1
|
Cheratta AR, Thayyullathil F, Pallichankandy S, Subburayan K, Alakkal A, Galadari S. Prostate apoptosis response-4 and tumor suppression: it's not just about apoptosis anymore. Cell Death Dis 2021; 12:47. [PMID: 33414404 PMCID: PMC7790818 DOI: 10.1038/s41419-020-03292-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
The tumor suppressor prostate apoptosis response-4 (Par-4) has recently turned ‘twenty-five’. Beyond its indisputable role as an apoptosis inducer, an increasing and sometimes bewildering, new roles for Par-4 are being reported. These roles include its ability to regulate autophagy, senescence, and metastasis. This growing range of responses to Par-4 is reflected by our increasing understanding of the various mechanisms through which Par-4 can function. In this review, we summarize the existing knowledge on Par-4 tumor suppressive mechanisms, and discuss how the interaction of Par-4 with different regulators influence cell fate. This review also highlights the new secretory pathway that has emerged and the likely discussion on its clinical implications.
Collapse
Affiliation(s)
- Anees Rahman Cheratta
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE
| | - Faisal Thayyullathil
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE
| | - Siraj Pallichankandy
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE
| | - Karthikeyan Subburayan
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE
| | - Ameer Alakkal
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE
| | - Sehamuddin Galadari
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE.
| |
Collapse
|
2
|
Liu C, QiNan W, XiaoTian L, MengLiu Y, XiaGuang G, WeiLing L, ZiWen L, Ling Z, GangYi Y, Bing C. TERT and Akt Are Involved in the Par-4-Dependent Apoptosis of Islet β Cells in Type 2 Diabetes. J Diabetes Res 2018; 2018:7653904. [PMID: 30186877 PMCID: PMC6112224 DOI: 10.1155/2018/7653904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/17/2018] [Indexed: 01/08/2023] Open
Abstract
Islet β cell apoptosis plays an important role in type 2 diabetes. We previously reported that Par-4-mediated islet β cell apoptosis is induced by high-glucose/fatty acid levels. In the present study, we show that Par-4, which is induced by high-glucose/fatty acid levels, interacts with and inhibits TERT in the cytoplasm and then translocates to the nucleus. Par-4 also inhibited Akt phosphorylation, leading to islet β cell apoptosis. We inhibited Par-4 in islet β cells under high-glucose/fatty acid conditions and knocked out Par-4 in diabetic mice, which led to the up-regulation of TERT and an improvement in the apoptosis rate. We inhibited Akt phosphorylation in islet β cells and diabetic mice, which led to aggressive apoptosis. In addition, the biological film interference technique revealed that Par-4 bound to TERT via its NLS and leucine zipper domains. Our research suggests that Par-4 activation and binding to TERT are key steps required for inducing the apoptosis of islet β cells under high-glucose/fatty acid conditions. Inhibiting Akt phosphorylation aggravated apoptosis by activating Par-4 and inhibiting TERT, and Par-4 inhibition may be an attractive target for the treatment of islet β cell apoptosis.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- Apoptosis
- Blood Glucose/metabolism
- Case-Control Studies
- Cell Line, Tumor
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/enzymology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/pathology
- Humans
- Insulin-Secreting Cells/enzymology
- Insulin-Secreting Cells/pathology
- Leucine Zippers
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Phosphorylation
- Protein Binding
- Protein Interaction Domains and Motifs
- Proto-Oncogene Proteins c-akt/metabolism
- Receptors, Thrombin/deficiency
- Receptors, Thrombin/genetics
- Receptors, Thrombin/metabolism
- Signal Transduction
- Telomerase/blood
- Telomerase/genetics
- Telomerase/metabolism
Collapse
Affiliation(s)
- Chen Liu
- Endocrine Department, First Affiliated Hospital of the Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wu QiNan
- Endocrine Department, First Affiliated Hospital of the Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lei XiaoTian
- Endocrine Department, First Affiliated Hospital of the Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yang MengLiu
- Endocrine Department, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Gan XiaGuang
- Endocrine Department, First Affiliated Hospital of the Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Leng WeiLing
- Endocrine Department, First Affiliated Hospital of the Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Liang ZiWen
- Endocrine Department, First Affiliated Hospital of the Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhang Ling
- Outpatient Department, First Affiliated Hospital of the Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yang GangYi
- Endocrine Department, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Chen Bing
- Endocrine Department, First Affiliated Hospital of the Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
3
|
Wang J, Li Y, Ma F, Zhou H, Ding R, Lu B, Zou L, Li J, Lu R. Inhibitory effect of Par-4 combined with cisplatin on human Wilms' tumor cells. Tumour Biol 2017; 39:1010428317716689. [PMID: 28720068 DOI: 10.1177/1010428317716689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Wilms' tumor is associated with a high treatment success rate, but there is still a risk of recurrence. Cisplatin, which is one of the chemotherapeutic agents used for its treatment, is associated with a very high rate of resistance. Par-4 (prostate apoptosis response 4) is a tumor suppressor, which is capable of sensitizing tumor cells to chemotherapy. Therefore, the aim of this study was to determine whether combined treatment with Par-4 and cisplatin is effective for inhibiting growth of Wilms' tumor. Wilms' tumor and control cell samples were collected and analyzed by immunofluorescence assay and immunohistochemistry. Total proteins extracted from cultured cells were analyzed using western blotting and flow cytometry. In addition, a mouse xenograft model was established. We discovered significantly low expression of Par-4 in the tumor tissue, which was positively correlated with high expression of GRP78 (glucose-regulated protein 78). In addition, we found that ectopic Par-4 co-localized with cell surface GRP78 and induced high expression of the endoplasmic reticulum proteins ATF4 and BAX, which activated the endoplasmic reticulum apoptosis pathway. Moreover, treatment with ectopic Par-4 and cisplatin suppressed xenograft growth in nude mice. In conclusion, our results showed that Par-4 overexpression and cisplatin had a synergistic effect on SK-NEP-1 cells, as a result of which cell growth was inhibited and cellular apoptosis was induced. Thus, in vitro and in vivo upregulation of Par-4 expression is indispensable for the trafficking of GRP78 to the cell membrane and subsequent apoptosis of cancer cells.
Collapse
Affiliation(s)
- Jun Wang
- 1 Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yunjie Li
- 2 Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fangfang Ma
- 2 Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huifeng Zhou
- 2 Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rong Ding
- 2 Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Binbin Lu
- 2 Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Zou
- 2 Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junxia Li
- 2 Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rugang Lu
- 1 Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Abstract
BACKGROUND Vorapaxar, a novel antiplatelet thrombin PAR-1 inhibitor, is currently approved for post myocardial infarction and peripheral artery disease indications with concomitant use of clopidogrel and/or aspirin. The vorapaxar safety profile was acceptable. However, aside from heightened bleeding risks, excesses of solid cancers and diplopia, there were more amyotrophic lateral sclerosis (ALS) diagnoses after vorapaxar. STUDY QUESTION To assess the Food and Drug Administration (FDA) reviews on the potential association of vorapaxar with ALS. STUDY DESIGN The review the public FDA records on reported adverse events after vorapaxar. MEASURES AND OUTCOMES Incidence of ALS after vorapaxar and placebo. RESULTS The ALS risk appears very small, about 1 case per 10,000 treated subjects, but quite probable. Indeed, there were overall 2 placebo and 4 vorapaxar ALS incidences in the Phase III clinical trials. CONCLUSIONS Potential adverse association of vorapaxar with ALS risks may be related to off-target neuronal PAR receptor(s) blockade beyond platelet inhibition.
Collapse
|
5
|
A journey beyond apoptosis: new enigma of controlling metastasis by pro-apoptotic Par-4. Clin Exp Metastasis 2016; 33:757-764. [PMID: 27568374 DOI: 10.1007/s10585-016-9819-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
Abstract
Prostate apoptotic response 4 (Par-4) is coined as a therapeutic protein since owing to its diverse physiologically relevant properties, especially in the cancer perspective. Albeit, Par-4 expression is not restricted to any specific tissue/organ, apart from cell death promotion (due to challenging threats), the other biological role of Par-4 is convincingly emerging. In the recent years, several laboratories have intended to dissect the signaling or mechanisms involved in Par-4 activation to augment apoptosis cascades but new developments in Par-4 research have widened its therapeutic potential. One of these important avenues is the prevention of metastasis by pro-apoptotic Par-4. In this review, we will focus on the therapeutic perspective of Par-4 with a special reference to its (Par-4) virgin prospect of devastating metastasis control.
Collapse
|
6
|
QiNan W, XiaGuang G, XiaoTian L, WuQuan D, Ling Z, Bing C. Par-4/NF-κB Mediates the Apoptosis of Islet β Cells Induced by Glucolipotoxicity. J Diabetes Res 2016; 2016:4692478. [PMID: 27340675 PMCID: PMC4906207 DOI: 10.1155/2016/4692478] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 04/04/2016] [Indexed: 01/08/2023] Open
Abstract
Apoptosis of islet β cells is a primary pathogenic feature of type 2 diabetes, and ER stress and mitochondrial dysfunction play important roles in this process. Previous research has shown that prostate apoptosis response-4 (Par-4)/NF-κB induces cancer cell apoptosis through endoplasmic reticulum (ER) stress and mitochondrial dysfunction. However, the mechanism by which Par-4/NF-κB induces islet β cell apoptosis remains unknown. We used a high glucose/palmitate intervention to mimic type 2 diabetes in vitro. We demonstrated that the high glucose/palmitate intervention induced the expression and secretion of Par-4. It also causes increased expression and activation of NF-κB, which induced NIT-1 cell apoptosis and dysfunction. Overexpression of Par-4 potentiates these effects, whereas downregulation of Par-4 attenuates them. Inhibition of NF-κB inhibited the Par-4-induced apoptosis. Furthermore, these effects occurred through the ER stress cell membrane and mitochondrial pathway of apoptosis. Our findings reveal a novel role for Par-4/NF-κB in islet β cell apoptosis and type 2 diabetes.
Collapse
Affiliation(s)
- Wu QiNan
- Endocrine Department, The First Affiliated Hospital of the Third Military Medical University, Chong Qing 400038, China
| | - Gan XiaGuang
- Endocrine Department, The First Affiliated Hospital of the Third Military Medical University, Chong Qing 400038, China
| | - Lei XiaoTian
- Endocrine Department, The First Affiliated Hospital of the Third Military Medical University, Chong Qing 400038, China
| | - Deng WuQuan
- Endocrine Department, The First Affiliated Hospital of the Third Military Medical University, Chong Qing 400038, China
| | - Zhang Ling
- Outpatient Department, The First Affiliated Hospital of the Third Military Medical University, Chong Qing 400038, China
| | - Chen Bing
- Endocrine Department, The First Affiliated Hospital of the Third Military Medical University, Chong Qing 400038, China
| |
Collapse
|