1
|
Suppression of annexin A1 and its receptor reduces herpes simplex virus 1 lethality in mice. PLoS Pathog 2022; 18:e1010692. [PMID: 35939498 PMCID: PMC9359538 DOI: 10.1371/journal.ppat.1010692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/20/2022] [Indexed: 11/27/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1)-induced encephalitis is the most common cause of sporadic, fatal encephalitis in humans. HSV-1 has at least 10 different envelope glycoproteins, which can promote virus infection. The ligands for most of the envelope glycoproteins and the significance of these ligands in virus-induced encephalitis remain elusive. Here, we show that glycoprotein E (gE) binds to the cellular protein, annexin A1 (Anx-A1) to enhance infection. Anx-A1 can be detected on the surface of cells permissive for HSV-1 before infection and on virions. Suppression of Anx-A1 or its receptor, formyl peptide receptor 2 (FPR2), on the cell surface and gE or Anx-A1 on HSV-1 envelopes reduced virus binding to cells. Importantly, Anx-A1 knockout, Anx-A1 knockdown, or treatments with the FPR2 antagonist reduced the mortality and tissue viral loads of infected mice. Our results show that Anx-A1 is a novel enhancing factor of HSV-1 infection. Anx-A1-deficient mice displayed no evident physiology and behavior changes. Hence, targeting Anx-A1 and FPR2 could be a promising prophylaxis or adjuvant therapy to decrease HSV-1 lethality. Herpes simplex virus 1 (HSV-1)-induced encephalitis is the most devastating consequence of HSV-1 infection, even in patients treated with anti-HSV-1 drugs. Moreover, encephalitis induced by drug-resistant HSV-1 has been reported in immunocompromised patients. Identifying the cellular factors in promoting HSV-1 replication, especially those increasing virus attachment and entry, could facilitate the development of alternative or adjuvant therapy. Here, we identified annexin A1 (Anx-A1) and its receptor, formyl peptide receptor 2 (FPR2), facilitating HSV-1 attachment to the cell surface. Suppression of Anx-A1 or blockage of FPR2 impaired HSV-1 attachment to cells, viral yields in cells, and HSV-1 lethality in mice. Moreover, blocking FPR2 decreased the replication of drug-resistant HSV-1 in BABL/c nude mice. Hence, targeting Anx-A1 and FPR2 could be alternative or adjuvant therapy for HSV-1 infection.
Collapse
|
2
|
Lechner VM, Nappi M, Deneny PJ, Folliet S, Chu JCK, Gaunt MJ. Visible-Light-Mediated Modification and Manipulation of Biomacromolecules. Chem Rev 2021; 122:1752-1829. [PMID: 34546740 DOI: 10.1021/acs.chemrev.1c00357] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemically modified biomacromolecules-i.e., proteins, nucleic acids, glycans, and lipids-have become crucial tools in chemical biology. They are extensively used not only to elucidate cellular processes but also in industrial applications, particularly in the context of biopharmaceuticals. In order to enable maximum scope for optimization, it is pivotal to have a diverse array of biomacromolecule modification methods at one's disposal. Chemistry has driven many significant advances in this area, and especially recently, numerous novel visible-light-induced photochemical approaches have emerged. In these reactions, light serves as an external source of energy, enabling access to highly reactive intermediates under exceedingly mild conditions and with exquisite spatiotemporal control. While UV-induced transformations on biomacromolecules date back decades, visible light has the unmistakable advantage of being considerably more biocompatible, and a spectrum of visible-light-driven methods is now available, chiefly for proteins and nucleic acids. This review will discuss modifications of native functional groups (FGs), including functionalization, labeling, and cross-linking techniques as well as the utility of oxidative degradation mediated by photochemically generated reactive oxygen species. Furthermore, transformations at non-native, bioorthogonal FGs on biomacromolecules will be addressed, including photoclick chemistry and DNA-encoded library synthesis as well as methods that allow manipulation of the activity of a biomacromolecule.
Collapse
Affiliation(s)
- Vivian M Lechner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Manuel Nappi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Patrick J Deneny
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sarah Folliet
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - John C K Chu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
3
|
Hawner M, Ducho C. Cellular Targeting of Oligonucleotides by Conjugation with Small Molecules. Molecules 2020; 25:E5963. [PMID: 33339365 PMCID: PMC7766908 DOI: 10.3390/molecules25245963] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022] Open
Abstract
Drug candidates derived from oligonucleotides (ON) are receiving increased attention that is supported by the clinical approval of several ON drugs. Such therapeutic ON are designed to alter the expression levels of specific disease-related proteins, e.g., by displaying antigene, antisense, and RNA interference mechanisms. However, the high polarity of the polyanionic ON and their relatively rapid nuclease-mediated cleavage represent two major pharmacokinetic hurdles for their application in vivo. This has led to a range of non-natural modifications of ON structures that are routinely applied in the design of therapeutic ON. The polyanionic architecture of ON often hampers their penetration of target cells or tissues, and ON usually show no inherent specificity for certain cell types. These limitations can be overcome by conjugation of ON with molecular entities mediating cellular 'targeting', i.e., enhanced accumulation at and/or penetration of a specific cell type. In this context, the use of small molecules as targeting units appears particularly attractive and promising. This review provides an overview of advances in the emerging field of cellular targeting of ON via their conjugation with small-molecule targeting structures.
Collapse
Affiliation(s)
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66 123 Saarbrücken, Germany;
| |
Collapse
|
4
|
Johnson SE, Reiling-Steffensmeier C, Lee HT, Marky LA. Unfolding and Targeting Thermodynamics of a DNA Intramolecular Complex with Joined Triplex-Duplex Domains. J Phys Chem B 2018; 122:1102-1111. [PMID: 29265815 DOI: 10.1021/acs.jpcb.7b10379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Our laboratory is interested in developing methods that can be used for the control of gene expression. In this work, we are investigating the reaction of an intramolecular complex containing a triplex-duplex junction with partially complementary strands. We used a combination of isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC), and spectroscopy techniques to determine standard thermodynamic profiles for these targeting reactions. Specifically, we have designed single strands to target one loop (CTTTC) or two loops (CTTTC and GCAA) of this complex. Both reactions yielded exothermic enthalpies of -66.3 and -82.8 kcal/mol by ITC, in excellent agreement with the reaction enthalpies of -72.7 and -88.7 kcal/mol, respectively, obtained from DSC Hess cycles. The favorable heat contributions result from the formation of base-pair stacks involving mainly the unpaired bases of the loops. This shows that each complementary strand is able to invade and disrupt the secondary structure. The simultaneous targeting of two loops yielded a more favorable reaction free energy, by approximately -8 kcal/mol, which corresponds to the formation of roughly four base-pair stacks involving the unpaired bases of the 5'-GCAA loop. The main conclusion is that the targeting of loops with a large number of unpaired bases results in a more favorable reaction free energy.
Collapse
Affiliation(s)
- Sarah E Johnson
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Calliste Reiling-Steffensmeier
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Hui-Ting Lee
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Luis A Marky
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| |
Collapse
|
5
|
Saleh AF, Fellows MD, Ying L, Gooderham NJ, Priestley CC. The Lack of Mutagenic Potential of a Guanine-Rich Triplex Forming Oligonucleotide in Physiological Conditions. Toxicol Sci 2016; 155:101-111. [PMID: 27660205 DOI: 10.1093/toxsci/kfw179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Triplex forming oligonucleotides (TFOs) bind in the major groove of DNA duplex in a sequence-specific manner imparted by Hoogsteen hydrogen bonds. There have been several reports demonstrating the ability of guanine-rich TFOs to induce targeted mutagenesis on an exogenous plasmid or an endogenous chromosomal locus. In particular, a 30mer guanine-rich triplex forming oligonucleotide, AG30, optimally designed to target the supFG1 reporter gene was reported to be mutagenic in the absence of DNA reactive agents in cultured cells and in vivo Here, we investigated the mutagenic potential of AG30 using the supFG1 shuttle vector forward mutation assay under physiological conditions. We also assessed the triplex binding potential of AG30 alongside cytotoxic and mutagenic assessment. In a cell free condition, AG30 was able to bind its polypurine target site in the supFG1 gene in the absence of potassium chloride and also aligned with a 5-fold increase in the mutant frequency when AG30 was pre-incubated with the supFG1 plasmid in the absence of potassium prior to transfection into COS-7 cells. However, when we analyzed triplex formation of AG30 and the supFG1 target duplex at physiological potassium levels, triplex formation was inhibited due to the formation of competing secondary structures. Subsequent assessment of mutant frequency under physiological conditions, by pre-transfecting COS-7 cells with the supFG1 plasmid prior to AG30 treatment led to a very small increase (1.4-fold) in the mutant frequency. Transfection of cells with even higher concentrations of AG30 did result in an elevated mutagenic response but this was also seen with a scrambled sequence, and was therefore considered unlikely to be biologically relevant as an associated increase in cytotoxicity was also apparent. Our findings also provide further assurance on the low potential of triplex-mediated mutation as a consequence of unintentional genomic DNA binding by therapeutic antisense oligonucleotides.
Collapse
Affiliation(s)
- Amer F Saleh
- Genetic Toxicology, Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire, United Kingdom
| | - Mick D Fellows
- Genetic Toxicology, Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire, United Kingdom
| | - Liming Ying
- Molecular medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Catherine C Priestley
- Genetic Toxicology, Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire, United Kingdom;
| |
Collapse
|
6
|
The Complementarity of the Loop to the Stem in DNA Pseudoknots Gives Rise to Local TAT Base-Triplets. Methods Enzymol 2016. [PMID: 26794363 DOI: 10.1016/bs.mie.2015.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Pseudoknots belong to an RNA structural motif that has significant roles in the biological function of RNA. An example is ribosomal frameshifting; in this mechanism, the formation of a local triplex changes the reading frame that allows for differences in the translation of mRNAs. In this work, we have used a combination of temperature-dependent UV spectroscopy and differential scanning calorimetry (DSC) to determine the unfolding thermodynamics of a set of DNA pseudoknots with the following sequence: d(TCTCTTnAAAAAAAAGAGAT5TTTTTTT), where "Tn" is a thymine loop with n=5 (PsK-5), 7 (PsK-7), 9 (PsK-9), or 11 (PsK-11). All four oligonucleotides form intramolecular pseudoknots, and the increase in the length of this loop yielded more stable pseudoknots due to higher transition temperatures and higher unfolding enthalpies. This indicates formation of one and three TAT/TAT stacks in PsK-9 and PsK-11, respectively. We have flipped one AT for a TA base pair in the core stem of these pseudoknots, preventing in this way the formation of these base-triplet stacks. The DSC curves of these pseudoknots yielded lower unfolding enthalpies, confirming the formation of a local triplex in PsK-9 and PsK-11. Furthermore, we have investigated the reaction of PsK-5 and PsK-9 with their partially complementary strands: directly by isothermal titration calorimetry and indirectly by creating a Hess cycle with the DSC data. Relative to the PsK-5 reaction, PsK-9 reacts with its complementary strand with less favorable free energy and enthalpy contributions; this indicates PsK-9 is more stable and more compact due to the formation of a local triplex.
Collapse
|
7
|
NS5ATP9 suppresses activation of human hepatic stellate cells, possibly via inhibition of Smad3/phosphorylated-Smad3 expression. Inflammation 2015; 38:278-89. [PMID: 25300817 DOI: 10.1007/s10753-014-0031-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Activation of hepatic stellate cell (HSC) is the central event in liver fibrosis. NS5ATP9 is related to many malignant tumors, but little is known about its function in HSC activation. The aim of this study is to investigate the role of NS5ATP9 in HSC activation in vitro. Genes related to liver fibrosis were detected after NS5ATP9 overexpression or silencing with or without transforming growth factor (TGF)-β1 stimulation in the human HSCs by real-time polymerase chain reaction and western blotting. Cell proliferation, migration, and apoptosis were tested, and the mechanisms underlying the effect of NS5ATP9 on HSC activation were studied. We showed that NS5ATP9 suppressed HSC activation and collagen production, with or without TGF-β1 induction. Also, NS5ATP9 inhibited cell proliferation and migration and promoted apoptosis. Furthermore, NS5ATP9 reduced basal and TGF-β1-mediated Smad3/phosphorylated-Smad3 expression. The existence of a physical complex between NS5ATP9 and Smad3 was illustrated. NS5ATP9 suppresses HSC activation, extracellular matrix production, and promotes apoptosis, in part through reducing Smad3/phosphorylated-Smad3 expression.
Collapse
|
8
|
Ji ZJ, Wang JL, Chen L. Inhibition of skin squamous cell carcinoma proliferation and promote apoptosis by dual silencing of NET-1 and survivin. Oncol Rep 2015; 34:811-22. [PMID: 26080853 DOI: 10.3892/or.2015.4062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/29/2015] [Indexed: 11/05/2022] Open
Abstract
The simultaneous silencing of multiple upregulated genes is an attractive and viable strategy to treat many incurable diseases including cancer. In the present study, skin squamous cell carcinoma (SSCC) tissue microarray was constructed and the expression of NET-1 and survivin was identified. The high expression of NET-1 and survivin gene in SSCC was confirmed as an important event for the formation and development of the cancer. A total of 100 primary SSCC patients were included in the present study. Expression of NET-1 and survivin in cancer cells was evaluated immunohistochemically in tissue microarrays. The interaction between NET-1 and survivin in SSCC by co-immunoprecipitation was subsequently verified by producing the siRNA sequence targeting the single gene (siRNA-NET-1 and siRNA-survivin) as well as NET-1 and survivin gene (one-chain-double-target siRNA). The levels of NET-1 and survivin mRNA and protein expression in A431 cells were detected by RT-qPCR and western blotting, and the expression of related genes including vascular endothelial growth factor (VEGF), cortactin, Bcl-2, caspase-3 and -8 was identified using RT-qPCR. The protein localization and expression of NET-1 and survivin in A431 cells were documented by immunohistochemistry and immuno-fluorescence staining. The proliferation and apoptosis of A431 cells were detected by CCK-8 assay and flow cytometry (FCM). The tissue microarray showed that NET-1 and survivin were highly expressed in SSCC, while the correlation analysis showed NET-1 expression was positively associated with survivin. In addition, we reported that using the one-chain-double-target siRNA conjugate composed of NET-1 and survivin siRNA sequences in the same backbone inhibited proliferation and promoted apoptosis of SSCC. The one-chain-double-target siRNA showed further downregulation on NET-1 and survivin mRNA and protein levels compared with NET-1 siRNA or survivin siRNA. It also exhibited greater suppression on proliferation and triggering of apoptosis in A431 cells than NET-1 siRNA or survivin siRNA. This result may be explained by the significant downregulation of VEGF, cortactin and Bcl-2, and upregulation of caspase-3 and -8. NET-1 and survivin were overexpressed in SSCC and an interaction between NET-1 and survivin was identified. The one-chain-double-target siRNA appears to be superior in inhibiting cell proliferation and promoting apoptosis compared with the single target siRNA. NET-1 and survivin may have correlative signaling pathways with VEGF, cortactin, Bcl-2, caspase-3 and -8. Simultaneous silencing of NET-1 and survivin using one-chain-double-target siRNA thus provides an advantageous alternative in the development of therapeutics for SSCC.
Collapse
Affiliation(s)
- Zhou-Jing Ji
- Department of Dermatology and Venereology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Jian-Li Wang
- Department of Dermatology and Venereology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Li Chen
- Department of Pathological Anatomy, Nantong University, Nantong, Jiangsu, P.R. China
| |
Collapse
|
9
|
Liang W, Zhang W, Zhao S, Li Q, Yang Y, Liang H, Ceng R. A study of the ultrasound-targeted microbubble destruction based triplex-forming oligodexinucleotide delivery system to inhibit tissue factor expression. Mol Med Rep 2014; 11:903-9. [PMID: 25355395 PMCID: PMC4262506 DOI: 10.3892/mmr.2014.2822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 07/21/2014] [Indexed: 12/20/2022] Open
Abstract
The efficiency of cellular uptake of triplex‑forming oligodexinucleotides (TFO), and the inhibition of tissue factor (TF) is low. The aim of the present study was to improve the absorption of TFO, and increase the inhibition of TF induced by shear stress both in vitro and in vivo, by using an ultrasound‑targeted microbubble destruction (UTMD)‑based delivery system. TFO‑conjugated lipid ultrasonic microbubbles (TFO‑M) were first constructed and characterised. The absorption of TFO was observed by a fluorescence‑based method, and the inhibition of TF by immunofluorescence and quantitative polymerase chain reaction. ECV304 human umbilical vein endothelial cells were subjected to fluid shear stress for 6 h after treatment with TFO conjugated lipid ultrasonic microbubbles without sonication (TFO‑M group); TFO alone; TFO conjugated lipid ultrasonic microbubbles, plus immediate sonication (TFO+U group and TFO‑M+U group); or mock treated with 0.9% NaCl only (SSRE group). The in vivo experiments were established in a similar manner to the in vitro experiments, except that TFO or TFO‑M was injected into rats through the tail vein. Six hours after the preparation of a carotid stenosis model, the rats were humanely sacrificed. The transfection efficiency of TFO in the TFO‑M+U group was higher as compared with the TFO‑M and TFO+U group (P<0.01). The protein and mRNA expression of TF in the TFO‑M+U group was significantly decreased both in vitro and in vivo (P<0.01), as compared with the TFO‑M, TFO+U and SSRE groups. The UTMD‑based TFO delivery system promoted the -absorption of TFO and the inhibition of TF, and was therefore considered to be favorable for preventing thrombosis induced by shear stress.
Collapse
Affiliation(s)
- Weihua Liang
- Department of Neurology, Xinqiao Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Weiwei Zhang
- Deparment of Neurology, General Hospital of Beijing PLA Military Region, Beijing 100700, P.R. China
| | - Shifu Zhao
- Department of Neurology, Xinqiao Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Qianning Li
- Department of Neurology, Xinqiao Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Yiming Yang
- Department of Internal Medicine, The Sixteenth Hospital of PLA, Altay, Xinjiang 836500, P.R. China
| | - Hua Liang
- Department of Internal Medicine, 66083 Clinic of Beijing Military Region, Beijing 102488, P.R. China
| | - Rongchuan Ceng
- Department of Neurology, Xinqiao Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
10
|
Reiling C, Marky LA. Contributions of the loops on the stability and targeting of DNA pseudoknots. ACTA ACUST UNITED AC 2014. [DOI: 10.7243/2052-9341-2-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Luo Z, Ye T, Ma Y, Gill HS, Nitin N. Microprecision delivery of oligonucleotides in a 3D tissue model and its characterization using optical imaging. Mol Pharm 2013; 10:2868-79. [PMID: 23795670 DOI: 10.1021/mp300717f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite significant potential of oligonucleotides (ONs) for therapeutic and diagnostic applications, rapid and widespread intracellular delivery of ONs in cells situated in tissues such as skin, head and neck cavity, and eye has not been achieved. This study was aimed at evaluating the synergistic combination of microneedle (MN) arrays and biochemical approaches for localized intratissue delivery of oligonucleotides in living cells in 3D tissue models. This synergistic combination was based on the ability of MNs to precisely deliver ONs into tissues to achieve widespread distribution, and the ability of biochemical agents (streptolysin O (SLO) and cholesterol conjugation to ONs) to enhance intracellular ON delivery. The results of this study demonstrate that ON probes were uniformly coated on microneedle arrays and were efficiently released from the microneedle surface upon insertion in tissue phantoms. Co-insertion of microneedles coated with ONs and SLO into 3D tissue models resulted in delivery of ONs into both the cytoplasm and nucleus of cells. Within a short incubation time (35 min), ONs were observed both laterally and along the depth of a 3D tissue up to a distance of 500 μm from the microneedle insertion point. Similar widespread intratissue distribution of ONs was achieved upon delivery of ON-cholesterol conjugates. Uniformity of ON delivery in tissues improved with longer incubation times (24 h) postinsertion. Using cholesterol-conjugated ONs, delivery of ON probes was limited to the cytoplasm of cells within a tissue. Finally, delivery of cholesterol-conjugated anti-GFP ON resulted in reduction of GFP expression in HeLa cells. In summary, the results of this study provide a novel approach for efficient intracellular delivery of ONs in tissues.
Collapse
Affiliation(s)
- Zhen Luo
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, California 95616, United States
| | | | | | | | | |
Collapse
|
12
|
Triplex-forming ability of oligonucleotides containing 1-aryl-1,2,3-triazole nucleobases linked via a two atom-length spacer. Bioorg Med Chem 2013; 21:5583-8. [PMID: 23830701 DOI: 10.1016/j.bmc.2013.05.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 11/22/2022]
Abstract
Phosphoramidites containing 2-propynyloxy or 1-butyn-4-yl as nucleobase precursors were synthesized and introduced into oligonucleotides using an automated DNA synthesizer. Copper-catalyzed alkyne-azide 1,3-dipolar cycloaddition of the oligonucleotides with various azides gave the corresponding triazolylated oligonucleotides, triplex-forming ability of these synthetic oligonucleotides with double-stranded DNA targets was evaluated by UV melting experiments. It was found that nucleobases containing 2-(1-m-carbonylaminophenyl-1,2,3-triazol-4-yl)ethyl units likely interacted with A of a TA base pair in a parallel triplex DNA.
Collapse
|
13
|
Wu YY, Chen L, Wang GL, Zhang YX, Zhou JM, He S, Qin J, Zhu YY. Inhibition of hepatocellular carcinoma growth and angiogenesis by dual silencing of NET-1 and VEGF. J Mol Histol 2013; 44:433-45. [PMID: 23636606 DOI: 10.1007/s10735-012-9480-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 12/19/2012] [Indexed: 01/21/2023]
Abstract
Simultaneous silencing of multiple up-regulated genes is an attractive and viable strategy to treat many incurable diseases including cancer. Herein we used dual gene targeted siRNA (DGT siRNA) conjugate composed of NET-1 and VEGF siRNA sequences in the same backbone could inhibit growth and angiogenesis HCC. DGT siRNA showed a further down regulation on VEGF mRNA and protein levels compared with NET-1 siRNA or VEGF siRNA, but not on NET-1 expression. It also exhibited greater suppression on proliferation and trigger of apoptosis in HepG2 cells than NET-1 siRNA or VEGF siRNA; this could be explained by the significant down regulation of cyclin D1 and Bcl-2. A lower level of ANG2 mRNA and protein was detected in HUVEC cultured with supernatant of HepG2 cells treated with DGT siRNA than that of VEGF siRNA or NET-1 siRNA, resulting in much more inhibited angiogenesis of HUVEC. Tumor growth was inhibited and microvessel density dropped in the xenograft tumor models compared to the untreated controls. NET-1 and VEGF silencing play a key role in inhibiting hepatocellular cell proliferation, promoting apoptosis, and reducing angiogenesis. Simultaneous silencing of NET-1 and VEGF using DGT siRNA construct may provide an advantageous alternative in development of therapeutics for Hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yuan-Yuan Wu
- Department of Pathological Anatomy, Nantong University, Nantong, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Taniguchi Y, Sasaki S. An efficient antigene activity and antiproliferative effect by targeting the Bcl-2 or survivin gene with triplex forming oligonucleotides containing a W-shaped nucleoside analogue (WNA-βT). Org Biomol Chem 2013; 10:8336-41. [PMID: 22987068 DOI: 10.1039/c2ob26431e] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Triplex forming oligonucleotides (TFOs) are some of the most promising tools in the antigene strategy for the development of gene targeting therapeutics. However, the stable triplex formation is restricted to the homopurine sequences consisting of purine nucleosides, dG and dA. Therefore, the T or dC nucleoside in the homopurine strand inhibits the stable triplex formation. We have developed W-shaped nucleoside analogues (WNAs) for the formation of the unnatural type triplex DNA, with sequences containing the interrupting site in an antiparallel triplex formation. In the present study, we tested the antigene effect of TFOs having WNA-βT, which increased the stability of the triplex formation with a target sequence including the TA interrupting site. We designed the GU TFO (WNA) and GU TFO (natural) for targeting sequences of the Bcl-2 or survivin oncogene. The gel shift assay showed that the TFO (WNA) formed more stable triplexes than the natural TFO. Remarkably, the Bcl-2- or survivin-targeted TFO (WNA) inhibited the cell proliferation and induced a caspase-dependent apoptosis. It was confirmed that the survivin-targeted TFO (WNA) more effectively decreased the number of survivin products in the A549 cell than the natural TFOs.
Collapse
Affiliation(s)
- Yosuke Taniguchi
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan.
| | | |
Collapse
|
15
|
Järver P, Coursindel T, Andaloussi SEL, Godfrey C, Wood MJA, Gait MJ. Peptide-mediated Cell and In Vivo Delivery of Antisense Oligonucleotides and siRNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2012; 1:e27. [PMID: 23344079 PMCID: PMC3390225 DOI: 10.1038/mtna.2012.18] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 04/26/2012] [Accepted: 04/26/2012] [Indexed: 12/22/2022]
Affiliation(s)
- Peter Järver
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Samir EL Andaloussi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Department of Laboratory Medicine, Karolinska Institute, Hudidnge, Sweden
| | - Caroline Godfrey
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Matthew JA Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Michael J Gait
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
16
|
Aoki E, Taniguchi Y, Wada Y, Sasaki S. Efficient DNA strand displacement by a W-shaped nucleoside analogue (WNA-βT) containing an ortho-methyl-substituted phenyl ring. Chembiochem 2012; 13:1152-60. [PMID: 22549913 DOI: 10.1002/cbic.201200066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Indexed: 11/07/2022]
Abstract
Molecules that can target duplex DNA with sequence selectivity have the potential to be useful tools in genomic research and also as therapeutic agents. Homopurine-homopyrimidine stretches in duplex DNA can be recognized by homopurine or homopyrimidine TFOs (triplex-forming oligonucleotides) through the formation of triplex DNA. We have previously developed bicyclic nucleoside analogues (WNAs) for the formation of stable triplexes in the formation of stable antiparallel triplexes containing a TA or a CG interrupting site. In this study, we investigated the effects on triplex DNA formation of ortho-, meta-, and para-methyl substituent groups on the aromatic ring of the WNA analogue. It was found that the homopurine TFO containing meta- and para-methyl-substituted WNA-βT (mMe-WNA-βT, pMe-WNA-βT) stabilized triplexes containing a TA interrupting site or a GC site, respectively. Interestingly, the ortho-methyl-substituted WNA-βT (oMe-WNA-βT) efficiently promoted DNA strand displacement to form the TFO/pyrimidine duplex. A detailed investigation showed that the duplex was in the antiparallel orientation and that its formation took place prior to triplex formation with the need for a magnesium cation. NOESY measurements indicated a significant difference in the rotation flexibilities of the phenyl rings of WNA-βTs: that is, the conformation of the ortho-methylated phenyl ring was stable in a temperature-independent manner. It was speculated that the initial formation of a ternary complex was followed by strand displacement and then the formation of the TFO/pyrimidine duplex together with the TFO(2)/pyrimidine triplex formation during the early stage, and that the equilibrium shifted to the triplex during the later stage. Although the detailed role is still uncertain, the fixed phenyl ring of oMe-WNA-βT might play a role in the displacement reaction.
Collapse
Affiliation(s)
- Eriko Aoki
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
17
|
Hari Y, Obika S, Imanishi T. Towards the Sequence-Selective Recognition of Double-Stranded DNA Containing Pyrimidine-Purine Interruptions by Triplex-Forming Oligonucleotides. European J Org Chem 2012. [DOI: 10.1002/ejoc.201101821] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
18
|
Wang RE, Pandita RK, Cai J, Hunt CR, Taylor JS. Inhibition of heat shock transcription factor binding by a linear polyamide binding in an unusual 1:1 mode. Chembiochem 2012; 13:97-104. [PMID: 22134972 PMCID: PMC3516905 DOI: 10.1002/cbic.201100524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Indexed: 11/05/2022]
Abstract
Heat shock proteins (HSPs) are known to protect cells from heat, oxidative stress, and the cytotoxic effects of drugs, and thus can enhance cancer cell survival. As a result, HSPs are a newly emerging class of protein targets for chemotherapy. Among the various HSPs, the HSP70 family is the most highly conserved and prevalent. Herein we describe the development of a β-alanine rich linear polyamide that binds the GGA heat shock elements (HSEs) 3 and 4 in the HSP70 promoter in an unusual 1:1 mode and inhibits heat shock transcription factor 1 (HSF1) binding in vitro.
Collapse
Affiliation(s)
- Rongsheng E. Wang
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Raj K. Pandita
- Radiation Oncology Department, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Jianfeng Cai
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Clayton R. Hunt
- Radiation Oncology Department, Washington University School of Medicine, St. Louis, MO 63108, USA
| | | |
Collapse
|
19
|
|
20
|
Hari Y, Nakahara M, Obika S. A 2-AMINO-6-METHYLPYRIDIN-5-YL NUCLEOBASE FOR GC BASE PAIR RECOGNITION IN THE PARALLEL TRIPLEX DNA. HETEROCYCLES 2012. [DOI: 10.3987/com-12-s(n)68] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Vawter MP, Mamdani F, Macciardi F. An integrative functional genomics approach for discovering biomarkers in schizophrenia. Brief Funct Genomics 2011; 10:387-99. [PMID: 22155586 DOI: 10.1093/bfgp/elr036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia (SZ) is a complex disorder resulting from both genetic and environmental causes with a lifetime prevalence world-wide of 1%; however, there are no specific, sensitive and validated biomarkers for SZ. A general unifying hypothesis has been put forward that disease-associated single nucleotide polymorphisms (SNPs) from genome-wide association study (GWAS) are more likely to be associated with gene expression quantitative trait loci (eQTL). We will describe this hypothesis and review primary methodology with refinements for testing this paradigmatic approach in SZ. We will describe biomarker studies of SZ and testing enrichment of SNPs that are associated both with eQTLs and existing GWAS of SZ. SZ-associated SNPs that overlap with eQTLs can be placed into gene-gene expression, protein-protein and protein-DNA interaction networks. Further, those networks can be tested by reducing/silencing the gene expression levels of critical nodes. We present pilot data to support these methods of investigation such as the use of eQTLs to annotate GWASs of SZ, which could be applied to the field of biomarker discovery. Those networks that have association with SNP markers, especially cis-regulated expression, might lead to a more clear understanding of important candidate genes that predispose to disease and alter expression. This method has general application to many complex disorders.
Collapse
Affiliation(s)
- Marquis P Vawter
- Functional Genomics Laboratory, Department of Psychiatry, University of California, Irvine, USA.
| | | | | |
Collapse
|
22
|
|
23
|
Toth PP. Antisense therapy and emerging applications for the management of dyslipidemia. J Clin Lipidol 2011; 5:441-9. [PMID: 22108147 DOI: 10.1016/j.jacl.2011.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 08/10/2011] [Accepted: 08/17/2011] [Indexed: 10/17/2022]
Abstract
BACKGROUND Because a significant percentage of patients who require high-dose statin therapy for dyslipidemia experience treatment-related muscle symptoms and an inconsistent clinical response, alternative or adjunctive approaches to the management of dyslipidemia are needed. One alternative approach, antisense therapy, may offer an effective and well-tolerated option for patients not satisfactorily responsive to or intolerant to standard pharmacologic dyslipidemia therapies. OBJECTIVE This review provides an overview of antisense technology and its potential role in the management of dyslipidemia. METHODS Source material was obtained primarily from the published literature identified through a search of the PubMed database. RESULTS Antisense technology is an evolving approach to therapy that has gone through a series of refinements to enhance molecular stability, potency, and tolerability. Mipomersen is an antisense molecule capable of producing clinically meaningful reductions in low-density lipoprotein cholesterol in patients with severe familial hypercholesterolemia. Further long-term clinical studies are required to more clearly quantify its impact on risk for cardiovascular events and establish whether it increases risk for hepatosteatosis. CONCLUSION Antisense therapy represents a potentially effective and well-tolerated emerging treatment modality for numerous diseases. In the treatment of hypercholesterolemia, the antisense therapy mipomersen may provide a possible treatment option for patients with treatment-resistant dyslipidemia.
Collapse
Affiliation(s)
- Peter P Toth
- Department of Preventive Cardiology, CGH Medical Center, Sterling, IL, USA.
| |
Collapse
|
24
|
Lee HT, Carr C, Siebler H, Waters L, Khutsishvili I, Iseka F, Domack B, Olsen CM, Marky LA. A thermodynamic approach for the targeting of nucleic acid structures using their complementary single strands. Methods Enzymol 2011; 492:1-26. [PMID: 21333787 DOI: 10.1016/b978-0-12-381268-1.00013-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The main focus of our investigations is to further our understanding of the physicochemical properties of nucleic acid structures. We report on a thermodynamic approach to study the reaction of a variety of intramolecular nucleic acid structures with their respective complementary strands. Specifically, we have used a combination of isothermal titration (ITC) and differential scanning calorimetry (DSC) and spectroscopy techniques to determine standard thermodynamic profiles for the reaction of a triplex, G-quadruplex, hairpin loops, pseudoknot, and three-arm junctions with their complementary strands. Reaction enthalpies are measured directly in ITC titrations, and compared with those obtained indirectly from Hess cycles using DSC unfolding data. All reactions investigated yielded favorable free energy contributions, indicating that each single strand is able to invade and disrupt the corresponding intramolecular DNA structure. These favorable free energy terms are enthalpy-driven, resulting from a favorable compensation of exothermic contributions due to the formation of additional base-pair stacks in the duplex product, and endothermic contributions, from the disruption of base stacking contributions of the reactant single strands. The overall results provide a thermodynamic approach that can be used in the targeting of nucleic acids, especially the secondary structures formed by mRNA, with oligonucleotides for the control of gene expression.
Collapse
Affiliation(s)
- Hui-Ting Lee
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cui D, Zhang S, Ma J, Han J, Jiang H. Short interfering RNA targetting NF-kappa B induces apoptosis of hepatic stellate cells and attenuates extracellular matrix production. Dig Liver Dis 2010; 42:813-7. [PMID: 20409762 DOI: 10.1016/j.dld.2010.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 02/23/2010] [Accepted: 03/17/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pharmacological inhibition of the NF-κB activity enhances hepatic stellate cell apoptosis and reverses experimental fibrosis. However, there is no report on the effects of NF-κB knockdown on apoptosis and extracellular matrix secretion in hepatic stellate cells. The aim of the present study is to explore the effects of siRNA targetting NF-κB on the apoptosis and extracellular matrix production in hepatic stellate cells. METHODS The immortalised hepatic stellate cell line HSC-T6 was transfected with siRNA; 72h later, cells were stimulated by LPS for 1h; these cells were collected for further use. Hepatic stellate cell apoptosis was determined by fluorescence activated cell sorter analysis, TUNEL assay and caspase-3 activity measurement. Matrix metalloproteinase 2 activity was evaluated with Gelatin zymography. The quantities of mRNA transcriptions of NF-κB p65, type I collagen, tissue inhibitor of metalloproteinases-1, α-smooth muscle actin and transforming growth factor beta 1 and anti-apoptotic protein A1 were evaluated with quantitative reverse transcriptase real-time polymerase chain reaction. RESULTS siRNA targetting NF-κB p65 effectively abrogated the expression of NF-κB p65 in hepatic stellate cells; decreased anti-apoptotic protein Bcl-2 and the mRNA transcription of hepatic type I collagen, α-smooth muscle actin, transforming growth factor beta 1, A1 and tissue inhibitor of metalloproteinases-1; increased matrix metalloproteinase 2 activity and promoted hepatic stellate cell apoptosis. CONCLUSION NF-κB knockdown enhances hepatic stellate cell apoptosis and attenuates extracellular matrix production.
Collapse
Affiliation(s)
- Donglai Cui
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang Hebei 050000, China
| | | | | | | | | |
Collapse
|
26
|
Sekine M, Oeda Y, Iijima Y, Taguchi H, Ohkubo A, Seio K. Synthesis and hybridization properties of 2'-O-methylated oligoribonucleotides incorporating 2'-O-naphthyluridines. Org Biomol Chem 2010; 9:210-8. [PMID: 21031200 DOI: 10.1039/c0ob00248h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2'-O-(1-Naphthyl)uridine and 2'-O-(2-naphthyl)uridine were synthesized by a microwave-mediated reaction of 2,2'-anhydrouridine with naphthols. Using the 3'-phosphoramidite building blocks, these 2'-O-aryluridine derivatives were incorporated into 2'-O-methylated oligoribonucleotides. Incorporation of five 2'-O-(2-naphthyl)uridines into a 2'-O-methylated RNA sense strand significantly increased the thermostability of the duplex with a 2'-O-methylated RNA antisense strand. Circular dichroism spectroscopy and molecular dynamic simulation of the duplexes formed between the modified RNAs and 2'-O-methyl RNAs suggested that there are π-π interactions between two neighboring naphthyl groups in a sequence of the five consecutively modified nucleosides.
Collapse
Affiliation(s)
- Mitsuo Sekine
- Department of Life Science, Tokyo Institute of Technology, 4259, Nagatsuta, Midoriku, Yokohama 226-8501, Japan.
| | | | | | | | | | | |
Collapse
|
27
|
Koilan S, Hamilton D, Baburyan N, Padala MK, Weber KT, Guntaka RV. Prevention of liver fibrosis by triple helix-forming oligodeoxyribonucleotides targeted to the promoter region of type I collagen gene. Oligonucleotides 2010; 20:231-7. [PMID: 20818932 PMCID: PMC2957239 DOI: 10.1089/oli.2010.0244] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 07/21/2010] [Indexed: 12/25/2022]
Abstract
Hepatic fibrosis leading to cirrhosis remains a global health problem. The most common etiologies are alcoholism and viral infections. Liver fibrosis is associated with major changes in both quantity and composition of extracellular matix and leads to disorganization of the liver architecture and irreversible damage to the liver function. As of now there is no effective therapy to control fibrosis. The end product of fibrosis is abnormal synthesis and accumulation of type I collagen in the extracellular matrix, which is produced by activated stellate or Ito cells in the damaged liver. Therefore, inhibition of transcription of type I collagen should in principle inhibit its production and accumulation in liver. Normally, DNA exists in a duplex form. However, under some circumstances, DNA can assume triple helical (triplex) structures. Intermolecular triplexes, formed by the addition of a sequence-specific third strand to the major groove of the duplex DNA, have the potential to serve as selective gene regulators. Earlier, we demonstrated efficient triplex formation between the exogenously added triplex-forming oligodeoxyribonucleotides (TFOs) and a specific sequence in the promoter region of the COL1A1 gene. In this study we used a rat model of liver fibrosis, induced by dimethylnitrosamine, to test whether these TFOs prevent liver fibrosis. Our results indicate that both the 25-mer and 18-mer TFOs, specific for the upstream nucleotide sequence from -141 to -165 (relative to the transcription start site) in the 5' end of collagen gene promoter, effectively prevented accumulation of liver collagen and fibrosis. We also observed improvement in liver function tests. However, mutations in the TFO that eliminated formation of triplexes are ineffective in preventing fibrosis. We believe that these TFOs can be used as potential antifibrotic therapeutic molecules.
Collapse
Affiliation(s)
- Subramaniyan Koilan
- Department of Molecular Sciences, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - David Hamilton
- Department of Comparative Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Narina Baburyan
- Department of Molecular Sciences, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Mythili K. Padala
- Department of Molecular Sciences, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Karl T. Weber
- Department of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Ramareddy V. Guntaka
- Department of Molecular Sciences, The University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
28
|
Tai W, Qin B, Cheng K. Inhibition of breast cancer cell growth and invasiveness by dual silencing of HER-2 and VEGF. Mol Pharm 2010; 7:543-56. [PMID: 20047302 DOI: 10.1021/mp9002514] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Overexpression of HER-2 accounts for approximately 25% of all breast cancer cases, while 87.7% of HER-2 positive breast cancers are associated with upregulated VEGF. The objective of this study is to explore the combination therapy of blocking HER-2 and VEGF expressions simultaneously using siRNA. This is the first report to examine the effect of dual silencing of HER-2 and VEGF genes on tumor growth and invasiveness. We have designed nine HER-2 siRNAs and ten VEGF siRNAs, and identified potent siRNA which can silence the target gene up to 75-83.5%. The most potent HER-2 and VEGF siRNAs were used to conduct functional studies in HER-2 positive breast cancer cells. Tumor invasiveness properties including cell morphology change, in vitro migration, cell spreading, and adhesion to ECM were evaluated. In addition, cell proliferation and apoptosis were examined after the siRNA treatment. Our data demonstrated for the first time that HER-2 siRNA could inhibit cell migration and invasion abilities. Combination of HER-2 and VEGF siRNAs exhibited synergistic silencing effect on VEGF. Both HER-2 siRNA and VEGF siRNA showed significant inhibition on cell migration and proliferation. HER-2 siRNA also demonstrated dramatic suppression on cell spreading and adhesion to ECM, as well as induction of apoptosis. Dual silencing of HER-2 and VEGF exhibited significant cell morphology change, and substantial suppression on migration, spreading, cell adhesion, and proliferation. Our observations suggested that HER-2 positive breast cancer may be more effectively treated by dual inhibition of HER-2 and VEGF gene expressions using siRNA.
Collapse
Affiliation(s)
- Wanyi Tai
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2454 Charlotte Street, Kansas City, Missouri 64108, USA
| | | | | |
Collapse
|
29
|
Mendonça LS, Firmino F, Moreira JN, Pedroso de Lima MC, Simões S. Transferrin receptor-targeted liposomes encapsulating anti-BCR-ABL siRNA or asODN for chronic myeloid leukemia treatment. Bioconjug Chem 2010; 21:157-68. [PMID: 20000596 DOI: 10.1021/bc9004365] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The present work aimed at the development and application of transferrin receptor (TrfR)-targeted sterically stabilized liposomes encapsulating anti-BCR-ABL siRNA or asODN. Transferrin was coupled to the surface of liposomes encapsulating siRNA or asODN through the postinsertion method. Cell association and internalization were assessed by flow cytometry and confocal microscopy, respectively. BCR-ABL mRNA and Bcr-Abl protein levels were evaluated by qRT-PCR and Western blot, respectively. Cell viability was assessed using the resazurin reduction method. The amount of coupled transferrin and the size and stability over time of the liposomes were very satisfactory and reproducible. The siRNA encapsulation yield was dependent on the concentration of the encapsulation buffer used (20 or 300 mM), as opposed to asODN encapsulation yield which was high for both concentrations tested. Cell association and internalization studies were performed in leukemia cell lines treated with liposomes coupled to Trf (Trf-liposomes) or albumin (BSA-liposomes) or with nontargeted liposomes (NT-liposomes) encapsulating fluorescently labeled siRNA (Cy3-siRNA). These experiments clearly indicated that BSA- and NT-liposomes have no ability to promote the delivery of the encapsulated nucleic acids and that the Trf-liposomes deliver the nucleic acids by a Trf receptor-dependent mechanism. The Trf-liposomes encapsulating siRNA or asODN promote sequence-specific down-regulation of the BCR-ABL mRNA, although a certain extent of nonspecific sequence effects at the protein and cell viability level were observed. Overall, our results indicate that Trf-liposomes encapsulating gene silencing tools allow combining molecular and cellular targeting, which is a valuable approach for cancer treatment.
Collapse
|
30
|
Sawa N, Wada T, Inoue Y. Synthesis and DNA-recognition behavior of a novel peptide ribonucleic acid with a serine backbone (oxa-PRNA). Tetrahedron 2010. [DOI: 10.1016/j.tet.2009.10.094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Oeda Y, Iijima Y, Taguchi H, Ohkubo A, Seio K, Sekine M. Microwave-Assisted Synthesis of 2′-O-Aryluridine Derivatives. Org Lett 2009; 11:5582-5. [DOI: 10.1021/ol902142w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yusuke Oeda
- Department of Life Science, Tokyo Institute of Technology, J2-12, 4259 Nagatsuta, Midoriku, Yokohama 226-8501, Japan
| | - Yoshihiro Iijima
- Department of Life Science, Tokyo Institute of Technology, J2-12, 4259 Nagatsuta, Midoriku, Yokohama 226-8501, Japan
| | - Haruhiko Taguchi
- Department of Life Science, Tokyo Institute of Technology, J2-12, 4259 Nagatsuta, Midoriku, Yokohama 226-8501, Japan
| | - Akihiro Ohkubo
- Department of Life Science, Tokyo Institute of Technology, J2-12, 4259 Nagatsuta, Midoriku, Yokohama 226-8501, Japan
| | - Khoji Seio
- Department of Life Science, Tokyo Institute of Technology, J2-12, 4259 Nagatsuta, Midoriku, Yokohama 226-8501, Japan
| | - Mitsuo Sekine
- Department of Life Science, Tokyo Institute of Technology, J2-12, 4259 Nagatsuta, Midoriku, Yokohama 226-8501, Japan
| |
Collapse
|
32
|
Li F, Mahato RI. Bipartite vectors for co-expression of a growth factor cDNA and short hairpin RNA against an apoptotic gene. J Gene Med 2009; 11:764-71. [PMID: 19554613 DOI: 10.1002/jgm.1357] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Although human islet transplantation is a promising approach for treating type I diabetes, its success is limited as a result of the poor survival rate of transplanted islets. Expression of a growth factor gene to promote revascularization and silencing of pro-apoptotic genes before transplantation may improve the outcome of islet transplantation. METHODS In the present study, we constructed bipartite plasmid vectors to co-express a vascular endothelial growth factor (VEGF) cDNA and short hairpin (sh)RNA targeting inducible NO synthase (iNOS) gene. First, we screened shRNA sequences against human iNOS by transfecting plasmids encoding shRNA targeting different start sites of human iNOS. Then, the effect of different promoters [such as H1, U6 and cytomegalovirus (CMV)] and micro RNA backbones on gene silencing was determined. RESULTS No statistical difference in iNOS gene silencing was observed for the shRNA with H1, U6 and CMV promoters. In addition, a conventional shRNA showed better silencing of the iNOS gene compared to shRNA containing mir375 and mir30 backbones. A bipartite plasmid was also constructed with mir30-shRNA and a VEGF cDNA controlled by a single CMV promoter. This plasmid showed a better silencing effect compared to plasmid without VEGF cDNA. CONCLUSIONS In the present study, we have successfully constructed bipartite vectors co-expressing a VEGF cDNA and a shRNA against the iNOS gene. These vectors could be attractive candidates for improving the survival of transplanted islets.
Collapse
Affiliation(s)
- Feng Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38103-3308, USA
| | | |
Collapse
|
33
|
Rana S, Waheed I, Imran M. Specific post-transcriptional inhibition of mRNA for ligand binding chain of IgE high affinity receptor. Mol Biol Rep 2009; 38:675-81. [PMID: 19697153 DOI: 10.1007/s11033-009-9736-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 08/04/2009] [Indexed: 12/20/2022]
Abstract
IgE high affinity receptor (FcεRI) plays an important role in triggering type I allergic reactions. In this study, we have investigated the ability of four synthetic and sequence-specific RNA interfering antisense oligodeoxynucleotides (AS-ODNs) to reduce the expression of FcεRIα gene in granulocytes of allergy sufferers in vitro. Only AS1 out of four AS-ODNs specifically inhibited the FcεRIα gene expression and the dose response assay revealed that AS1 was capable of specific inhibition of target mRNA expression over a linear concentration range without affecting the expression of house keeping genes such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Together, these results indicate that sequence-specific RNA interfering ODNs can be effectively used to silence the expression of key genes like IgE high affinity receptor that are involved in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Sobia Rana
- Molecular and Cell Biology Laboratory, Department of Physiology and Cell Biology, University of Health Sciences (UHS), Khayaban-e-Jamia Punjab, Lahore, 54600, Pakistan.
| | | | | |
Collapse
|
34
|
Abstract
Small interfering RNA (siRNA) and short hairpin RNA (shRNA) targeting different regions of transforming growth factor beta1 (TGF-beta1) mRNA were designed and the silencing effect was determined after transfection into immortalized rat liver stellate cells (HSC-T6). There was not only significant decrease in TGF-beta1, tissue inhibitor of metalloproteinase 1 (TIMP-1), alpha-smooth muscle actin (alpha-SMA) and type I collagen after transfection with TGF-beta1 siRNAs, but also synergism in gene silencing when siRNAs targeting two different start sites were used as a pool for transfection. The two siRNA sequences which efficiently inhibited TGF-beta1 gene expression were converted to shRNAs via cloning into the pSilencer1.0. There was significant decrease in TGF-beta1 and TIMP-1 when HSC-T6 cells were transfected with pshRNA targeting the same regions of TGF-beta1 mRNA as siRNAs. Furthermore, TGF-beta1 gene silencing in HSC-T6 cells significantly decreased the levels of inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1beta). In conclusion, both siRNA and shRNA showed sequence-specific and dose dependent TGF-beta1 gene silencing and have the potential to treat liver fibrosis.
Collapse
Affiliation(s)
- Kun Cheng
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38103, USA
| | | | | |
Collapse
|
35
|
Stessl M, Marchetti-Deschmann M, Winkler J, Lachmann B, Allmaier G, Noe CR. A proteomic study reveals unspecific apoptosis induction and reduction of glycolytic enzymes by the phosphorothioate antisense oligonucleotide oblimersen in human melanoma cells. J Proteomics 2009; 72:1019-30. [PMID: 19523545 DOI: 10.1016/j.jprot.2009.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 05/27/2009] [Accepted: 06/01/2009] [Indexed: 12/17/2022]
Abstract
The question of specificity and the elucidation of the exact molecular mechanism of action of post-transcriptional gene silencing agents are two major challenges for their establishment as therapeutics. A proteomic off-target effect study (2-DE with MS) in combination with DIGE comparing the phosphorothioate antisense oligonucleotide oblimersen (Genasense, G3139) to a Bcl-2-targeting siRNA-sequence on human melanoma cells showed that additional off-target effects contribute to the apoptotic effect of oblimersen. When both oligonucleotides were transfected with lipofectamine 2000, only oblimersen increased apoptosis as determined by annexin staining and caspase activity measurement. In contrast to the highly specific siRNA, the expression level of a number of proteins was found to be altered after oblimersen treatment. Several proteins linked to apoptosis and stress response, among those galectin-1, cofilin-1, GRP78, HSP60, nucleophosmin, and peroxiredoxins, were identified and found to be down-regulated after oblimersen treatment. A down-regulation of enolase-1 and three other glycolytic enzymes indicates a reversion of the cancer-related Warburg effect. The observed effects may be caused by a phosphorothioate mediated blockage of the mitochondrial voltage dependent anion channel (VDAC).
Collapse
Affiliation(s)
- Martina Stessl
- Department of Medicinal Chemistry, University of Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
36
|
Casey JP, Blidner RA, Monroe WT. Caged siRNAs for Spatiotemporal Control of Gene Silencing. Mol Pharm 2009; 6:669-85. [DOI: 10.1021/mp900082q] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- John P. Casey
- Department of Biological and Agricultural Engineering, Louisiana State University and the LSU Agricultural Center, Baton Rouge, Louisiana 70803
| | - Richard A. Blidner
- Department of Biological and Agricultural Engineering, Louisiana State University and the LSU Agricultural Center, Baton Rouge, Louisiana 70803
| | - W. Todd Monroe
- Department of Biological and Agricultural Engineering, Louisiana State University and the LSU Agricultural Center, Baton Rouge, Louisiana 70803
| |
Collapse
|
37
|
Mahato RI. Gene expression and silencing for improved islet transplantation. J Control Release 2009; 140:262-7. [PMID: 19376168 DOI: 10.1016/j.jconrel.2009.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 04/10/2009] [Indexed: 12/26/2022]
Abstract
Islet transplantation has great potential as an effective means of treating type 1 diabetes. However, its successful application greatly depends on the rapid revascularization of islets and prevention from their apoptotic cell death. We co-expressed human vascular endothelial growth factor (hVEGF) and human interleukin-1 receptor antagonist (hIL-1Ra) after transduction of human islets with Adv-hVEGF-hIL-1Ra. Since hepatocyte growth factor (HGF) increases beta-cell proliferation and promotes revascularization of islets, we also constructed Adv-hHGF-hIL-1Ra. There was dose and time dependent expression of hVEGF and hIL-1Ra or hHGF and hIL-1Ra by islets, which led to decrease in caspase-3 activity and apoptosis induced by a cocktail of TNF-alpha, IL-1beta and IFN-gamma. Compared to non-treated islets, transduction of islets with these bipartite Adv vectors prior to transplantation under the kidney capsules of diabetic NOD-SCID mice reduced the blood glucose levels, and increased serum insulin and c-peptide levels. Immunohistochemical staining of the islet bearing kidney sections was positive for human insulin, growth factor (hVEGF or hHGF) and von Willebrand factor. Transduction with Adv-caspase-3-shRNA also prevented islets from cytokine induced apoptosis and improved islet transplantation. In conclusion, bipartite Adv vector efficiently co-expressed both growth factor and antiapoptotic genes or shRNA targeting pro-apoptotic genes, decreases apoptosis and improves the outcome of islet transplantation.
Collapse
Affiliation(s)
- Ram I Mahato
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38103, USA.
| |
Collapse
|
38
|
The therapeutic potential of LNA-modified siRNAs: reduction of off-target effects by chemical modification of the siRNA sequence. Methods Mol Biol 2009; 487:189-203. [PMID: 19301648 DOI: 10.1007/978-1-60327-547-7_9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Post-transcriptional gene silencing mediated by double-stranded RNA represents an evolutionarily conserved cellular mechanism. Small dsRNAs, such as microRNAs (miRNAs), are part of the main regulatory mechanisms of gene expression in cells. The possibilities of harnessing this intrinsic natural mechanism of gene silencing for therapeutic applications was opened up by the discovery by Tom Tuschl's team a few years ago that chemically synthesized small 21-mers of double-stranded RNA (small interfering RNA, siRNA) could inhibit gene expression without induction of cellular antiviral-like responses, siRNAs are especially of interest for cancer therapeutics because they allow specific inhibition of mutated oncogenes and other genes that aid and abet the growth of cancer cells. However, recent insights make it clear that siRNA faces some major hurdles before it can be used as a drug. Some of these problems are similar to those associated with classic antisense approaches, such as lack of delivery to specific tissues (other than the liver) or tumors, while other problems are more specific for siRNA, such as stability of the RNA molecules in circulation, off-target effects, interference with the endogenous miRNA machinery, and immune responses toward dsRNA. Chemical modifications of siRNA may help prevent these unwanted side effects. Initial studies show that minimal modifications with locked nucleic acids (LNA) help to reduce most of the unwanted side effects. In this chapter we will explore the limitations and possibilities of LNA-modified siRNA that may be used in future therapeutic applications.
Collapse
|
39
|
Abstract
Oligonucleotides with guanosine-rich (G-rich) sequences often have unusual physical and biological properties, including resistance to nucleases, enhanced cellular uptake, and high affinity for particular proteins. Furthermore, we have found that certain G-rich oligonucleotides (GROs) have antiproliferative activity against a range of cancer cells, while having minimal toxic effects on normal cells. We have investigated the mechanism of this activity and studied the relationship between oligonucleotide structural features and biological activity. Our results indicate that the antiproliferative effects of GROs depend on two properties: the ability to form quadruplex structures stabilized by G-quartets and binding affinity for nucleolin protein. Thus, it appears that the antiproliferative GROs are acting as nucleolin aptamers. Because nucleolin is expressed at high levels on the surface of cancer cells, where it mediates the endocytosis of various ligands, it seems likely that nucleolin-dependent uptake of GROs plays a role in their activity. One of the GROs that we have developed, a 26-nucleotide phosphodiester oligodeoxynucleotide now named AS1411 (formerly AGRO100 or GRO26B-OH), is currently being tested as an anticancer agent in Phase II clinical trials.
Collapse
|
40
|
Pattanayak V, Gifford LK, Lu P, Gewirtz AM. Observed versus predicted structure of fluorescent self-quenching reporter molecules (SQRM): caveats with respect to the use of "stem-loop" oligonucleotides as probes for mRNA folding. RNA (NEW YORK, N.Y.) 2008; 14:657-665. [PMID: 18359781 PMCID: PMC2271364 DOI: 10.1261/rna.890408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 12/27/2007] [Indexed: 05/26/2023]
Abstract
We developed self-quenching reporter molecules (SQRMs), oligodeoxynucleotides with fluorophore and quencher moieties at the 5' and 3' ends respectively, to probe mRNAs for single-stranded, hybridization accessible sequences. SQRMs and their homologous antecedents, Molecular Beacons (MB), are designed with the assumption that they adopt a stem-loop structure thought critical for regulating their reporter function. Recently, we observed that stem-loop structures are not required for SQRM function, and on this basis proposed that these reporter molecules be classified according to whether they were stemmed (Type I) or not (Type II). This finding further stimulated us to investigate whether Type I SQRMs, and by extension MBs, actually adopt a stem-loop configuration under physiologic conditions. Accordingly, we synthesized Type I and Type II SQRMs and studied the thermodynamic characteristics of each by fluorescence melting analysis. The results of these studies suggested that the majority of stem-loop Type I SQRMs are unstructured at 37 degrees C, while some of the stemless Type II SQRMs are, surprisingly, structured. These results were not predicted by the mfold computer program. Type I and II SQRMs were then employed to "map" the mRNA secondary structure of a gene encoding a tyrosine kinase receptor, c-kit. Neither experimentally determined melting temperatures nor mfold-"predicted" thermodynamic parameters were useful in predicting the fluorescence signal-to-noise ratios obtained for SQRMs incubated with c-kit mRNA. We conclude that stem-loop reporter molecules are in fact unlikely to adopt their presumed structures at 37 degrees C, and this design consideration may be dispensed when their use is contemplated under physiologic conditions.
Collapse
Affiliation(s)
- Vikram Pattanayak
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
41
|
Lee HT, Olsen CM, Waters L, Sukup H, Marky LA. Thermodynamic contributions of the reactions of DNA intramolecular structures with their complementary strands. Biochimie 2008; 90:1052-63. [PMID: 18312857 DOI: 10.1016/j.biochi.2008.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 02/01/2008] [Indexed: 11/29/2022]
Abstract
One focus of our research is to further our understanding of the physico-chemical properties of unusual DNA structures and their interaction with complementary oligonucleotides. We have investigated three types of reactions involving the interaction of intramolecular DNA complexes with their complementary single strands of varied length. Specifically, we have used a combination of isothermal titration (ITC) and differential scanning (DSC) calorimetry and spectroscopy techniques to determine standard thermodynamic profiles for the reaction of an i-motif, G-quadruplex, and triplex with their complementary strands. The enthalpies for each reaction are measured directly in ITC titrations and compared with those obtained indirectly from Hess cycles using DSC unfolding data. All reactions investigated yielded favorable free energy contributions, indicating that each single strand is able to invade and disrupt the corresponding intramolecular DNA complex. These favorable free energy terms are enthalpy driven, which result from a compensation of exothermic contributions, due to the formation of additional base-pair stacks (or base-triplet stacks) in the duplex product (or triplex product), immobilization of electrostricted water by the base-pair and base-triplet stacks, and the removal of structural water from the reactant single strands; and endothermic contributions from the disruption of base-base stacking interactions of the reactant single strands. This investigation of nucleic acid reactions has provided new methodology, based on physico-chemical principles, to determine the molecular forces involved in the interactions between DNA nucleic acid structures. This methodology may be used in targeting reactions for the control of gene expression.
Collapse
Affiliation(s)
- Hui-Ting Lee
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | | | | | | | | |
Collapse
|
42
|
Chen Y, Cheng G, Mahato RI. RNAi for treating hepatitis B viral infection. Pharm Res 2007; 25:72-86. [PMID: 18074201 PMCID: PMC2217617 DOI: 10.1007/s11095-007-9504-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 11/14/2007] [Indexed: 12/18/2022]
Abstract
Chronic hepatitis B virus (HBV) infection is one of the leading causes of liver cirrhosis and hepatocellular carcinoma (HCC). Current treatment strategies of HBV infection including the use of interferon (IFN)-α and nucleotide analogues such as lamivudine and adefovir have met with only partial success. Therefore, it is necessary to develop more effective antiviral therapies that can clear HBV infection with fewer side effects. RNA interference (RNAi), by which a small interfering RNA (siRNA) induces the gene silence at a post-transcriptional level, has the potential of treating HBV infection. The successful use of chemically synthesized siRNA, endogenous expression of small hairpin RNA (shRNA) or microRNA (miRNA) to silence the target gene make this technology towards a potentially rational therapeutics for HBV infection. However, several challenges including poor siRNA stability, inefficient cellular uptake, widespread biodistribution and non-specific effects need to be overcome. In this review, we discuss several strategies for improving the anti-HBV therapeutic efficacy of siRNAs, while avoiding their off-target effects and immunostimulation. There is an in-depth discussion on the (1) mechanisms of RNAi, (2) methods for siRNA/shRNA production, (3) barriers to RNAi-based therapies, and (4) delivery strategies of siRNA for treating HBV infection.
Collapse
Affiliation(s)
- Yong Chen
- Huai-An 4th People’s Hospital, Jiangsu, China
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 19 S Manassas Street, Memphis, Tennessee 38103 USA
| | - Guofeng Cheng
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 19 S Manassas Street, Memphis, Tennessee 38103 USA
| | - Ram I. Mahato
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 19 S Manassas Street, Memphis, Tennessee 38103 USA
| |
Collapse
|
43
|
Li P, Sergueeva ZA, Dobrikov M, Shaw BR. Nucleoside and Oligonucleoside Boranophosphates: Chemistry and Properties. Chem Rev 2007; 107:4746-96. [DOI: 10.1021/cr050009p] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ping Li
- Department of Chemistry, Box 90346, Duke University, Durham, North Carolina 27708-0346
| | - Zinaida A. Sergueeva
- Department of Chemistry, Box 90346, Duke University, Durham, North Carolina 27708-0346
| | - Mikhail Dobrikov
- Department of Chemistry, Box 90346, Duke University, Durham, North Carolina 27708-0346
| | - Barbara Ramsay Shaw
- Department of Chemistry, Box 90346, Duke University, Durham, North Carolina 27708-0346
| |
Collapse
|
44
|
Zhu L, Ye Z, Cheng K, Miller DD, Mahato RI. Site-specific delivery of oligonucleotides to hepatocytes after systemic administration. Bioconjug Chem 2007; 19:290-8. [PMID: 17850109 PMCID: PMC2533433 DOI: 10.1021/bc070126m] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We previously complexed ODN with galactosylated poly( l-lysine) (Gal-PLL) to enhance its site-specific delivery to hepatocytes. To avoid the use of polycations, in this study we conjugated galactosylated poly(ethylene glycol) (Gal-PEG (MW of PEG: 3486 +/- 500 Da)) to ODN via an acid-labile ester linkage of beta-thiopropionate. Following tail vein injection into rats, Gal-PEG- 33P-ODN rapidly cleared from the circulation and 60.2% of the injected dose accumulated in the liver at 30 min postinjection, which was significantly higher than that deposited after injection of 33P-ODNs. The plasma concentration versus time profile of Gal-PEG- 33P-ODN was biphasic, with 4.38 +/- 0.36 min as t1/2 of distribution and 118.61 +/- 22.06 min as t1/2 of elimination. Prior administration of excess Gal-BSA decreased the hepatic uptake of Gal-PEG- 33P-ODN from 60.2% to 35.9%, suggesting galactose triggers the asialoglycoprotein receptor-mediated endocytosis of Gal-PEG- 33P-ODN by hepatocytes. A large proportion of the injected Gal-PEG- 33P-ODN was taken up by the hepatocytes as evidenced by determination of radioactivity in the digested liver cells upon liver perfusion and separation by centrifugation on a Nycodenz gradient. In conclusion, Gal-PEG-ODN conjugate may be used for treating a variety of liver diseases.
Collapse
Affiliation(s)
| | | | | | | | - Ram I. Mahato
- * Corresponding authors: Ram I. Mahato, Ph.D. 19 Manassas, Room 224, Memphis, TN 38163, USA, Tel: (901) 448-6929, Fax: (901) 448-6092, E-mail: , http://cop.utmem.edu/rmahato
| |
Collapse
|
45
|
Lingor P, Bähr M. Targeting neurological disease with RNAi. MOLECULAR BIOSYSTEMS 2007; 3:773-80. [PMID: 17940660 DOI: 10.1039/b701169e] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The neuroscientific community rapidly adopted RNA interference techniques as an experimental tool for the dissection of gene function in vitro and in animal models of neurological disease in vivo. Here, we discuss recent advances in the biotechnical implementation of siRNA/shRNA-mediated gene silencing focusing on issues of design, delivery and putative detrimental effects. We then summarize the current use of RNAi in targeting neurological disease models and give an outlook on the implementation of this technique in clinical therapy.
Collapse
Affiliation(s)
- Paul Lingor
- Dept. of Neurology, Georg-August-University Göttingen, Faculty of Medicine, Waldweg 33, 37073 Göttingen, Germany.
| | | |
Collapse
|
46
|
De Paula D, Bentley MVLB, Mahato RI. Effect of iNOS and NF-kappaB gene silencing on beta-cell survival and function. J Drug Target 2007; 15:358-69. [PMID: 17541845 DOI: 10.1080/10611860701349695] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Type I diabetes results from beta-cell death and dysfunction, induced by infiltration of immune cells and local production of inflammatory cytokines. Therefore, we investigated the effect of iNOS and NF-kappaB gene silencing on beta-cell survival and function. METHODS Rat insulinoma INS-1E cells were transfected with chemically synthesized siRNA after complex formation with Lipofectamine 2000. Cells were then treated with a cocktail of inflammatory cytokines (IL-1beta+ TNF-alpha+ IFN-alpha), and glucose stimulated-insulin response and viability were determined. iNOS and NF-kappaB gene expression was assessed at mRNA level by real time RT-PCR. The effect of gene silencing was also correlated with cytokine-induced NO production and apoptosis. RESULTS Transfection of INS-1E cells with siRNAs silenced iNOS and NF-kappaB gene expression and reduced NO production in a sequence-specific manner without causing significant loss of cell viability and function. However, the abrogation of NO production did not prevent INS-1E cells from cytokine-induced apoptosis, suggesting that this event may not be totally dependent on NO production. CONCLUSION The gene silencing approach presented here is capable of attenuating the effects of inflammatory cytokines, such as iNOS expression and NO production and it will help to identify new target genes to improve islet transplantation.
Collapse
Affiliation(s)
- Daniel De Paula
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Brazil
| | | | | |
Collapse
|
47
|
De Paula D, Bentley MVLB, Mahato RI. Hydrophobization and bioconjugation for enhanced siRNA delivery and targeting. RNA (NEW YORK, N.Y.) 2007; 13:431-56. [PMID: 17329355 PMCID: PMC1831859 DOI: 10.1261/rna.459807] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
RNA interference (RNAi) is an evolutionarily conserved process by which double-stranded small interfering RNA (siRNA) induces sequence-specific, post-transcriptional gene silencing. Unlike other mRNA targeting strategies, RNAi takes advantage of the physiological gene silencing machinery. The potential use of siRNA as therapeutic agents has attracted great attention as a novel approach for treating severe and chronic diseases. RNAi can be achieved by either delivery of chemically synthesized siRNAs or endogenous expression of small hairpin RNA, siRNA, and microRNA (miRNA). However, the relatively high dose of siRNA required for gene silencing limits its therapeutic applications. This review discusses several strategies to improve therapeutic efficacy as well as to abrogate off-target effects and immunostimulation caused by siRNAs. There is an in-depth discussion on various issues related to the (1) mechanisms of RNAi, (2) methods of siRNA production, (3) barriers to RNAi-based therapies, (4) biodistribution, (5) design of siRNA molecules, (6) chemical modification and bioconjugation, (7) complex formation with lipids and polymers, (8) encapsulation into lipid particles, and (9) target specificity for enhanced therapeutic effectiveness.
Collapse
Affiliation(s)
- Daniel De Paula
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | | | | |
Collapse
|
48
|
Narang AS, Sabek O, Gaber AO, Mahato RI. Co-Expression of Vascular Endothelial Growth Factor and Interleukin-1 Receptor Antagonist Improves Human Islet Survival and Function. Pharm Res 2006; 23:1970-82. [PMID: 16906455 DOI: 10.1007/s11095-006-9065-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Accepted: 05/16/2006] [Indexed: 10/24/2022]
Abstract
PURPOSE Ex vivo gene therapy approaches can improve the outcome of islet transplantation for treating type I diabetes. We have previously shown the improvement in islet function and vascularization following ex vivo transfection for human vascular endothelial growth factor (hVEGF) gene expression. In this study, we tested the hypothesis that co-expression of two genes, which target different challenges faced by islets post-transplantation, supplement each other to improve the survival and function of islets. We determined whether there is an additive effect of hVEGF and human interleukin-1 receptor antagonist (hIL-1Ra) gene expression in human islets. MATERIALS AND METHODS Human islets were co-infected with adenoviral vectors encoding hVEGF and hIL-1Ra. Islets were then incubated with a cocktail of inflammatory cytokines (IL-1beta+TNFalpha+IFNgamma), and islet viability and function were determined. In vivo function was evaluated by transplanting islets under the kidney capsules of streptozotocin-induced non-obese diabetic severe combined immunodeficient (NOD-SCID) mice. RESULTS Infection of human islets with Adv-hVEGF and/or Adv-hIL-1Ra inhibited expression of inducible nitric oxide synthase (iNOS), decreased the production of nitric oxide (NO), and prevented the loss of in vitro glucose-stimulated insulin response and viability. Moreover, co-expression of hVEGF and hIL-1Ra reduced the blood glucose level of mice, and increased the level of blood insulin and c-peptide upon glucose challenge. CONCLUSIONS Our results indicated that co-expression of genes that target different insults to transplanted islets can improve the outcome of islet transplantation better than either gene alone.
Collapse
Affiliation(s)
- Ajit S Narang
- Department of Pharmaceutical Sciences, University of Tennesee Health Science Center, 26 S Dunlap St., Feurt Bldg RM 413, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|