1
|
Lei J, Jiang X, Huang D, Jing Y, Yang S, Geng L, Yan Y, Zheng F, Cheng F, Zhang W, Belmonte JCI, Liu GH, Wang S, Qu J. Human ESC-derived vascular cells promote vascular regeneration in a HIF-1α dependent manner. Protein Cell 2024; 15:36-51. [PMID: 37158785 PMCID: PMC10762672 DOI: 10.1093/procel/pwad027] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/22/2023] [Indexed: 05/10/2023] Open
Abstract
Hypoxia-inducible factor (HIF-1α), a core transcription factor responding to changes in cellular oxygen levels, is closely associated with a wide range of physiological and pathological conditions. However, its differential impacts on vascular cell types and molecular programs modulating human vascular homeostasis and regeneration remain largely elusive. Here, we applied CRISPR/Cas9-mediated gene editing of human embryonic stem cells and directed differentiation to generate HIF-1α-deficient human vascular cells including vascular endothelial cells, vascular smooth muscle cells, and mesenchymal stem cells (MSCs), as a platform for discovering cell type-specific hypoxia-induced response mechanisms. Through comparative molecular profiling across cell types under normoxic and hypoxic conditions, we provide insight into the indispensable role of HIF-1α in the promotion of ischemic vascular regeneration. We found human MSCs to be the vascular cell type most susceptible to HIF-1α deficiency, and that transcriptional inactivation of ANKZF1, an effector of HIF-1α, impaired pro-angiogenic processes. Altogether, our findings deepen the understanding of HIF-1α in human angiogenesis and support further explorations of novel therapeutic strategies of vascular regeneration against ischemic damage.
Collapse
Affiliation(s)
- Jinghui Lei
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiaoyu Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoyuan Huang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Ying Jing
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Shanshan Yang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Lingling Geng
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yupeng Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
| | - Fangshuo Zheng
- The Fifth People’s Hospital of Chongqing, Chongqing 400062, China
| | - Fang Cheng
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Beijing 100101, China
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
- Sino-Danish Center for Education and Research, Beijing 101408, China
- Aging Biomarker Consortium, China
| | | | - Guang-Hui Liu
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Aging Biomarker Consortium, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- The Fifth People’s Hospital of Chongqing, Chongqing 400062, China
- Aging Biomarker Consortium, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Aging Biomarker Consortium, China
| |
Collapse
|
2
|
Tawagi E, Ung T, Cheng HLM, Santerre JP. Arrhenius-model-based degradable oligourethane hydrogels for controlled growth factor release. Acta Biomater 2023; 166:167-186. [PMID: 37207744 DOI: 10.1016/j.actbio.2023.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/22/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
Biodegradable hydrogels are growing in demand to enable the delivery of biomolecules (e.g. growth factors) for regenerative medicine. This research investigated the resorption of an oligourethane/polyacrylic acid hydrogel, a biodegradable hydrogel which supports tissue regeneration. The Arrhenius model was used to characterize the resorption of the polymeric gels in relevant in vitro conditions, and the Flory-Rehner equation was used to correlate the volumetric swelling ratio with the extent of degradation. The study found that the swelling rate of the hydrogel follows the Arrhenius model at elevated temperatures, estimating degradation time in saline solution at 37°C to be between 5 and 13 months, serving as a preliminary approximation of degradation in vivo. The degradation products had low cytotoxicity towards endothelial cells, and the hydrogel supported stromal cell proliferation. Additionally, the hydrogels were able to release growth factors and maintain the biomolecules' bioactivity towards cell proliferation. The study of the vascular endothelial growth factor (VEGF) release from the hydrogel used a diffusion process model, showing that the electrostatic attraction between VEGF and the anionic hydrogel allowed for controlled and sustained VEGF release over three weeks. In a rat subcutaneous implant model, a selected hydrogel with desired degradation rates exhibited minimal foreign body response and supported M2a macrophage phenotype, and vascularization. The low M1 and high M2a macrophage phenotypes within the implants were associated with tissue integration. This research supports the use of oligourethane/polyacrylic acid hydrogels as a promising material for delivering growth factors and supporting tissue regeneration. STATEMENT OF SIGNIFICANCE: There is a need for degradable elastomeric hydrogels that can support the formation of soft tissues and minimize long-term foreign body responses. An Arrhenius model was used to estimate the relative breakdown of hydrogels, in-vitro. The results demonstrate that hydrogels made from a combination of poly(acrylic acid) and oligo-urethane diacrylates can be designed to resorb over defined periods ranging from months to years depending on the chemical formulation prescribed by the model. The hydrogel formulations also provided for different release profiles of growth factors, relevant to tissue regeneration. In-vivo, these hydrogels had minimal inflammatory effects and showed evidence of integration into the surrounding tissue. The hydrogel approach can help the field design a broader range of biomaterials for tissue regeneration.
Collapse
Affiliation(s)
- Eric Tawagi
- Institute of Biomedical Engineering, University of Toronto, 661 University Avenue, 14th Floor, Room 1435, Toronto, ON M5G 1M1, Canada; Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Trevor Ung
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Hai-Ling Margaret Cheng
- Institute of Biomedical Engineering, University of Toronto, 661 University Avenue, 14th Floor, Room 1435, Toronto, ON M5G 1M1, Canada; Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada; The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - J Paul Santerre
- Institute of Biomedical Engineering, University of Toronto, 661 University Avenue, 14th Floor, Room 1435, Toronto, ON M5G 1M1, Canada; Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada; Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Sun Z, Tong G, Liu Y, Fan H, He W, Wang B, Xia S, He P. Dual Function of a in vivo Albumin-Labeling Tracer for Assessment of Blood Perfusion and Vascular Permeability in Peripheral Arterial Disease by PET. Front Cardiovasc Med 2022; 9:738076. [PMID: 35211521 PMCID: PMC8860820 DOI: 10.3389/fcvm.2022.738076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background Peripheral arterial disease (PAD) leads to tissue ischemia in the extremities. Enhanced vascular permeability plays a critical role in targeted delivery of drugs for effective therapeutic angiogenesis and resultant blood perfusion recovery. However, optimal tracers for evaluating this process in PAD patients are lacking. At this time, we employed a novel in vivo albumin-labeling tracer of dual function, termed as 18F-NEB, to assess blood perfusion as well as vascular permeability by positron emission tomography (PET). Methods and Results After successful establishment of mouse hindlimb ischemia (HI) model, static PET imaging was performed 15 min and 2 h post injection (p.i.) of 18F-NEB at 1, 3, 5, 7, 10 and 14 days post-surgery respectively. Gradual recovery of blood supply was detected by PET scan 15 min p.i. and collaborated by serial Laser Doppler. In addition, the highest vascular permeability observed by high local uptake of 18F-NEB at 2 h p.i. was consistent with histological examinations. Furthermore, we quantitatively evaluated the effect of vascular endothelial growth factor (VEGF) stimulus on vascular permeability and blood perfusion by PET scan using 18F-NEB probe in HI model, which were also confirmed by immunohistological results. Conclusion The application of 18F-NEB probe alone by PET can successfully achieve dual imaging of blood perfusion as well as vascular permeability at different time points p.i. and monitor their responses to therapy in PAD model. The simple labeling approach and multipurpose feature suggest the great promise of using this imaging probe in theranostic applications for treating ischemic disease.
Collapse
Affiliation(s)
- Zhongchan Sun
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Cardiology, Ganzhou Municipal Hospital, Ganzhou, China
- *Correspondence: Zhongchan Sun
| | - Guang Tong
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Cardiac Surgery, Ganzhou Municipal Hospital, Ganzhou, China
| | - Yuanhui Liu
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hualin Fan
- School of Medicine, Guangdong Provincial People's Hospital, South China University of Technology, Guangzhou, China
| | - Weibin He
- School of Medicine, Guangdong Provincial People's Hospital, South China University of Technology, Guangzhou, China
| | - Bo Wang
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shuang Xia
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Pengcheng He
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, Guangdong Provincial People's Hospital, South China University of Technology, Guangzhou, China
- Pengcheng He
| |
Collapse
|
4
|
Mohajeri S, Chen F, de Prinse M, Phung T, Burke-Kleinman J, Maurice DH, Amsden BG. Liquid Degradable Poly(trimethylene-carbonate-co-5-hydroxy-trimethylene carbonate): An Injectable Drug Delivery Vehicle for Acid-Sensitive Drugs. Mol Pharm 2020; 17:1363-1376. [DOI: 10.1021/acs.molpharmaceut.0c00064] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sara Mohajeri
- Department of Chemical Engineering, Queen’s University, Kingston, Ontario K7L 3N6, Canada
- Human Mobility Research Centre, Kingston General Hospital, Kingston, Ontario K7L 2V7, Canada
| | - Fei Chen
- Department of Chemical Engineering, Queen’s University, Kingston, Ontario K7L 3N6, Canada
- Human Mobility Research Centre, Kingston General Hospital, Kingston, Ontario K7L 2V7, Canada
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mitchell de Prinse
- Department of Chemical Engineering, Queen’s University, Kingston, Ontario K7L 3N6, Canada
- Human Mobility Research Centre, Kingston General Hospital, Kingston, Ontario K7L 2V7, Canada
| | - Ta Phung
- Department of Chemical Engineering, Queen’s University, Kingston, Ontario K7L 3N6, Canada
- Human Mobility Research Centre, Kingston General Hospital, Kingston, Ontario K7L 2V7, Canada
| | - Jonah Burke-Kleinman
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston K7L 3N6, Canada
| | - Donald H. Maurice
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston K7L 3N6, Canada
| | - Brian G. Amsden
- Department of Chemical Engineering, Queen’s University, Kingston, Ontario K7L 3N6, Canada
- Human Mobility Research Centre, Kingston General Hospital, Kingston, Ontario K7L 2V7, Canada
| |
Collapse
|
5
|
Alemzadeh E, Oryan A, Mohammadi AA. Hyaluronic acid hydrogel loaded by adipose stem cells enhances wound healing by modulating IL-1β, TGF-β1, and bFGF in burn wound model in rat. J Biomed Mater Res B Appl Biomater 2019; 108:555-567. [PMID: 31081996 DOI: 10.1002/jbm.b.34411] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 03/17/2019] [Accepted: 04/25/2019] [Indexed: 01/21/2023]
Abstract
Application of hydrogels can be an effective technique in transferring the adipose-derived stem cells (ASCs) to injured tissue and their protection from further complications. Besides, acellular dermal matrix (ADM) has successfully been used in treatment of wounds. In this study, a combination of hylauronic acid (HA) and ASCs (HA/ASCs) was applied on burn wounds and the injured area was then covered by an ADM dressing in a rat model (ADM-HA/ASCs). Wound healing was evaluated by histopathological, histomorphometrical, molecular, biochemical, and scanning electron microscopy assessments on days 7, 14, and 28 post-wounding. ADM-HA/ASCs stimulated healing significantly more than the ADM-HA and ADM treated wounds, as it led to reduced inflammation, and improved angiogenesis and enhanced granulation tissue formation. Expression of interleukin-1β (IL-1β) and transforming growth factor-β1 (TGF-β1) was lower in the ADM-HA/ASCs treated wounds than the ADM-HA and ADM groups, at the seventh post-wounding day. ADM-HA/ASCs also enhanced the expression level of TGF-β1 mRNA at 14 day post-wounding that was parallel to the experimental data from histological and biochemical assessments and confirmed the positive role of ASCs in repair of burn wounds. Additionally, increase in basic fibroblast growth factor (bFGF) expression and decreased TGF-β1 level on the 28th post-wounding day indicated the anti-scarring activity of ASCs. HA loaded by adipose stem cells can represent a promising strategy in accelerating burn wound healing.
Collapse
Affiliation(s)
- Esmat Alemzadeh
- Department of Biotechnology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ali A Mohammadi
- Burn and Wound Healing Research Center, Plastic and Reconstructive Ward, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Tawagi E, Ganesh T, Cheng HLM, Santerre JP. Synthesis of degradable-polar-hydrophobic-ionic co-polymeric microspheres by membrane emulsion photopolymerization: In vitro and in vivo studies. Acta Biomater 2019; 89:279-288. [PMID: 30853610 DOI: 10.1016/j.actbio.2019.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/21/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022]
Abstract
The synthesis of microspheres for tissue regeneration requires good control over the particle size and size distribution. This is particularly important when considering the immune response that may be triggered by the presence of particles in tissue. This report outlines the design of an injectable microsphere system using a low-inflammatory, degradable-polar-hydrophobic-ionic polyurethane, termed D-PHI, and investigates the system's performance in vitro and in vivo. Crosslinked polyurethane microspheres were prepared via a rapid and controlled process based on membrane emulsion and subsequent photopolymerization. The fabrication process efficiently generated microspheres with a narrow size distribution (12 ± 2 μm, PDI = 0.03). The D-PHI microspheres exhibited a slow and controlled degradation and a high capacity for water uptake. Water within the particles existed primarily within the pores of the particles and to a lesser degree within the polymer matrix itself. D-PHI microspheres supported human endothelial and fibroblast cell growth, and they maintained human blood-derived monocytes in a low-inflammatory state. Sub-acute toxicity was assessed for the particles after being administered via intramuscular injection in the gastrocnemius muscle of rats. Cellular infiltration and vascularization into the tissue region where the particles were deposited were observed along with an absence of a fibrous capsule around the particles. The microspheres did not cause elevated human monocyte induced inflammatory character, and supported tissue integration without a prolonged inflammatory response in the rat muscle. These injectable, degradable and low-inflammatory microspheres provide an attractive system for potential drug delivery and tissue regeneration applications in future studies. STATEMENT OF SIGNIFICANCE: Biodegradable, synthetic polymers are attractive candidates for generating tailored drug delivery vehicles and tissue scaffolds owing to their diverse chemical and physical properties that can be customised for delivering defined macromolecules at specific sites in the body. The past two decades have yielded interesting work exploring the fabrication of polymer microspheres with a narrow size distribution. However, the markedly low number of synthetic polymer chemistries currently used for microsphere production exhibit elevated proinflammatory character, both acute and chronic. Furthermore, a limited number of studies have explored the biocompatibility and immune response of polymeric microspheres with human primary cells and in vivo. In the current study, a method was conceived for efficiently generating low-activating polyurethane microspheres with respect to in vitro monocytes and in vivo macrophages. The biodegradable polyurethane, which contained multiple chemistry function and which has previously demonstrated anti-inflammatory properties in film and mm scale scaffold form, was selected as the base material. In this work we undertook the use of a room temperature membrane emulsification photopolymerization approach to avoid the need for high temperature cures and the use of solvents. The response of immune cells to the microspheres was studied with human primary cells and in the rat gastrocnemius muscle. The present work reveals important progress in the design of microspheres, with well-characterized low monocyte-activating properties and the translational advantages of a synthetic polyurethane which could be investigated in future studies for potential macromolecule delivery and tissue regeneration applications.
Collapse
|
7
|
Enhancement of the efficacy of mesenchymal stem cells in the treatment of ischemic diseases. Biomed Pharmacother 2018; 109:2022-2034. [PMID: 30551458 DOI: 10.1016/j.biopha.2018.11.068] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/17/2018] [Accepted: 11/19/2018] [Indexed: 02/05/2023] Open
Abstract
Ischemic diseases refer to a wide range of diseases caused by reduced blood flow and a subsequently deficient oxygen and nutrient supply. The pathogenesis of ischemia is multifaceted and primarily involves inflammation, oxidative stress and an apoptotic response. Over the last decade, mesenchymal stem cells (MSCs) have been widely studied as potential cell therapy agents for ischemic diseases due to their multiple favourable functions. However, the low homing and survival rates of transplanted cells have been concerns limiting for their clinical application. Recently, increasing studies have attempted to enhance the efficacy of MSCs by various strategies including genetic modification, pretreatment, combined application and biomaterial application. The purpose of this review is to summarize these creative strategies and the progress in basic and preclinical studies.
Collapse
|
8
|
Im HJ, England CG, Feng L, Graves SA, Hernandez R, Nickles RJ, Liu Z, Lee DS, Cho SY, Cai W. Accelerated Blood Clearance Phenomenon Reduces the Passive Targeting of PEGylated Nanoparticles in Peripheral Arterial Disease. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17955-63. [PMID: 27340833 PMCID: PMC4959540 DOI: 10.1021/acsami.6b05840] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Peripheral arterial disease (PAD) is a leading global health concern. Due to limited imaging and therapeutic options, PAD and other ischemia-related diseases may benefit from the use of long circulating nanoparticles as imaging probes and/or drug delivery vehicles. Polyethylene glycol (PEG)-conjugated nanoparticles have shown shortened circulation half-lives in vivo when injected multiple times into a single subject. This phenomenon has become known as the accelerated blood clearance (ABC) effect. The phenomenon is of concern for clinical translation of nanomaterials as it limits the passive accumulation of nanoparticles in many diseases, yet it has not been evaluated using inorganic or organic-inorganic hybrid nanoparticles. Herein, we found that the ABC phenomenon was induced by reinjection of PEGylated long circulating organic-inorganic hybrid nanoparticles, which significantly reduced the passive targeting of (64)Cu-labeled PEGylated reduced graphene oxide-iron oxide nanoparticles ((64)Cu-RGO-IONP-PEG) in a murine model of PAD. Positron emission tomography (PET) imaging was performed at 3, 10, and 17 days postsurgical induction of hindlimb ischemia. At day 3 postsurgery, the nanoparticles displayed a long circulation half-life with enhanced accumulation in the ischemic hindlimb. At days 10 and 17 postsurgery, reinjected mice displayed a short circulation half-life and lower accumulation of the nanoparticles in the ischemic hindlimb, in comparison to the naïve group. Also, reinjected mice showed significantly higher liver uptake than the naïve group, indicating that the nanoparticles experienced higher sequestration by the liver in the reinjected group. Furthermore, photoacoustic (PA) imaging and Prussian blue staining confirmed the enhanced accumulation of the nanoparticles in the liver tissue of reinjected mice. These findings validate the ABC phenomenon using long circulating organic-inorganic hybrid nanoparticles upon multiple administrations to the same animal, which may provide valuable insight into the future clinical applications of nanoparticles for imaging and treatment of PAD.
Collapse
Affiliation(s)
- Hyung-Jun Im
- Department of Radiology, University of Wisconsin - Madison, WI 53705, USA
- Department of Molecular Medicine and Biopharmaceutical Sciences, Department of Nuclear Medicine, Seoul National University, Seoul 110-744, Korea
| | - Christopher G. England
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Liangzhu Feng
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Laboratory, Soochow University Suzhou, Jiangsu 215123, China
| | - Stephen A. Graves
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Reinier Hernandez
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Robert J. Nickles
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Zhuang Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Laboratory, Soochow University Suzhou, Jiangsu 215123, China
| | - Dong Soo Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Department of Nuclear Medicine, Seoul National University, Seoul 110-744, Korea
| | - Steve Y. Cho
- Department of Radiology, University of Wisconsin - Madison, WI 53705, USA
| | - Weibo Cai
- Department of Radiology, University of Wisconsin - Madison, WI 53705, USA
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
- Corresponding Author: Weibo Cai, Ph.D., Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Room 7137, 1111 Highland Ave, Madison, WI 53705-2275, USA. ; Phone: 608-262-1749; Fax: 608- 265-0614
| |
Collapse
|
9
|
England CG, Im HJ, Feng L, Chen F, Graves SA, Hernandez R, Orbay H, Xu C, Cho SY, Nickles RJ, Liu Z, Lee DS, Cai W. Re-assessing the enhanced permeability and retention effect in peripheral arterial disease using radiolabeled long circulating nanoparticles. Biomaterials 2016; 100:101-9. [PMID: 27254470 DOI: 10.1016/j.biomaterials.2016.05.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/08/2016] [Accepted: 05/17/2016] [Indexed: 10/21/2022]
Abstract
As peripheral arterial disease (PAD) results in muscle ischemia and neovascularization, it has been claimed that nanoparticles can passively accumulate in ischemic tissues through the enhanced permeability and retention (EPR) effect. At this time, a quantitative evaluation of the passive targeting capabilities of nanoparticles has not been reported in PAD. Using a murine model of hindlimb ischemia, we quantitatively assessed the passive targeting capabilities of (64)Cu-labeled PEGylated reduced graphene oxide - iron oxide nanoparticles ((64)Cu-RGO-IONP-PEG) through the EPR effect using positron emission tomography (PET) imaging. Serial laser Doppler imaging was performed to monitor changes in blood perfusion upon surgical induction of ischemia. Nanoparticle accumulation was assessed at 3, 10, and 17 days post-surgery and found to be highest at 3 days post-surgery, with the ischemic hindlimb displaying an accumulation of 14.7 ± 0.5% injected dose per gram (%ID/g). Accumulation of (64)Cu-RGO-IONP-PEG was lowest at 17 days post-surgery, with the ischemic hindlimb displaying only 5.1 ± 0.5%ID/g. Furthermore, nanoparticle accumulation was confirmed by photoacoustic imaging (PA). The combination of PET and serial Doppler imaging showed that nanoparticle accumulation in the ischemic hindlimb negatively correlated with blood perfusion. Thus, we quantitatively confirmed that (64)Cu-RGO-IONP-PEG passively accumulated in ischemic tissue via the EPR effect, which is reduced as the perfusion normalizes. As (64)Cu-RGO-IONP-PEG displayed substantial accumulation in the ischemic tissue, this nanoparticle platform may function as a future theranostic agent, providing both imaging and therapeutic applications.
Collapse
Affiliation(s)
- Christopher G England
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Hyung-Jun Im
- Department of Radiology, University of Wisconsin - Madison, WI 53705, USA; Department of Molecular Medicine and Biopharmaceutical Sciences, Department of Nuclear Medicine, Seoul National University, Seoul 110-744, South Korea
| | - Liangzhu Feng
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Laboratory, Soochow University Suzhou, Jiangsu 215123, China
| | - Feng Chen
- Department of Radiology, University of Wisconsin - Madison, WI 53705, USA
| | - Stephen A Graves
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Reinier Hernandez
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Hakan Orbay
- Department of Surgery, University of California-Davis, Sacramento, CA 95817, USA
| | - Cheng Xu
- Department of Radiology, University of Wisconsin - Madison, WI 53705, USA
| | - Steve Y Cho
- Department of Radiology, University of Wisconsin - Madison, WI 53705, USA
| | - Robert J Nickles
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Zhuang Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Laboratory, Soochow University Suzhou, Jiangsu 215123, China
| | - Dong Soo Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Department of Nuclear Medicine, Seoul National University, Seoul 110-744, South Korea
| | - Weibo Cai
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI 53705, USA; Department of Radiology, University of Wisconsin - Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA.
| |
Collapse
|
10
|
Novel biodegradable polymers for local growth factor delivery. Eur J Pharm Biopharm 2015; 97:318-28. [DOI: 10.1016/j.ejpb.2015.06.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/06/2015] [Accepted: 06/09/2015] [Indexed: 01/09/2023]
|
11
|
Lorden ER, Levinson HM, Leong KW. Integration of drug, protein, and gene delivery systems with regenerative medicine. Drug Deliv Transl Res 2015; 5:168-86. [PMID: 25787742 PMCID: PMC4382089 DOI: 10.1007/s13346-013-0165-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Regenerative medicine has the potential to drastically change the field of health care from reactive to preventative and restorative. Exciting advances in stem cell biology and cellular reprogramming have fueled the progress of this field. Biochemical cues in the form of small molecule drugs, growth factors, zinc finger protein transcription factors and nucleases, transcription activator-like effector nucleases, monoclonal antibodies, plasmid DNA, aptamers, or RNA interference agents can play an important role to influence stem cell differentiation and the outcome of tissue regeneration. Many of these biochemical factors are fragile and must act intracellularly at the molecular level. They require an effective delivery system, which can take the form of a scaffold (e.g., hydrogels and electrospun fibers), carrier (viral and nonviral), nano- and microparticle, or genetically modified cell. In this review, we will discuss the history and current technologies of drug, protein, and gene delivery in the context of regenerative medicine. Next, we will present case examples of how delivery technologies are being applied to promote angiogenesis in nonhealing wounds or prevent angiogenesis in age related macular degeneration. Finally, we will conclude with a brief discussion of the regulatory pathway from bench to bedside for the clinical translation of these novel therapeutics.
Collapse
Affiliation(s)
| | - Howard M. Levinson
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
12
|
Babasola IO, Rooney M, Amsden BG. Corelease of bioactive VEGF and HGF from viscous liquid poly(5-ethylene ketal ε-caprolactone-co-D,L-lactide). Mol Pharm 2013; 10:4552-9. [PMID: 24188107 DOI: 10.1021/mp400361m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The potential of a viscous liquid injectable delivery system composed of poly(5-ethylene ketal ε-caprolactone-co-D,L-lactide) (PEKCDLLA) to release bioactive vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) using an osmotic pressure release mechanism for the purpose of treating critical limb ischemia was investigated. VEGF and HGF were lyophilized separately with trehalose and bovine serum albumin (BSA) and incorporated into the polymer by simple mixing. VEGF and HGF were released by convective flow through superhydrated regions formed within the polymer as a result of the osmotic activity generated upon dissolution of the particles, along with the contributions of polymer degradation at later time points. A sustained release of highly bioactive VEGF and HGF for over 40 days with minimal burst was achieved under conditions of multidirectional delivery. The solubility of the growth factors in the concentrated trehalose solution formed upon dissolution of the particle within the polymer was determined to be a key parameter governing the rate and extent of growth factor release. This formulation approach, of using a low viscosity polymer delivery vehicle, is potentially useful for localized delivery of acid and temperature sensitive proteins, such as VEGF and HGF. This system may also serve as a platform for controlled and predictable delivery patterns for other therapeutic proteins in other clinical settings.
Collapse
|
13
|
Mayer A, Roch T, Kratz K, Lendlein A, Jung F. Pro-angiogenic CD14(++) CD16(+) CD163(+) monocytes accelerate the in vitro endothelialization of soft hydrophobic poly (n-butyl acrylate) networks. Acta Biomater 2012; 8:4253-9. [PMID: 22902818 DOI: 10.1016/j.actbio.2012.08.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 08/08/2012] [Accepted: 08/08/2012] [Indexed: 11/17/2022]
Abstract
As the majority of the polymers used as cardiovascular grafts so far do not match the elasticity of human arteries (100-1000kPa) and the required endothelialization, a multifunctional material approach is needed to allow the adjustment of the mechanical properties while at the same time exhibiting a haemocompatible surface. Recently soft poly(n-butyl acrylate) networks (cPnBA) with adjustable mechanical properties were introduced as candidate materials with a surface that can be endothelialized. In this study, angiogenically stimulated intermediate CD163(+) monocytes/macrophages (aMO2) were utilized as a cellular cytokine release system to realize the functional endothelialization of the hydrophobic cPnBA surface. We investigated the influence of co-cultured aMO2 on the morphology, density and cytokine secretion of human umbilical venous endothelial cells (HUVEC) seeded on cPnBA with an elastic modulus of around 250kPa (cPnBA0250). A functional confluent HUVEC monolayer could be developed in the co-culture within 3days. In contrast, the HUVEC in the monoculture exhibited stress fibres, broadened marginal filament bands and significantly more and larger cell-free areas in the monolayer, indicating incomplete cell-substrate binding. Remarkably, a functional confluent monolayer formation could only be achieved in co-cultures; it did not develop with the sole supplementation of recombinant VEGF-A(165) to the HUVEC monocultures (unpublished data). The study demonstrated the multifunctional potential of cPnBA in combination with aMO2 as a cellular cytokine release system, adapting their secretion to the demand of HUVEC. In this way, a functional confluent monolayer could be generated within 3days.
Collapse
Affiliation(s)
- Anke Mayer
- Center for Biomaterial Development and Berlin-Brandenburg Centre for Regenerative Therapies, Institute of Polymer Research, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | | | | | | | | |
Collapse
|