useful candidate for targeted therapies. This study investigated MSC-delivered NK4 gene therapy in nude mice bearing gastric cancer xenografts. MSCs were transduced with lentiviral vectors carrying NK4 complementary DNA or enhanced green fluorescent protein (GFP). Such transduction did not change the phenotype of MSCs. Gastric cancer xenografts were established in BALB/C nude mice, and the mice were treated with phosphate-buffered saline (PBS), MSCs-GFP, Lenti-NK4, or MSCs-NK4. The tropism of MSCs toward gastric cancer cells was determined by an in vitro migration assay using MKN45 cells, GES-1 cells and human fibroblasts and their presence in tumor xenografts. Tumor growth, tumor cell apoptosis and intratumoral microvessel density of tumor tissue were measured in nude mice bearing gastric cancer xenografts treated with PBS, MSCs-GFP, Lenti-NK4, or MSCs-NK4 via tail vein injection. The results showed that MSCs migrated preferably to gastric cancer cells in vitro. Systemic MSCs-NK4 injection significantly suppressed the growth of gastric cancer xenografts. MSCs-NK4 migrated and accumulated in tumor tissues after systemic injection. The microvessel density of tumor xenografts was decreased, and tumor cellular apoptosis was significantly induced in the mice treated with MSCs-NK4 compared to control mice. These findings demonstrate that MSC-based NK4 gene therapy can obviously inhibit the growth of gastric cancer xenografts, and MSCs are a better vehicle for NK4 gene therapy than lentiviral vectors. Further studies are warranted to explore the efficacy and safety of the MSC-based NK4 gene therapy in animals and cancer patients.
Collapse
Affiliation(s)
- Yin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi, People’s Republic of China
| | - Ming Cheng
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Jiangxi, People’s Republic of China
| | - Zhen Yang
- Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi, People’s Republic of China
| | - Chun-Yan Zeng
- Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi, People’s Republic of China
| | - Jiang Chen
- Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi, People’s Republic of China
| | - Yong Xie
- Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi, People’s Republic of China
| | - Shi-Wen Luo
- Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi, People’s Republic of China
| | - Kun-He Zhang
- Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi, People’s Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Nong-Hua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi, People’s Republic of China
- Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi, People’s Republic of China
| |
Collapse
|
24
|
MiR-335 functions as a tumor suppressor in pancreatic cancer by targeting OCT4. Tumour Biol 2014; 35:8309-18. [PMID: 24859837 DOI: 10.1007/s13277-014-2092-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/12/2014] [Indexed: 01/19/2023] Open
Abstract
Octamer-binding transcription factor 4 (OCT4) was closely related to pancreatic cancer progression, but its regulation in pancreatic cancer by microRNA (miRNA) is not fully clear. OCT4-positive and OCT4-negative pancreatic cells were isolated by flow cytometry, and it was found that OCT4-positive cells are enriched in transplanted pancreatic cancer cells compared with the primary ones and showed increasing proliferation and sphere formation. The data of miRNA array assay showed that miR-335 in OCT4-positive pancreatic cancer cells was lower than that in the negative ones. The results were confirmed in pancreatic cancer tissue and cell lines. Through expression analysis, it was found that miR-335 was underexpressed in OCT4(+) pancreatic cancer cells purified from primary tumors. Enforced expression of miR-335 in OCT4(+) pancreatic cancer cells inhibited clonogenic expansion and tumor development. miR-335 re-expression in OCT4(+) pancreatic cancer cells was blocked. Systemically delivered miR-335 inhibited pancreatic cancer metastasis and extended animal survival. Of significance, OCT4 was identified and validated as a direct and functional target of miR-335. Taken together, our results provide evidence that miR-335 might inhibit progression and stem cell properties of pancreatic cancer targeting OCT4.
Collapse
|
25
|
Ahmed AA, Zia H, Wagner L. Therapy resistance mechanisms in Ewing's sarcoma family tumors. Cancer Chemother Pharmacol 2014; 73:657-63. [PMID: 24469502 DOI: 10.1007/s00280-014-2392-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 01/16/2014] [Indexed: 11/26/2022]
Abstract
Ewing's sarcoma family tumors are aggressive small round cell malignancies that arise in bone or soft tissues in adolescents and young adults. The addition of chemotherapy to local control measures has remarkably improved the survival of patients with localized disease. However, metastatic tumors are often refractory to conventional chemotherapy and irradiation, and the outcome of patients with metastatic or recurrent disease remains dismal. Despite growing understanding of the molecular biology of this tumor and the discovery of new therapeutic targets such as the insulin growth factor-1 receptor, tumor resistance continues to be a formidable challenge. Numerous adaptive mechanisms have been identified which allow tumor cells to escape the cytotoxic effect of chemotherapeutic agents. This review focuses on these mechanisms in an effort to highlight opportunities for more effective disease control.
Collapse
Affiliation(s)
- Atif A Ahmed
- Department of Pathology, University of Missouri, Kansas City, MO, USA,
| | | | | |
Collapse
|
26
|
Tanabe S. Role of mesenchymal stem cells in cell life and their signaling. World J Stem Cells 2014; 6:24-32. [PMID: 24567785 PMCID: PMC3927011 DOI: 10.4252/wjsc.v6.i1.24] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/18/2013] [Accepted: 12/12/2013] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have various roles in the body and cellular environment, and the cellular phenotypes of MSCs changes in different conditions. MSCs support the maintenance of other cells, and the capacity of MSCs to differentiate into several cell types makes the cells unique and full of possibilities. The involvement of MSCs in the epithelial-mesenchymal transition is an important property of these cells. In this review, the role of MSCs in cell life, including their application in therapy, is first described, and the signaling mechanism of MSCs is investigated for a further understanding of these cells.
Collapse
Affiliation(s)
- Shihori Tanabe
- Shihori Tanabe, National Institute of Health Sciences, Tokyo 158-8501, Japan
| |
Collapse
|
27
|
Li Y, Zhang T. Targeting cancer stem cells by curcumin and clinical applications. Cancer Lett 2014; 346:197-205. [PMID: 24463298 DOI: 10.1016/j.canlet.2014.01.012] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/14/2014] [Accepted: 01/19/2014] [Indexed: 02/07/2023]
Abstract
Curcumin is a well-known dietary polyphenol derived from the rhizomes of turmeric, an Indian spice. The anticancer effect of curcumin has been demonstrated in many cell and animal studies, and recent research has shown that curcumin can target cancer stem cells (CSCs). CSCs are proposed to be responsible for initiating and maintaining cancer, and contribute to recurrence and drug resistance. A number of studies have suggested that curcumin has the potential to target CSCs through regulation of CSC self-renewal pathways (Wnt/β-catenin, Notch, sonic hedgehog) and specific microRNAs involved in acquisition of epithelial-mesenchymal transition (EMT). The potential impact of curcumin, alone or in combination with other anticancer agents, on CSCs was evaluated as well. Furthermore, the safety and tolerability of curcumin have been well-established by numerous clinical studies. Importantly, the low bioavailability of curcumin has been dramatically improved through the use of structural analogues or special formulations. More clinical trials are underway to investigate the efficacy of this promising agent in cancer chemoprevention and therapy. In this article, we review the effects of curcumin on CSC self-renewal pathways and specific microRNAs, as well as its safety and efficacy in recent human studies. In conclusion, curcumin could be a very promising adjunct to traditional cancer treatments.
Collapse
Affiliation(s)
- Yanyan Li
- Department of Health and Nutrition Sciences, Montclair State University, University Hall 4190, 1 Normal Ave., Montclair, NJ 07043, USA.
| | - Tao Zhang
- Drug Metabolism and Pharmacokinetics, Novartis Institute for Biomedical Research, Novartis Pharmaceutical Corporation, East Hanover, NJ 07936, USA.
| |
Collapse
|
28
|
Bao B, Azmi AS, Li Y, Ahmad A, Ali S, Banerjee S, Kong D, Sarkar FH. Targeting CSCs in tumor microenvironment: the potential role of ROS-associated miRNAs in tumor aggressiveness. Curr Stem Cell Res Ther 2014; 9:22-35. [PMID: 23957937 PMCID: PMC4493722 DOI: 10.2174/1574888x113089990053] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 08/01/2013] [Accepted: 08/06/2013] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) have been widely considered as critical cellular signaling molecules involving in various biological processes such as cell growth, differentiation, proliferation, apoptosis, and angiogenesis. The homeostasis of ROS is critical to maintain normal biological processes. Increased production of ROS, namely oxidative stress, due to either endogenous or exogenous sources causes irreversible damage of bio-molecules such as DNA, proteins, lipids, and sugars, leading to genomic instability, genetic mutation, and altered gene expression, eventually contributing to tumorigenesis. A great amount of experimental studies in vitro and in vivo have produced solid evidence supporting that oxidative stress is strongly associated with increased tumor cell growth, treatment resistance, and metastasis, and all of which contribute to tumor aggressiveness. More recently, the data have indicated that altered production of ROS is also associated with cancer stem cells (CSCs), epithelial-to-mesenchymal transition (EMT), and hypoxia, the most common features or phenomena in tumorigenesis and tumor progression. However, the exact mechanism by which ROS is involved in the regulation of CSC and EMT characteristics as well as hypoxia- and, especially, HIF-mediated pathways is not well known. Emerging evidence suggests the role of miRNAs in tumorigenesis and progression of human tumors. Recently, the data have indicated that altered productions of ROS are associated with deregulated expression of miRNAs, suggesting their potential roles in the regulation of ROS production. Therefore, targeting ROS mediated through the deregulation of miRNAs by novel approaches or by naturally occurring anti-oxidant agents such as genistein could provide a new therapeutic approach for the prevention and/or treatment of human malignancies. In this article, we will discuss the potential role of miRNAs in the regulation of ROS production during tumorigenesis. Finally, we will discuss the role of genistein, as a potent anti-tumor agent in the regulation of ROS production during tumorigenesis and tumor development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fazlul H Sarkar
- Departments of Pathology and Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 740 HWCRC, 4100 John R Street, Detroit, MI 48201, USA.
| |
Collapse
|
29
|
Bao B, Ahmad A, Azmi AS, Ali S, Sarkar FH. Overview of cancer stem cells (CSCs) and mechanisms of their regulation: implications for cancer therapy. ACTA ACUST UNITED AC 2013; Chapter 14:Unit 14.25. [PMID: 23744710 DOI: 10.1002/0471141755.ph1425s61] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The identification of small subpopulations of cancer stem cells (CSCs) from blood mononuclear cells in human acute myeloid leukemia (AML) in 1997 was a landmark observation that recognized the potential role of CSCs in tumor aggressiveness. Two critical properties contribute to the functional role of CSCs in the establishment and recurrence of cancerous tumors: their capacity for self-renewal and their potential to differentiate into unlimited heterogeneous populations of cancer cells. These findings suggest that CSCs may represent novel therapeutic targets for the treatment and/or prevention of tumor progression, since they appear to be involved in cell migration, invasion, metastasis, and treatment resistance-all of which lead to poor clinical outcomes. The identification of CSC-specific markers, the isolation and characterization of CSCs from malignant tissues, and targeting strategies for the destruction of CSCs provide a novel opportunity for cancer research. This overview describes the potential implications of several common CSC markers in the identification of CSC subpopulations that are restricted to common malignant diseases, e.g., leukemia, and breast, prostate, pancreatic, and lung cancers. The role of microRNAs (miRNAs) in the regulation of CSC function is also discussed, as are several methods commonly used in CSC research. The potential role of the antidiabetic drug metformin- which has been shown to have effects on CSCs, and is known to function as an antitumor agent-is discussed as an example of this new class of chemotherapeutics.
Collapse
Affiliation(s)
- Bin Bao
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | | | | | | | | |
Collapse
|
30
|
Bao B, Li Y, Ahmad A, Azmi AS, Bao G, Ali S, Banerjee S, Kong D, Sarkar FH. Targeting CSC-related miRNAs for cancer therapy by natural agents. Curr Drug Targets 2013; 13:1858-68. [PMID: 23140295 DOI: 10.2174/138945012804545515] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/09/2012] [Accepted: 11/03/2012] [Indexed: 12/22/2022]
Abstract
The theory of cancer stem cells (CSCs) has provided evidence on fundamental clinical implications because of the involvement of CSCs in cell migration, invasion, metastasis, and treatment resistance, which leads to the poor clinical outcome of cancer patients. Therefore, targeting CSCs will provide a novel therapeutic strategy for the treatment and/or prevention of tumors. However, the regulation of CSCs and its signaling pathways during tumorigenesis are not well understood. MicroRNAs (miRNAs) have been proved to act as key regulators of the post-transcriptional regulation of genes, which involve in a wide array of biological processes including tumorigenesis. The altered expressions of miRNAs are associated with poor clinical outcome of patients diagnosed with a variety of tumors. Therefore, emerging evidence strongly suggest that miRMAs play critical roles in tumor development and progression. Emerging evidence also suggest that miRNAs participate in the regulation of tumor cell growth, migration, invasion, angiogenesis, drug resistance, and metastasis. Moreover, miRNAs such as let-7, miR-21, miR-22, miR-34, miR-101, miR-146a, and miR-200 have been found to be associated with CSC phenotype and function mediated through targeting oncogenic signaling pathways. In this article, we will discuss the role of miRNAs in the regulation of CSC phenotype and function during tumor development and progression. We will also discuss the potential role of naturally occurring agents (nutraceuticals) as potent anti-tumor agents that are believed to function by targeting CSC-related miRNAs.
Collapse
Affiliation(s)
- Bin Bao
- Departments of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Pathways to breast cancer recurrence. ISRN ONCOLOGY 2013; 2013:290568. [PMID: 23533807 PMCID: PMC3603357 DOI: 10.1155/2013/290568] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 01/17/2013] [Indexed: 12/22/2022]
Abstract
Breast cancer remains a deadly disease, even with all the recent technological advancements. Early intervention has made an impact, but an overwhelmingly large number of breast cancer patients still live under the fear of “recurrent” disease. Breast cancer recurrence is clinically a huge problem and one that is largely not well understood. Over the years, a number of factors have been studied with an overarching aim of being able to prognose recurrent disease. This paper attempts to provide an overview of our current knowledge of breast cancer recurrence and its associated challenges. Through a survey of the literature on cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), various signaling pathways such as Notch/Wnt/hedgehog, and microRNAs (miRNAs), we also examine the hypotheses that are currently under investigation for the prevention of breast cancer recurrence.
Collapse
|