1
|
Zhu W, Zhang H, Tang L, Fang K, Lin N, Huang Y, Zhang Y, Le H. Identification of a Plasma Exosomal lncRNA- and circRNA-Based ceRNA Regulatory Network in Patients With Lung Adenocarcinoma. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e70026. [PMID: 39428538 PMCID: PMC11491303 DOI: 10.1111/crj.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/03/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Exosomes have been established to be enriched with various long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) that exert various biological effects. However, the lncRNA- and circRNA-mediated coexpression competing endogenous RNA (ceRNA) regulatory network in exosomes derived from the plasma of patients with lung adenocarcinoma (LUAD) remains elusive. METHODS AND RESULTS This study enrolled nine patients with lung adenocarcinoma and three healthy individuals, and the differential expression of messenger RNAs (mRNAs), lncRNAs, and circRNAs was detected using microarray analysis, while microRNAs (miRNAs) were detected through RNA sequencing. Additionally, bioinformatics algorithms were applied to evaluate the lncRNA-miRNA-mRNAs/circRNA-miRNA-mRNA network. Differentially expressed cicRNAs were identified via quantitative reverse transcription polymerase chain reaction (RT-qPCR). A total of 1016 lncRNAs, 1396 circRNAs, 45 miRNAs, and 699 mRNAs were differentially expressed in the plasma exosomes of patients with LUAD compared with healthy controls. Among them, 881 lncRNAs were upregulated and 135 were downregulated, 916 circRNAs were upregulated while 480 were downregulated, 45 miRNAs were upregulated while none were downregulated, and 591 mRNAs were upregulated while 108 were downregulated (p ≤ 0.05, and fold change ≥ 2). Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed the biological functions of differentially expressed RNAs. Meanwhile, the RNA networks displayed the regulatory relationship between dysregulated RNAs. Finally, RT-qPCR validated that the expression of circ-0033861, circ-0043273, and circ-0011959 was upregulated in the plasma exosome of patients with LUAD compared to healthy controls (p = 0.0327, p = 0.0002, p = 0.0437, respectively). CONCLUSION This study proposed a newly discovered ncRNA-miRNA-mRNA/circRNA-miRNA-mRNA ceRNA network and identified that the expression of circulating circ-0033861, circ-0043273, and circ-0011959 was up-regulated in the plasma exosomes of patients with LUAD, offering valuable insights for exploring the potential function of exosomal noncoding RNA and identifying potential biomarkers for LUAD.
Collapse
MESH Headings
- Humans
- RNA, Long Noncoding/blood
- RNA, Long Noncoding/genetics
- Exosomes/genetics
- Exosomes/metabolism
- RNA, Circular/blood
- RNA, Circular/genetics
- Male
- Female
- Lung Neoplasms/genetics
- Lung Neoplasms/blood
- Lung Neoplasms/pathology
- Adenocarcinoma of Lung/genetics
- Adenocarcinoma of Lung/blood
- Adenocarcinoma of Lung/pathology
- Middle Aged
- Gene Regulatory Networks
- RNA, Messenger/genetics
- RNA, Messenger/blood
- Gene Expression Regulation, Neoplastic
- MicroRNAs/blood
- MicroRNAs/genetics
- Aged
- Gene Expression Profiling/methods
- Computational Biology/methods
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Case-Control Studies
- Up-Regulation
- RNA, Competitive Endogenous
Collapse
Affiliation(s)
- Wangyu Zhu
- Cell and Molecular Biology LaboratoryZhoushan Hospital of Wenzhou Medical UniversityZhoushanZhejiangChina
- Lung Cancer Research CentreZhoushan Hospital of Wenzhou MedicalZhoushanZhejiangChina
| | - Huafeng Zhang
- Lung Cancer Research CentreZhoushan Hospital of Wenzhou MedicalZhoushanZhejiangChina
- Department of Cardio‐Thoracic SurgeryZhoushan Hospital of Wenzhou MedicalZhoushanZhejiangChina
| | - Liwei Tang
- Lung Cancer Research CentreZhoushan Hospital of Wenzhou MedicalZhoushanZhejiangChina
- Department of Cardio‐Thoracic SurgeryZhoushan Hospital of Wenzhou MedicalZhoushanZhejiangChina
| | - Kexin Fang
- Cell and Molecular Biology LaboratoryZhoushan Hospital of Wenzhou Medical UniversityZhoushanZhejiangChina
| | - Nawa Lin
- Cell and Molecular Biology LaboratoryZhoushan Hospital of Wenzhou Medical UniversityZhoushanZhejiangChina
| | - Yanyan Huang
- Cell and Molecular Biology LaboratoryZhoushan Hospital of Wenzhou Medical UniversityZhoushanZhejiangChina
| | - Yongkui Zhang
- Lung Cancer Research CentreZhoushan Hospital of Wenzhou MedicalZhoushanZhejiangChina
- Department of Cardio‐Thoracic SurgeryZhoushan Hospital of Wenzhou MedicalZhoushanZhejiangChina
| | - Hanbo Le
- Lung Cancer Research CentreZhoushan Hospital of Wenzhou MedicalZhoushanZhejiangChina
- Department of Cardio‐Thoracic SurgeryZhoushan Hospital of Wenzhou MedicalZhoushanZhejiangChina
| |
Collapse
|
2
|
Huang JX, Zhu BL, Xu JP, Zhou ZZ. Advances in the development of phosphodiesterase 7 inhibitors. Eur J Med Chem 2023; 250:115194. [PMID: 36796299 DOI: 10.1016/j.ejmech.2023.115194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Phosphodiesterase 7 (PDE7) specifically hydrolyzes cyclic adenosine monophosphate (cAMP), a second messenger that plays essential roles in cell signaling and physiological processes. Many PDE7 inhibitors used to investigate the role of PDE7 have displayed efficacy in the treatment of a wide range of diseases, such as asthma and central nervous system (CNS) disorders. Although PDE7 inhibitors are developed more slowly than PDE4 inhibitors, there is increasing recognition of PDE7 inhibitors as potential therapeutics for no nausea and vomiting secondary. Herein, we summarized the advances in PDE7 inhibitors over the past decade, focusing on their crystal structures, key pharmacophores, subfamily selectivity, and therapeutic potential. Hopefully, this summary will lead to a better understanding of PDE7 inhibitors and provide strategies for developing novel therapies targeting PDE7.
Collapse
Affiliation(s)
- Jia-Xi Huang
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bo-Lin Zhu
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiang-Ping Xu
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhong-Zhen Zhou
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Pharmacy Department, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Xin R, Feng X, Zhang H, Wang Y, Duan M, Xie T, Dong L, Yu Q, Huang L, Zhou F. Seven non-differentially expressed 'dark biomarkers' show transcriptional dysregulation in chronic lymphocytic leukemia. Per Med 2023. [PMID: 36705049 DOI: 10.2217/pme-2022-0123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Aim: Transcriptional regulation is actively involved in the onset and progression of various diseases. This study used the feature-engineering approach model-based quantitative transcription regulation to quantitatively measure the correlation between mRNA and transcription factors in a reference dataset of chronic lymphocytic leukemia (CLL) transcriptomes. Methods: A comprehensive investigation of transcriptional regulation changes in CLL was conducted using 973 samples in six independent datasets. Results & conclusion: Seven mRNAs were detected to have significantly differential model-based quantitative transcription regulation values but no differential expression between CLL patients and controls. We called these genes 'dark biomarkers' because their original expression levels did not show differential changes in the CLL patients. The overlapping lncRNAs might have contributed their transcripts to the expression miscalculations of these dark biomarkers.
Collapse
Affiliation(s)
- Ruihao Xin
- College of Computer Science and Technology & Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China.,College of Information & Control Engineering, Jilin Institute of Chemical Technology, Jilin, 132000, China
| | - Xin Feng
- School of Science, Jilin Institute of Chemical Technology, Jilin,132000, China.,Department of Epidemiology & Biostatistics, School of Public Health, Jilin University, Changchun, 130012, China
| | - Hang Zhang
- College of Information & Control Engineering, Jilin Institute of Chemical Technology, Jilin, 132000, China
| | - Yueying Wang
- College of Computer Science and Technology & Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China
| | - Meiyu Duan
- College of Computer Science and Technology & Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China
| | - Tunyang Xie
- Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, UK
| | - Lin Dong
- Department of Epidemiology & Biostatistics, School of Public Health, Jilin University, Changchun, 130012, China
| | - Qiong Yu
- Department of Epidemiology & Biostatistics, School of Public Health, Jilin University, Changchun, 130012, China
| | - Lan Huang
- College of Computer Science and Technology & Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China
| | - Fengfeng Zhou
- College of Computer Science and Technology & Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
4
|
Bergantin LB. The Interactions among Hypertension, Cancer, and COVID-19: Perspective with Regard to Ca 2+/cAMP Signalling. Curr Cancer Drug Targets 2022; 22:351-360. [PMID: 35168520 DOI: 10.2174/1568009622666220215143805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The hypothesis that hypertension is clinically associated with an enhanced risk of developing cancer has been highlighted. However, the working principles involved in this link are still under intensive discussion. A correlation among inflammation, hypertension, and cancer could accurately describe the clinical link between these diseases. In addition, dyshomeostasis of Ca2+ has been considered to be involved in both cancer and hypertension, and inflammation. There is a strong link between Ca2+ signalling, e.g. enhanced Ca2+ signals, and inflammatory outcomes. cAMP also modulates pro- and anti-inflammatory outcomes; pharmaceuticals, which increase intracellular cAMP levels, can decrease the production of proinflammatory mediators and enhance the production of antiinflammatory outcomes. OBJECTIVE This article highlights the participation of Ca2+/cAMP signalling in the clinical association among inflammation, hypertension, and an enhanced risk for the development of cancer. In addition, considering that research on coronavirus disease 2019 (COVID-19) is a rapidly evolving field, this article also reviews recent reports related to the role of Ca2+ channel blockers in restoring Ca2+ signalling disruption due to COVID-19, including the relationship among COVID-19, cancer, and hypertension. CONCLUSION An understanding of the association among these diseases could expand current pharmacotherapy, involving Ca2+ channel blockers and pharmaceuticals that facilitate a rise in cAMP levels.
Collapse
Affiliation(s)
- Leandro Bueno Bergantin
- Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina, Laboratory of Autonomic and Cardiovascular Pharmacology, 55 11 5576-4973, Rua Pedro de Toledo, 669, Vila Clementino, São Paulo, SP, Brazil
| |
Collapse
|
5
|
Zeng Y, Li N, Zheng Z, Chen R, Liu W, Zhu J, Zeng M, Cheng J, Peng M, Hong C. A Pan-Cancer Analysis of the Prognostic Value and Expression of Adenylate Cyclase 7 (ADCY7) in Human Tumors. Int J Gen Med 2021; 14:5415-5429. [PMID: 34539183 PMCID: PMC8445103 DOI: 10.2147/ijgm.s330680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The role of adenylate cyclase 7 (ADCY7) in cancer is still unclear. This study analyzed the interrelationship between the expression and immune function of ADCY7. METHODS ADCY7 expression in multiple human cancers was analyzed using the databases of Genotype-Tissue Expression Project (GTEx), Cancer Cell Line Encyclopedia (CCLE), and The Cancer Genome Atlas (TCGA). Correlations among ADCY7 gene expression, mismatch repair (MMR) gene expression, and DNA methyltransferase (DNMT) expression were assessed using Spearman correlation analysis. Univariate survival analysis and Kaplan-Meier (KM) curve were used to examine the effect of ADCY7 expression on prognosis. The Tumor Immune Estimation Resource (TIMER) database was used to evaluate the relationship between ADCY7 gene expression and tumor immune invasion or immune checkpoint gene (ICG) expression. RESULTS ADCY7 was abnormally expressed in multiple human cancers and was correlated with MMR genes and DNMT expression. Univariate survival analysis and KM curve showed that ADCY7 expression influences the overall survival (OS) of six types of cancer, disease-specific survival (DSS) of eight, and progression-free interval (PFI) of three. The high expression of ADCY7 in OS, DSS, and PFI was strongly associated with poor outcomes in patients with breast cancer and lung squamous cell carcinoma. ADCY7 expression was strongly associated with immune cell infiltration and ICG expression. CONCLUSION The results of this study indicated that ADCY7 may be a prognostic biomarker of tumorigenesis. The study may also provide a new perspective on the role of ADCY7 in human cancers.
Collapse
Affiliation(s)
- Yu Zeng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Nanhong Li
- Department of Pathology and Pathophysiology, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Zhenzhen Zheng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Riken Chen
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Wang Liu
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Jinru Zhu
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Mingqing Zeng
- First Clinical School of Medicine, Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Junfen Cheng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Min Peng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Cheng Hong
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
6
|
Identification of potential diagnostic and prognostic biomarkers for LUAD based on TCGA and GEO databases. Biosci Rep 2021; 41:228708. [PMID: 34017995 PMCID: PMC8182989 DOI: 10.1042/bsr20204370] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/05/2023] Open
Abstract
Accumulating evidence has demonstrated that gene alterations play a crucial role in LUAD development, progression, and prognosis. The present study aimed to identify the hub genes associated with LUAD. In the present study, we used TCGA database to screen the hub genes. Then, we validated the results by GEO datasets. Finally, we used cBioPortal, UALCAN, qRT-PCR, HPA database, TCGA database, and Kaplan–Meier plotter database to estimate the gene mutation, gene transcription, protein expression, clinical features of hub genes in patients with LUAD. A total of 5930 DEGs were screened out in TCGA database. Enrichment analysis revealed that DEGs were involved in the transcriptional misregulation in cancer, viral carcinogenesis, cAMP signaling pathway, calcium signaling pathway, and ECM–receptor interaction. The combining results of MCODE and CytoHubba showed that ADCY8, ADRB2, CALCA, GCG, GNGT1, and NPSR1 were hub genes. Then, we verified the above results by GSE118370, GSE136043, and GSE140797 datasets. Compared with normal lung tissues, the expression levels of ADCY8 and ADRB2 were lower in LUAD tissues, but the expression levels of CALCA, GCG, GNGT1, and NPSR1 were higher. In the prognosis analyses, the low expression of ADCY8 and ADRB2 and the high expression of CALCA, GCG, GNGT1, and NPSR1 were correlated with poor OS and poor PFS. The significant differences in the relationship of the expression of 6 hub genes and clinical features were observed. In conclusion, 6 hub genes will not only contribute to elucidating the pathogenesis of LUAD and may be potential therapeutic targets for LUAD.
Collapse
|
7
|
Ethyl Acetate Fraction from Hedyotis diffusa plus Scutellaria barbata Exerts Anti-Breast Cancer Effect via miR-200c-PDE7B/PD-L1-AKT/MAPK Axis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3587095. [PMID: 32922506 PMCID: PMC7453271 DOI: 10.1155/2020/3587095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 07/13/2020] [Indexed: 01/30/2023]
Abstract
Background Hedyotis diffusa (HD) Willd. and Scutellaria barbata (SB) D. Don in different ratios have been frequently used to treat various cancers in clinical Traditional Chinese Medicine prescriptions. However, the optimal ratio, active fraction, and molecular mechanisms associated with the anti-breast cancer role of this herbal couplet have not been elaborated. Methods To screen out the optimal ratio of this herbal couplet, we compare aqueous extracts of HD, SB, or HD plus SB in different weight ratios (HS11, HS12, HS21) for their anticancer effects on murine breast cancer 4T1 cells in vitro and in vivo. EA11, the ethyl acetate fraction from HS11 (the aqueous extract of the couplet at an equal weight ratio), is further assessed for its antiproliferative effect as well as the antitumorigenic impact with the aid of immunocompetent mice. Colony formation, flow cytometry, western blot, ELISA, and qRT-PCR are used to elucidate mechanisms underlying EA11-led effects. Results HS11 presents the most potential suppression of 4T1 cell proliferation and tumor growth among these aqueous extracts. The comparison results show that EA11 is more effective than HS11 in vitro and in vivo. EA11 inhibits colony formation and induces apoptosis in a concentration-dependent manner. EA11 reduces the protein expressions of PDE7B, PD-L1, β-catenin, and cyclin D1 while elevating the concentration of cellular cAMP and miR-200c expression in 4T1 cells. Additionally, EA11 exerts its anticancer effect partially via the inactivation of MAPK and AKT signaling pathways. Conclusions This study implicates that EA11 prevents breast tumor development by interfering with the miR-200c-PDE7B/PD-L1-AKT/MAPK axis. EA11 may represent a potential therapeutic candidate for breast cancer.
Collapse
|
8
|
Yao H, Wu C, Chen Y, Guo L, Chen W, Pan Y, Fu X, Wang G, Ding Y. Spectrum of gene mutations identified by targeted next-generation sequencing in Chinese leukemia patients. Mol Genet Genomic Med 2020; 8:e1369. [PMID: 32638549 PMCID: PMC7507579 DOI: 10.1002/mgg3.1369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/23/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Despite targeted sequencing have identified several mutations for leukemia, there is still a limit of mutation screening for Chinese leukemia. Here, we used targeted next-generation sequencing for testing the mutation patterns of Chinese leukemia patients. METHODS We performed targeted sequencing of 504 tumor-related genes in 109 leukemia samples to identify single-nucleotide variants (SNVs) and insertions and deletions (INDELs). Pathogenic variants were assessed based on the American College of Medical Genetics and Genomics (ACMG) guidelines. The functional impact of pathogenic genes was explored through gene ontology (GO), pathway analysis, and protein-protein interaction network in silico. RESULTS We identified a total of 4,655 SNVs and 614 INDELs in 419 genes, in which PDE4DIP, NOTCH2, FANCA, BCR, and ROS1 emerged as the highly mutated genes. Of note, we were the first to demonstrate an association of PDE4DIP mutation and leukemia. Based on ACMG guidelines, 39 pathogenic and likely pathogenic mutations in 27 genes were found. GO annotation showed that the biological process including gland development, leukocyte differentiation, respiratory system development, myeloid leukocyte differentiation, mesenchymal to epithelial transition, and so on were involved. CONCLUSION Our study provided a map of gene mutations in Chinese patients with leukemia and gave insights into the molecular pathogenesis of leukemia.
Collapse
Affiliation(s)
- Hongxia Yao
- Department of Hematology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, P.R. China
| | - Congming Wu
- Department of Hematology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, P.R. China
| | - Yueqing Chen
- Hainan General Hospital, University of South China, Haikou, Hainan, China
| | - Li Guo
- Department of Hematology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, P.R. China
| | - Wenting Chen
- Department of Hematology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, P.R. China
| | - Yanping Pan
- Department of Hematology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, P.R. China
| | - Xiangjun Fu
- Department of Hematology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, P.R. China
| | - Guyun Wang
- Department of Hematology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, P.R. China
| | - Yipeng Ding
- Department of General Practice, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, P.R. China
| |
Collapse
|
9
|
Perez DR, Sklar LA, Chigaev A, Matlawska-Wasowska K. Drug repurposing for targeting cyclic nucleotide transporters in acute leukemias - A missed opportunity. Semin Cancer Biol 2020; 68:199-208. [PMID: 32044470 DOI: 10.1016/j.semcancer.2020.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/01/2019] [Accepted: 02/03/2020] [Indexed: 02/08/2023]
Abstract
While current treatment regimens for acute leukemia can dramatically improve patient survival, there remains room for improvement. Due to its roles in cell differentiation, cell survival, and apoptotic signaling, modulation of the cyclic AMP (cAMP) pathway has provided a meaningful target in hematological malignancies. Several studies have demonstrated that gene expression profiles associated with increased pro-survival cAMP activity or downregulation of various pro-apoptotic factors associated with the cAMP pathway are apparent in acute leukemia patients. Previous work to increase leukemia cell intracellular cAMP focused on the use of cAMP analogs, stimulating cAMP production via transmembrane-associated adenylyl cyclases, or decreasing cAMP degradation by inhibiting phosphodiesterase activity. However, targeting cyclic nucleotide efflux by ATP-binding cassette (ABC) transporters represents an unexplored approach for modulation of intracellular cyclic nucleotide levels. Preliminary studies have shown that inhibition of cAMP efflux can stimulate leukemia cell differentiation, cell growth arrest, and apoptosis, indicating that targeting cAMP efflux may show promise for future therapeutic development. Furthermore, inhibition of cyclic nucleotide transporter activity may also contribute multiple anticancer benefits by reducing extracellular pro-survival signaling in malignant cells. Hence, several opportunities for drug repurposing may exist for targeting cyclic nucleotide transporters.
Collapse
Affiliation(s)
- Dominique R Perez
- Department of Pathology, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA; Center for Molecular Discovery, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA
| | - Larry A Sklar
- Department of Pathology, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA; Center for Molecular Discovery, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Alexandre Chigaev
- Department of Pathology, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA; Center for Molecular Discovery, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA.
| | - Ksenia Matlawska-Wasowska
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA; Department of Pediatrics, Division of Hematology-Oncology, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
10
|
Bergantin LB. A Hypothesis for the Relationship between Depression and Cancer: Role of Ca2+/cAMP Signalling. Anticancer Agents Med Chem 2020; 20:777-782. [PMID: 32077833 DOI: 10.2174/1871520620666200220113817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 10/02/2019] [Accepted: 01/14/2020] [Indexed: 01/17/2023]
Abstract
Limitations on the pharmacotherapy and a high prevalence worldwide are critical issues related to depression and cancer. It has been discussed that a dysregulation of intracellular Ca2+ homeostasis is involved in the pathogenesis of both these diseases. In addition, depression raises the risk of cancer incidence. Consistent data support the concept that depression is an independent risk issue for cancer. However, the cellular mechanisms involved in this link between depression and cancer remain uncertain. Considering our previous reports about Ca2+ and cAMP signalling pathways (Ca2+/cAMP signalling), I herein discussed the putative contribution of Ca2+/cAMP signalling in this link between depression and cancer. Moreover, it is important to take depression into account during the process of prevention and treatment of cancer.
Collapse
Affiliation(s)
- Leandro B Bergantin
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Rua Pedro de Toledo, 669, Vila Clementino, Sao Paulo, SP, Brazil
| |
Collapse
|
11
|
The Prognostic Significance of PDE7B in Cytogenetically Normal Acute Myeloid Leukemia. Sci Rep 2019; 9:16991. [PMID: 31740742 PMCID: PMC6861270 DOI: 10.1038/s41598-019-53563-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is a malignant hematological disease in which nearly half have normal cytogenetics. We have tried to find some significant molecular markers for this part of the cytogenetic normal AML, which hopes to provide a benefit for the diagnosis, molecular typing and prognosis prediction of AML patients. In the present study, we calculated and compared the gene expression profiles of cytogenetically normal acute myeloid leukemia (CN-AML) patients in database of The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and dataset Vizome (a total of 632 CN-AML samples), and we have demonstrated a correlation between PDE7B gene and CN-AML. Then we proceeded to a survival analysis and prognostic risk analysis between the expression levels of PDE7B gene and CN-AML patients. The result showed that the event-free survival (EFS) and overall survival (OS) were significantly shorter in CN-AML patients with high PDE7B levels in each dataset. And we detected a significantly higher expression level of PDE7B in the leukemia stem cell (LSC) positive group. The Cox proportional hazards regression model showed that PDE7B is an independent risk predictor for CN-AML. All results indicate that PDE7B is an unfavorable prognostic factor for CN-AML.
Collapse
|
12
|
Zheng Z, Xu D, Shi K, Chen M, Lu F. Prognostic value of genome-wide DNA methylation patterns in noncoding miRNAs and lncRNAs in uveal melanomas. Aging (Albany NY) 2019; 11:6153-6174. [PMID: 31433788 PMCID: PMC6738428 DOI: 10.18632/aging.102178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/09/2019] [Indexed: 02/01/2023]
Abstract
Background: Uveal melanomas are the most common primary intraocular malignant tumors in adults, associated with a high metastasis rate and a low 5-year survival rate. It is a clinic urgency and importance to identify prognostic factors for UVMs. Results: 55 aberrantly methylated sites of miRNAs and 47 aberrantly methylated sites of lncRNAs were observed between Alive < 2 years group and Alive > 2 years group of UVMs. Two prognostic classifiers were generated. For 13- miRNAs-CpG-classifier, the AUC were 0.958, 0.848 and 0.824 at 1 year, 2 years and 3 years, respectively. For 9- lncRNAs-CpG-classifier, the AUC were 0.943, 0.869 and 0.866 at 1 year, 2 years and 3 years, respectively. Conclusion: The correlation between genome-wide DNA methylation patterns of miRNAs and lncRNAs and the overall survival in UVMs were identified in this study. This novel finding shed new light on developing biomarkers of prognosis for UVMs. Methods: DNA methylation profiles of noncoding miRNAs and lncRNAs for UVMs were accessed from The Cancer Genome Atlas. Then the prognostic value was analyzed by least absolute shrinkage and selection operator method Cox regression and tested by Time-dependent Receiver Operating Characteristic curve.
Collapse
Affiliation(s)
- Zheng Zheng
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325000, China
| | - Dan Xu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325000, China
| | - Keqing Shi
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Minfeng Chen
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325000, China
| | - Fan Lu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
13
|
Bergantin LB. Diabetes and cancer: Debating the link through Ca 2+/cAMP signalling. Cancer Lett 2019; 448:128-131. [PMID: 30771427 DOI: 10.1016/j.canlet.2019.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/24/2019] [Accepted: 02/10/2019] [Indexed: 12/14/2022]
Abstract
The incidence of both cancer and diabetes is dramatically increasing in worldwide population, costing many millions from governments into expenditures related to medical health systems. Diabetes has been clinically linked to an increased risk for developing several types of cancer. The cellular mechanisms involved in this link are still under intensive debate in literature. In addition, a Ca2+ homeostasis dysregulation has been intensively debated as an issue involved in both cancer and diabetes. Calcium (Ca2+) channel blockers (CCBs), prescribed for treating hypertension, have also been showing anti-cancer effects along with reducing diabetes symptoms. A debated mechanism of action could rest in the fact that CCBs may restore Ca2+ homeostasis dysregulations, involved in both diseases. Our studies about Ca2+/cAMP signalling may add some new light in this field. In this review, I have debated the possible involvement of Ca2+/cAMP signalling in the clinical link between diabetes and a higher risk for the development of several types of cancer, including the plausible involvement in both anti-cancer and anti-diabetic effects of CCBs.
Collapse
Affiliation(s)
- Leandro Bueno Bergantin
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669, Vila Clementino, São Paulo, SP, CEP: 04039-032, Brazil.
| |
Collapse
|
14
|
Illiano M, Conte M, Sapio L, Nebbioso A, Spina A, Altucci L, Naviglio S. Forskolin Sensitizes Human Acute Myeloid Leukemia Cells to H3K27me2/3 Demethylases GSKJ4 Inhibitor via Protein Kinase A. Front Pharmacol 2018; 9:792. [PMID: 30079022 PMCID: PMC6063003 DOI: 10.3389/fphar.2018.00792] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/28/2018] [Indexed: 01/26/2023] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy occurring very often in older adults, with poor prognosis depending on both rapid disease progression and drug resistance occurrence. Therefore, new therapeutic approaches are demanded. Epigenetic marks play a relevant role in AML. GSKJ4 is a novel inhibitor of the histone demethylases JMJD3 and UTX. To note GSKJ4 has been recently shown to act as a potent small molecule inhibitor of the proliferation in many cancer cell types. On the other hand, forskolin, a natural cAMP raising compound, used for a long time in traditional medicine and considered safe also in recent studies, is emerging as a very interesting molecule for possible use in cancer therapy. Here, we investigate the effects of forskolin on the sensitivity of human leukemia U937 cells to GSKJ4 through flow cytometry-based assays (cell-cycle progression and cell death), cell number counting, and immunoblotting experiments. We provide evidence that forskolin markedly potentiates GSKJ4-induced antiproliferative effects by apoptotic cell death induction, accompanied by a dramatic BCL2 protein down-regulation as well as caspase 3 activation and PARP protein cleavage. Comparable effects are observed with the phosphodiesterase inhibitor IBMX and 8-Br-cAMP analogous, but not by using 8-pCPT-2'-O-Me-cAMP Epac activator. Moreover, the forskolin-induced enhancement of sensitivity to GSKJ4 is counteracted by pre-treatment with Protein Kinase A (PKA) inhibitors. Altogether, our data strongly suggest that forskolin sensitizes U937 cells to GSKJ4 inhibitor via a cAMP/PKA-mediated mechanism. Our findings provide initial evidence of anticancer activity induced by forskolin/GSKJ4 combination in leukemia cells and underline the potential for use of forskolin and GSKJ4 in the development of innovative and effective therapeutic approaches for AML treatment.
Collapse
Affiliation(s)
- Michela Illiano
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | | | - Luigi Sapio
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Angela Nebbioso
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Annamaria Spina
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Silvio Naviglio
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
15
|
Insel PA, Sriram K, Wiley SZ, Wilderman A, Katakia T, McCann T, Yokouchi H, Zhang L, Corriden R, Liu D, Feigin ME, French RP, Lowy AM, Murray F. GPCRomics: GPCR Expression in Cancer Cells and Tumors Identifies New, Potential Biomarkers and Therapeutic Targets. Front Pharmacol 2018; 9:431. [PMID: 29872392 PMCID: PMC5972277 DOI: 10.3389/fphar.2018.00431] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/12/2018] [Indexed: 12/16/2022] Open
Abstract
G protein-coupled receptors (GPCRs), the largest family of targets for approved drugs, are rarely targeted for cancer treatment, except for certain endocrine and hormone-responsive tumors. Limited knowledge regarding GPCR expression in cancer cells likely has contributed to this lack of use of GPCR-targeted drugs as cancer therapeutics. We thus undertook GPCRomic studies to define the expression of endoGPCRs (which respond to endogenous molecules such as hormones, neurotransmitters and metabolites) in multiple types of cancer cells. Using TaqMan qPCR arrays to quantify the mRNA expression of ∼340 such GPCRs, we found that human chronic lymphocytic leukemia (CLL) cells/stromal cells associated with CLL, breast cancer cell lines, colon cancer cell lines, pancreatic ductal adenocarcinoma (PDAC) cells, cancer associated fibroblasts (CAFs), and PDAC tumors express 50 to >100 GPCRs, including many orphan GPCRs (which lack known physiologic agonists). Limited prior data exist regarding the expression or function of most of the highly expressed GPCRs in these cancer cells and tumors. Independent results from public cancer gene expression databases confirm the expression of such GPCRs. We propose that highly expressed GPCRs in cancer cells (for example, GPRC5A in PDAC and colon cancer cells and GPR68 in PDAC CAFs) may contribute to the malignant phenotype, serve as biomarkers and/or may be novel therapeutic targets for the treatment of cancer.
Collapse
Affiliation(s)
- Paul A. Insel
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Krishna Sriram
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Shu Z. Wiley
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Andrea Wilderman
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Trishna Katakia
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Thalia McCann
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Hiroshi Yokouchi
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Lingzhi Zhang
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Ross Corriden
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Dongling Liu
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Michael E. Feigin
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Randall P. French
- Department of Surgery, University of California, San Diego, San Diego, CA, United States
- Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Andrew M. Lowy
- Department of Surgery, University of California, San Diego, San Diego, CA, United States
- Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Fiona Murray
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
16
|
Torres-Quesada O, Röck R, Stefan E. Systematic Quantification of GPCR/cAMP-Controlled Protein Kinase A Interactions. Horm Metab Res 2017; 49:240-249. [PMID: 28427097 DOI: 10.1055/s-0042-110791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The diffusible second messenger cyclic AMP (cAMP) originates from multiple G protein-coupled receptor (GPCR) cascades activating the intracellular key effector protein kinase A (PKA). Spatially and temporally restricted cAMP-fluxes are directly sensed by macromolecular PKA complexes. The consequences are alterations of molecular interactions, which lead to activation of compartmentalized PKA phosphotransferase activities, regulating a vast array of cellular functions. To decode cell-type and cell-compartment specific PKA functions, the spatio-temporal dynamics of small molecule:protein interactions, protein:protein interactions (PPIs), cAMP-mobilization, and phosphotransferase activities need to be determined directly in the appropriate cellular context. A collection of cell-based reporters has been developed to either visualize or quantitatively measure kinase activities or PKA complex formation/dissociation. In this review, we list a collection of unimolecular and bimolecular PKA biosensors, followed by the specification of the modular design of a Renilla luciferase based protein-fragment complementation assay (PCA) platform for measuring PKA network interactions. We discuss the application spectrum of the PCA reporter to identify, quantify, and dissect dynamic and transient PKA complexes downstream of specific GPCR activities. We specify the implementation of a PCA PKA platform to systematically quantify the concurrent involvement of receptor-cAMP signaling, post-translational modifications, and kinase subunit mutations/perturbations in PKA activation. The systematic quantification of transient PKA network interactions will contribute to a better understanding how GPCR-recognized input signals are streamlined through the compartmentalized and cAMP-interacting PKA signalosome.
Collapse
Affiliation(s)
- O Torres-Quesada
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - R Röck
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - E Stefan
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
17
|
Park JY, Juhnn YS. cAMP signaling increases histone deacetylase 8 expression via the Epac2-Rap1A-Akt pathway in H1299 lung cancer cells. Exp Mol Med 2017; 49:e297. [PMID: 28232663 PMCID: PMC5336561 DOI: 10.1038/emm.2016.152] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 12/16/2022] Open
Abstract
This study was performed to investigate the signaling pathway that mediates cyclic AMP (cAMP)-induced inhibition of histone deacetylase 8 (HDAC8) degradation, and the effect and underlying mechanisms of the resulting increase in HDAC8 expression on cisplatin-induced apoptosis in lung cancer cells. cAMP signaling increased HDAC8 expression via a protein kinase A (PKA)-independent pathway in H1299 non-small cell lung cancer cells. However, treatment with a selective activator of an exchange protein that was activated by cAMP (Epac) increased HDAC8 expression, and Epac2 inhibition abolished the isoproterenol (ISO)-induced increase in HDAC8 expression. ISO and the Epac activator activated Rap1, and Rap1A activation increased HDAC8 expression; moreover, inhibition of Rap1A with a dominant negative Rap1A or by shRNA-mediated knockdown abolished the ISO-induced increase in HDAC8 expression. Activation of cAMP signaling and Rap1A decreased the activating phosphorylation of Akt. Akt inhibition with a pharmacological inhibitor or expression of a dominant negative Akt inhibited the MKK4/JNK pathway and increased HDAC8 expression. The Akt inhibitor-induced increase in HDAC8 expression was abolished by pretreatment with proteasomal or lysosomal inhibitors. The ISO treatment increased cisplatin-induced apoptosis, which was abolished by HDAC8 knockdown. Exogenous HDAC8 expression increased cisplatin-induced apoptosis and decreased TIPRL expression, and the knockdown of TIPRL increased the apoptosis of cisplatin-treated cells. The ISO treatment decreased cisplatin-induced transcription of the TIPRL gene in a HDAC8-dependent manner. In conclusion, the Epac–Rap1–Akt pathway mediates cAMP signaling-induced inhibition of JNK-dependent HDAC8 degradation, and the resulting HDAC8 increase augments cisplatin-induced apoptosis by repressing TIPRL expression in H1299 lung cancer cells.
Collapse
Affiliation(s)
- Ji-Yeon Park
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yong-Sung Juhnn
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
18
|
Perez DR, Smagley Y, Garcia M, Carter MB, Evangelisti A, Matlawska-Wasowska K, Winter SS, Sklar LA, Chigaev A. Cyclic AMP efflux inhibitors as potential therapeutic agents for leukemia. Oncotarget 2016; 7:33960-82. [PMID: 27129155 PMCID: PMC5085131 DOI: 10.18632/oncotarget.8986] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 04/16/2016] [Indexed: 12/24/2022] Open
Abstract
Apoptotic evasion is a hallmark of cancer. We propose that some cancers may evade cell death by regulating 3'-5'-cyclic adenosine monophosphate (cAMP), which is associated with pro-apoptotic signaling. We hypothesize that leukemic cells possess mechanisms that efflux cAMP from the cytoplasm, thus protecting them from apoptosis. Accordingly, cAMP efflux inhibition should result in: cAMP accumulation, activation of cAMP-dependent downstream signaling, viability loss, and apoptosis. We developed a novel assay to assess cAMP efflux and performed screens to identify inhibitors. In an acute myeloid leukemia (AML) model, several identified compounds reduced cAMP efflux, appropriately modulated pathways that are responsive to cAMP elevation (cAMP-responsive element-binding protein phosphorylation, and deactivation of Very Late Antigen-4 integrin), and induced mitochondrial depolarization and caspase activation. Blocking adenylyl cyclase activity was sufficient to reduce effects of the most potent compounds. These compounds also decreased cAMP efflux and viability of B-lineage acute lymphoblastic leukemia (B-ALL) cell lines and primary patient samples, but not of normal primary peripheral blood mononuclear cells. Our data suggest that cAMP efflux is a functional feature that could be therapeutically targeted in leukemia. Furthermore, because some of the identified drugs are currently used for treating other illnesses, this work creates an opportunity for repurposing.
Collapse
Affiliation(s)
- Dominique R. Perez
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
- University of New Mexico Center for Molecular Discovery, Albuquerque, NM, USA
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Yelena Smagley
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
- University of New Mexico Center for Molecular Discovery, Albuquerque, NM, USA
| | - Matthew Garcia
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
- University of New Mexico Center for Molecular Discovery, Albuquerque, NM, USA
| | - Mark B. Carter
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
- University of New Mexico Center for Molecular Discovery, Albuquerque, NM, USA
| | - Annette Evangelisti
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
- University of New Mexico Center for Molecular Discovery, Albuquerque, NM, USA
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Ksenia Matlawska-Wasowska
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Stuart S. Winter
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Larry A. Sklar
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
- University of New Mexico Center for Molecular Discovery, Albuquerque, NM, USA
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Alexandre Chigaev
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
- University of New Mexico Center for Molecular Discovery, Albuquerque, NM, USA
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
19
|
Mechanisms of cyclic AMP/protein kinase A- and glucocorticoid-mediated apoptosis using S49 lymphoma cells as a model system. Proc Natl Acad Sci U S A 2015; 112:12681-6. [PMID: 26417071 DOI: 10.1073/pnas.1516057112] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cyclic AMP/protein kinase A (cAMP/PKA) and glucocorticoids promote the death of many cell types, including cells of hematopoietic origin. In wild-type (WT) S49 T-lymphoma cells, signaling by cAMP and glucocorticoids converges on the induction of the proapoptotic B-cell lymphoma-family protein Bim to produce mitochondria-dependent apoptosis. Kin(-), a clonal variant of WT S49 cells, lacks PKA catalytic (PKA-Cα) activity and is resistant to cAMP-mediated apoptosis. Using sorbitol density gradient fractionation, we show here that in kin(-) S49 cells PKA-Cα is not only depleted but the residual PKA-Cα mislocalizes to heavier cell fractions and is not phosphorylated at two conserved residues (Ser(338) or Thr(197)). In WT S49 cells, PKA-regulatory subunit I (RI) and Bim coimmunoprecipitate upon treatment with cAMP analogs and forskolin (which increases endogenous cAMP concentrations). By contrast, in kin(-) cells, expression of PKA-RIα and Bim is prominently decreased, and increases in cAMP do not increase Bim expression. Even so, kin(-) cells undergo apoptosis in response to treatment with the glucocorticoid dexamethasone (Dex). In WT cells, glucorticoid-mediated apoptosis involves an increase in Bim, but in kin(-) cells, Dex-promoted cell death appears to occur by a caspase 3-independent apoptosis-inducing factor pathway. Thus, although cAMP/PKA-Cα and PKA-R1α/Bim mediate apoptotic cell death in WT S49 cells, kin(-) cells resist this response because of lower levels of PKA-Cα and PKA-RIα subunits as well as Bim. The findings for Dex-promoted apoptosis imply that these lymphoma cells have adapted to selective pressure that promotes cell death by altering canonical signaling pathways.
Collapse
|
20
|
Wolter S, Kloth C, Golombek M, Dittmar F, Försterling L, Seifert R. cCMP causes caspase-dependent apoptosis in mouse lymphoma cell lines. Biochem Pharmacol 2015; 98:119-31. [PMID: 26300059 DOI: 10.1016/j.bcp.2015.08.096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022]
Abstract
cCMP is a cyclic pyrimidine nucleotide which binds to and activates cAMP-dependent protein kinase (PKA) and cGMP-dependent protein kinase (PKG). In S49 lymphoma cells, cAMP induces apoptosis via PKA. In our present study, we examined the effect of cCMP on apoptosis in S49 mouse lymphoma cells and in PKA-deficient S49kin(-)cells. These two cell lines also lack PKG, hyperpolarization-activated cyclic nucleotide-gated channels 2 and 4 (HCN2 and HCN4) as assessed by real-time PCR. The cell-permeable analog cCMP-AM induced PKA- and PKG-independent apoptosis in S49 cells. In contrast, exchange protein activated by cAMP (Epac) activation did not induce apoptosis. cCMP induced caspase-dependent apoptosis via the intrinsic pathway, led to cytochrome c release from mitochondria and also activated the ER stress pathway. On the contrary, the extrinsic apoptotic pathway was not involved. Autophagy was not detectable after treatment with cCMP-AM in both cell lines. cAMP-AM, cGMP-AM, cUMP-AM as well as the cyclic nucleotides lacking the acetoxymethylester (AM)-group had no effect. cCMP-AM altered gene expression of the apoptotic-relevant gene Gadd45α and the immediate early response genes cFos and Nr4A1 in S49 wild-type (wt) cells. In conclusion, cCMP induces apoptosis of S49 lymphoma cells, independently of hitherto known cCMP target proteins.
Collapse
Affiliation(s)
- Sabine Wolter
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | - Christina Kloth
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | - Marina Golombek
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | - Fanni Dittmar
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | - Lisa Försterling
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| |
Collapse
|
21
|
Abstract
Acute myeloid leukemia (AML) is the most common adult acute leukemia. Despite treatment, the majority of the AML patients relapse within 5 years. In silico analysis of several available databases of AML patients showed that the expression of adenylate cyclase 7 (ADCY7) significantly inversely correlates with the overall survival of AML patients. To determine whether ADCY7 supports AML development, we employed an shRNA-encoding lentivirus system to inhibit adcy7 expression in human AML cells including U937, MV4-11, and THP-1 cells. The ADCY7 deficiency resulted in decreased cell growth, elevated apoptosis, and lower c-Myc expression of these leukemia cells. This indicates that G protein-coupled receptor signaling contributes to AML pathogenesis. Our study suggests that inhibition of ADCY7 may be novel strategy for treating leukemia.
Collapse
|
22
|
Álvarez-Silva MC, Yepes S, Torres MM, Barrios AFG. Proteins interaction network and modeling of IGVH mutational status in chronic lymphocytic leukemia. Theor Biol Med Model 2015; 12:12. [PMID: 26088082 PMCID: PMC4479082 DOI: 10.1186/s12976-015-0008-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/08/2015] [Indexed: 12/30/2022] Open
Abstract
Background Chronic lymphocytic leukemia (CLL) is an incurable malignancy of mature B-lymphocytes, characterized as being a heterogeneous disease with variable clinical manifestation and survival. Mutational statuses of rearranged immunoglobulin heavy chain variable (IGVH) genes has been consider one of the most important prognostic factors in CLL, but despite of its proven value to predict the course of the disease, the regulatory programs and biological mechanisms responsible for the differences in clinical behavior are poorly understood. Methods In this study, (i) we performed differential gene expression analysis between the IGVH statuses using multiple and independent CLL cohorts in microarrays platforms, based on this information, (ii) we constructed a simplified protein-protein interaction (PPI) network and (iii) investigated its structure and critical genes. This provided the basis to (iv) develop a Boolean model, (v) infer biological regulatory mechanism and (vi) performed perturbation simulations in order to analyze the network in dynamic state. Results The result of topological analysis and the Boolean model showed that the transcriptional relationships of IGVH mutational status were determined by specific regulatory proteins (PTEN, FOS, EGR1, TNF, TGFBR3, IFGR2 and LPL). The dynamics of the network was controlled by attractors whose genes were involved in multiple and diverse signaling pathways, which may suggest a variety of mechanisms related with progression occurring over time in the disease. The overexpression of FOS and TNF fixed the fate of the system as they can activate important genes implicated in the regulation of process of adhesion, apoptosis, immune response, cell proliferation and other signaling pathways related with cancer. Conclusion The differences in prognosis prediction of the IGVH mutational status are related with several regulatory hubs that determine the dynamic of the system. Electronic supplementary material The online version of this article (doi:10.1186/s12976-015-0008-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- María Camila Álvarez-Silva
- Grupo de Diseño de Productos y Procesos (GDPP), Departamento de Ingeniería Química, Universidad de los Andes, Bogotá, DC, Colombia.
| | - Sally Yepes
- Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, DC, Colombia.
| | - Maria Mercedes Torres
- Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, DC, Colombia.
| | - Andrés Fernando González Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), Departamento de Ingeniería Química, Universidad de los Andes, Bogotá, DC, Colombia.
| |
Collapse
|