1
|
Brochu BM, Sturm SR, Kawase De Queiroz Goncalves JA, Mirsky NA, Sandino AI, Panthaki KZ, Panthaki KZ, Nayak VV, Daunert S, Witek L, Coelho PG. Advances in Bioceramics for Bone Regeneration: A Narrative Review. Biomimetics (Basel) 2024; 9:690. [PMID: 39590262 PMCID: PMC11592113 DOI: 10.3390/biomimetics9110690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/24/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Large osseous defects resulting from trauma, tumor resection, or fracture render the inherent ability of the body to repair inadequate and necessitate the use of bone grafts to facilitate the recovery of both form and function of the bony defect sites. In the United States alone, a large number of bone graft procedures are performed yearly, making it an essential area of investigation and research. Synthetic grafts represent a potential alterative to autografts due to their patient-specific customizability, but currently lack widespread acceptance in the clinical space. Early in their development, non-autologous bone grafts composed of metals such as stainless steel and titanium alloys were favorable due to their biocompatibility, resistance to corrosion, mechanical strength, and durability. However, since their inception, bioceramics have also evolved as viable alternatives. This review aims to present an overview of the fundamental prerequisites for tissue engineering devices using bioceramics as well as to provide a comprehensive account of their historical usage and significant advancements over time. This review includes a summary of commonly used manufacturing techniques and an evaluation of their use as drug carriers and bioactive coatings-for therapeutic ion/drug release, and potential avenues to further enhance hard tissue regeneration.
Collapse
Affiliation(s)
- Baylee M. Brochu
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Savanah R. Sturm
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | - Kayaan Zubin Panthaki
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Karl Zubin Panthaki
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, 345 E. 24th St., Room 806, New York, NY 10010, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Division of Plastic Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
2
|
Ding N, Zhou F, Li G, Shen H, Bai L, Su J. Quantum dots for bone tissue engineering. Mater Today Bio 2024; 28:101167. [PMID: 39205871 PMCID: PMC11350444 DOI: 10.1016/j.mtbio.2024.101167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024] Open
Abstract
In confronting the global prevalence of bone-related disorders, bone tissue engineering (BTE) has developed into a critical discipline, seeking innovative materials to revolutionize treatment paradigms. Quantum dots (QDs), nanoscale semiconductor particles with tunable optical properties, are at the cutting edge of improving bone regeneration. This comprehensive review delves into the multifaceted roles that QDs play within the realm of BTE, emphasizing their potential to not only revolutionize imaging but also to osteogenesis, drug delivery, antimicrobial strategies and phototherapy. The customizable nature of QDs, attributed to their size-dependent optical and electronic properties, has been leveraged to develop precise imaging modalities, enabling the visualization of bone growth and scaffold integration at an unprecedented resolution. Their nanoscopic scale facilitates targeted drug delivery systems, ensuring the localized release of therapeutics. QDs also possess the potential to combat infections at bone defect sites, preventing and improving bacterial infections. Additionally, they can be used in phototherapy to stimulate important bone repair processes and work well with the immune system to improve the overall healing environment. In combination with current trendy artificial intelligence (AI) technology, the development of bone organoids can also be combined with QDs. While QDs demonstrate considerable promise in BTE, the transition from laboratory research to clinical application is fraught with challenges. Concerns regarding the biocompatibility, long-term stability of QDs within the biological environment, and the cost-effectiveness of their production pose significant hurdles to their clinical adoption. This review summarizes the potential of QDs in BTE and highlights the challenges that lie ahead. By overcoming these obstacles, more effective, efficient, and personalized bone regeneration strategies will emerge, offering new hope for patients suffering from debilitating bone diseases.
Collapse
Affiliation(s)
- Ning Ding
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Guangfeng Li
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200444, China
| | - Hao Shen
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang, China
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
3
|
Waidi YO, Debnath S, Datta S, Chatterjee K. 3D-Printed Silk Proteins for Bone Tissue Regeneration and Associated Immunomodulation. Biomacromolecules 2024; 25:5512-5540. [PMID: 39133748 DOI: 10.1021/acs.biomac.4c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Current bone repair methods have limitations, prompting the exploration of innovative approaches. Tissue engineering emerges as a promising solution, leveraging biomaterials to craft scaffolds replicating the natural bone environment, facilitating cell growth and differentiation. Among fabrication techniques, three-dimensional (3D) printing stands out for its ability to tailor intricate scaffolds. Silk proteins (SPs), known for their mechanical strength and biocompatibility, are an excellent choice for engineering 3D-printed bone tissue engineering (BTE) scaffolds. This article comprehensively reviews bone biology, 3D printing, and the unique attributes of SPs, specifically detailing criteria for scaffold fabrication such as composition, structure, mechanics, and cellular responses. It examines the structural, mechanical, and biological attributes of SPs, emphasizing their suitability for BTE. Recent studies on diverse 3D printing approaches using SPs-based for BTE are highlighted, alongside advancements in their 3D and four-dimensional (4D) printing and their role in osteo-immunomodulation. Future directions in the use of SPs for 3D printing in BTE are outlined.
Collapse
Affiliation(s)
- Yusuf Olatunji Waidi
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| | - Souvik Debnath
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| | - Sudipto Datta
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| | - Kaushik Chatterjee
- Department of Bioengineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| |
Collapse
|
4
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4) Containing Composites for Biomedical Applications: Formulations, Properties, and Applications. JOURNAL OF COMPOSITES SCIENCE 2024; 8:218. [DOI: 10.3390/jcs8060218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The goal of this review is to present a wide range of hybrid formulations and composites containing calcium orthophosphates (abbreviated as CaPO4) that are suitable for use in biomedical applications and currently on the market. The bioactive, biocompatible, and osteoconductive properties of various CaPO4-based formulations make them valuable in the rapidly developing field of biomedical research, both in vitro and in vivo. Due to the brittleness of CaPO4, it is essential to combine the desired osteologic properties of ceramic CaPO4 with those of other compounds to create novel, multifunctional bone graft biomaterials. Consequently, this analysis offers a thorough overview of the hybrid formulations and CaPO4-based composites that are currently known. To do this, a comprehensive search of the literature on the subject was carried out in all significant databases to extract pertinent papers. There have been many formulations found with different material compositions, production methods, structural and bioactive features, and in vitro and in vivo properties. When these formulations contain additional biofunctional ingredients, such as drugs, proteins, enzymes, or antibacterial agents, they offer improved biomedical applications. Moreover, a lot of these formulations allow cell loading and promote the development of smart formulations based on CaPO4. This evaluation also discusses basic problems and scientific difficulties that call for more investigation and advancements. It also indicates perspectives for the future.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
5
|
Ji J, Zhao C, Hua C, Lu L, Pang Y, Sun W. 3D Printing Cervical Implant Scaffolds Incorporated with Drug-Loaded Carboxylated Chitosan Microspheres for Long-Term Anti-HPV Protein Delivery. ACS Biomater Sci Eng 2024; 10:1544-1553. [PMID: 38369785 DOI: 10.1021/acsbiomaterials.3c01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
As attempting personalized medicine, 3D-printed tissue engineering scaffolds are employed to combine with therapeutic proteins/peptides especially in the clinical treatment of infectious diseases, genetic diseases, and cancers. However, current drug-loading methods, such as immersion and encapsulation, usually lead to the burst release of the drugs. To address these issues, we proposed an integrated strategy toward the long-term controlled release of protein. In this study, patient-customized 3D scaffolds incorporated with drug-loaded microspheres were printed to realize the effective delivery of the anti-human papillomavirus (anti-HPV) protein after cervical conization in the treatment of cervical cancer. The 3D-printed scaffold could provide mechanical support to the defect site and ensure local release of the drug to avoid systemic administration. Meanwhile, microspheres serve as functional components to prevent the inactivation of proteins, as well as regulate their release period to meet the time requirement of different treatment courses. The research also utilized bovine serum albumin as a model protein to validate the feasibility of these scaffolds as a generic technology platform. The bioactivity of the released anti-HPV protein was validated using a pseudovirus model, which demonstrated that the microsphere encapsulation would not cause protein denaturation during the scaffold fabrication process. Besides, 3D-printed scaffolds incorporated with carboxylated chitosan microspheres were biocompatible and beneficial for cell attachment, which have been demonstrated by favorable cell viability and better coverage results for HeLa and HFF-1. This study highlights the great potential of scaffolds incorporated with microspheres to serve as tissue engineering candidate products with the function of effective protein delivery in a long-term controlled manner and personalized shapes for clinical trials.
Collapse
Affiliation(s)
- Jingyuan Ji
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, China
- Overseas Expertise Introduction Center for Discipline Innovation, Tsinghua University, Haidian District, Beijing 100084, China
| | - Chenjia Zhao
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, China
- Overseas Expertise Introduction Center for Discipline Innovation, Tsinghua University, Haidian District, Beijing 100084, China
| | - Chen Hua
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan-Jinbo Functional Protein Joint Research Center, Fudan University, Shanghai 200433, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan-Jinbo Functional Protein Joint Research Center, Fudan University, Shanghai 200433, China
| | - Yuan Pang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, China
- Overseas Expertise Introduction Center for Discipline Innovation, Tsinghua University, Haidian District, Beijing 100084, China
| | - Wei Sun
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, China
- Overseas Expertise Introduction Center for Discipline Innovation, Tsinghua University, Haidian District, Beijing 100084, China
- Department of Mechanical Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
6
|
Han Z, Xiong J, Jin X, Dai Q, Han M, Wu H, Yang J, Tang H, He L. Advances in reparative materials for infectious bone defects and their applications in maxillofacial regions. J Mater Chem B 2024; 12:842-871. [PMID: 38173410 DOI: 10.1039/d3tb02069j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Infectious bone defects are characterized by the partial loss or destruction of bone tissue resulting from bacterial contaminations subsequent to diseases or external injuries. Traditional bone transplantation and clinical methods are insufficient in meeting the treatment demands for such diseases. As a result, researchers have increasingly focused on the development of more sophisticated biomaterials for improved therapeutic outcomes in recent years. This review endeavors to investigate specific reparative materials utilized for the treatment of infectious bone defects, particularly those present in the maxillofacial region, with a focus on biomaterials capable of releasing therapeutic substances, functional contact biomaterials, and novel physical therapy materials. These biomaterials operate via heightened antibacterial or osteogenic properties in order to eliminate bacteria and/or stimulate bone cells regeneration in the defect, ultimately fostering the reconstitution of maxillofacial bone tissue. Based upon some successful applications of new concept materials in bone repair of other parts, we also explore their future prospects and potential uses in maxillofacial bone repair later in this review. We highlight that the exploration of advanced biomaterials holds promise in establishing a solid foundation for the development of more biocompatible, effective, and personalized treatments for reconstructing infectious maxillofacial defects.
Collapse
Affiliation(s)
- Ziyi Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jingdi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Xiaohan Jin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Qinyue Dai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Mingyue Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Hongkun Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Haiqin Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Libang He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Qi J, Wu H, Liu G. Novel Strategies for Spatiotemporal and Controlled BMP-2 Delivery in Bone Tissue Engineering. Cell Transplant 2024; 33:9636897241276733. [PMID: 39305020 PMCID: PMC11418245 DOI: 10.1177/09636897241276733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 09/25/2024] Open
Abstract
Bone morphogenetic protein-2 (BMP-2) has been commercially approved by the Food and Drug Administration for use in bone defects and diseases. BMP-2 promotes osteogenic differentiation of mesenchymal stem cells. In bone tissue engineering, BMP-2 incorporated into scaffolds can be used for stimulating bone regeneration in organoid construction, drug testing platforms, and bone transplants. However, the high dosage and uncontrollable release rate of BMP-2 challenge its clinical application, mainly due to the short circulation half-life of BMP-2, microbial contamination in bone extracellular matrix hydrogel, and the delivery method. Moreover, in clinical translation, the requirement of high doses of BMP-2 for efficacy poses challenges in cost and safety. Based on these, novel strategies should ensure that BMP-2 is delivered precisely to the desired location within the body, regulating the timing of BMP-2 release to coincide with the bone healing process, as well as release BMP-2 in a controlled manner to optimize its therapeutic effect and minimize side effects. This review highlights improvements in bone tissue engineering applying spatiotemporal and controlled BMP-2 delivery, including molecular engineering, biomaterial modification, and synergistic therapy, aiming to provide references for future research and clinical trials.
Collapse
Affiliation(s)
- Jingqi Qi
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, China
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Hongwei Wu
- Department of Orthopedics, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Gengyan Liu
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
8
|
Ghandforoushan P, Alehosseini M, Golafshan N, Castilho M, Dolatshahi-Pirouz A, Hanaee J, Davaran S, Orive G. Injectable hydrogels for cartilage and bone tissue regeneration: A review. Int J Biol Macromol 2023; 246:125674. [PMID: 37406921 DOI: 10.1016/j.ijbiomac.2023.125674] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Annually, millions of patients suffer from irreversible injury owing to the loss or failure of an organ or tissue caused by accident, aging, or disease. The combination of injectable hydrogels and the science of stem cells have emerged to address this persistent issue in society by generating minimally invasive treatments to augment tissue function. Hydrogels are composed of a cross-linked network of polymers that exhibit a high-water retention capacity, thereby mimicking the wet environment of native cells. Due to their inherent mechanical softness, hydrogels can be used as needle-injectable stem cell carrier materials to mend tissue defects. Hydrogels are made of different natural or synthetic polymers, displaying a broad portfolio of eligible properties, which include biocompatibility, low cytotoxicity, shear-thinning properties as well as tunable biological and physicochemical properties. Presently, novel ongoing developments and native-like hydrogels are increasingly being used broadly to improve the quality of life of those with disabling tissue-related diseases. The present review outlines various future and in-vitro applications of injectable hydrogel-based biomaterials, focusing on the newest ongoing developments of in-situ forming injectable hydrogels for bone and cartilage tissue engineering purposes.
Collapse
Affiliation(s)
- Parisa Ghandforoushan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran; Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Alehosseini
- Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Nasim Golafshan
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Miguel Castilho
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | | | - Jalal Hanaee
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Networking Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; University of the Basque Country, Spain.
| |
Collapse
|
9
|
Cojocaru FD, Balan V, Verestiuc L. Advanced 3D Magnetic Scaffolds for Tumor-Related Bone Defects. Int J Mol Sci 2022; 23:16190. [PMID: 36555827 PMCID: PMC9788029 DOI: 10.3390/ijms232416190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The need for bone substitutes is a major challenge as the incidence of serious bone disorders is massively increasing, mainly attributed to modern world problems, such as obesity, aging of the global population, and cancer incidence. Bone cancer represents one of the most significant causes of bone defects, with reserved prognosis regarding the effectiveness of treatments and survival rate. Modern therapies, such as hyperthermia, immunotherapy, targeted therapy, and magnetic therapy, seem to bring hope for cancer treatment in general, and bone cancer in particular. Mimicking the composition of bone to create advanced scaffolds, such as bone substitutes, proved to be insufficient for successful bone regeneration, and a special attention should be given to control the changes in the bone tissue micro-environment. The magnetic manipulation by an external field can be a promising technique to control this micro-environment, and to sustain the proliferation and differentiation of osteoblasts, promoting the expression of some growth factors, and, finally, accelerating new bone formation. By incorporating stimuli responsive nanocarriers in the scaffold's architecture, such as magnetic nanoparticles functionalized with bioactive molecules, their behavior can be rigorously controlled under external magnetic driving, and stimulates the bone tissue formation.
Collapse
Affiliation(s)
| | | | - Liliana Verestiuc
- Biomedical Sciences Department, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
| |
Collapse
|
10
|
dos Santos Gomes D, de Sousa Victor R, de Sousa BV, de Araújo Neves G, de Lima Santana LN, Menezes RR. Ceramic Nanofiber Materials for Wound Healing and Bone Regeneration: A Brief Review. MATERIALS 2022; 15:ma15113909. [PMID: 35683207 PMCID: PMC9182284 DOI: 10.3390/ma15113909] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023]
Abstract
Ceramic nanofibers have been shown to be a new horizon of research in the biomedical area, due to their differentiated morphology, nanoroughness, nanotopography, wettability, bioactivity, and chemical functionalization properties. Therefore, considering the impact caused by the use of these nanofibers, and the fact that there are still limited data available in the literature addressing the ceramic nanofiber application in regenerative medicine, this review article aims to gather the state-of-the-art research concerning these materials, for potential use as a biomaterial for wound healing and bone regeneration, and to analyze their characteristics when considering their application.
Collapse
Affiliation(s)
- Déborah dos Santos Gomes
- Graduate Program in Materials Science and Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.)
- Laboratory of Materials Technology, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
- Correspondence: (D.d.S.G.); (R.d.S.V.); (R.R.M.); Tel.: +55-083-2101-1183 (R.R.M.)
| | - Rayssa de Sousa Victor
- Graduate Program in Materials Science and Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.)
- Laboratory of Materials Technology, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
- Correspondence: (D.d.S.G.); (R.d.S.V.); (R.R.M.); Tel.: +55-083-2101-1183 (R.R.M.)
| | - Bianca Viana de Sousa
- Department of Chemical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil;
| | - Gelmires de Araújo Neves
- Graduate Program in Materials Science and Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.)
| | - Lisiane Navarro de Lima Santana
- Graduate Program in Materials Science and Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.)
| | - Romualdo Rodrigues Menezes
- Laboratory of Materials Technology, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
- Correspondence: (D.d.S.G.); (R.d.S.V.); (R.R.M.); Tel.: +55-083-2101-1183 (R.R.M.)
| |
Collapse
|
11
|
Wang C, Ma Z, Yuan K, Ji T. Using scaffolds as drug delivery systems to treat bone tumor. NANOTECHNOLOGY 2022; 33:212002. [PMID: 35092950 DOI: 10.1088/1361-6528/ac5017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Surgery is the principal strategy to treat osteosarcoma and other types of bone tumors, but it causes bone defects that cannot be healed spontaneously. After surgery, patients still need to receive radiotherapy and/or chemotherapy to prevent tumor recurrence and metastasis, which leads to systemic side effects. Bone scaffolds exhibit the potentials to load cargos (drugs or growth factors) and act as drug delivery systems (DDSs) in the osteosarcoma postoperative treatment. This review introduces current types of bone scaffolds and highlights representative works using scaffolds as DDSs to treat osteosarcomas. Challenges and perspectives in the scaffold-based DDSs are also discussed. This review may provide references to develop effective and safe strategies for osteosarcoma postoperative treatment.
Collapse
Affiliation(s)
- Caifeng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zijiu Ma
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Kemeng Yuan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Tianjiao Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
12
|
Ahmed D, Puthussery H, Basnett P, Knowles JC, Lange S, Roy I. Controlled Delivery of Pan-PAD-Inhibitor Cl-Amidine Using Poly(3-Hydroxybutyrate) Microspheres. Int J Mol Sci 2021; 22:ijms222312852. [PMID: 34884657 PMCID: PMC8658019 DOI: 10.3390/ijms222312852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022] Open
Abstract
This study deals with the process of optimization and synthesis of Poly(3-hydroxybutyrate) microspheres with encapsulated Cl-amidine. Cl-amidine is an inhibitor of peptidylarginine deiminases (PADs), a group of calcium-dependent enzymes, which play critical roles in a number of pathologies, including autoimmune and neurodegenerative diseases, as well as cancer. While Cl-amidine application has been assessed in a number of in vitro and in vivo models; methods of controlled release delivery remain to be investigated. P(3HB) microspheres have proven to be an effective delivery system for several compounds applied in antimicrobial, wound healing, cancer, and cardiovascular and regenerative disease models. In the current study, P(3HB) microspheres with encapsulated Cl-amidine were produced in a size ranging from ~4–5 µm and characterized for surface morphology, porosity, hydrophobicity and protein adsorption, in comparison with empty P(3HB) microspheres. Cl-amidine encapsulation in P(3HB) microspheres was optimized, and these were found to be less hydrophobic, compared with the empty microspheres, and subsequently adsorbed a lower amount of protein on their surface. The release kinetics of Cl-amidine from the microspheres were assessed in vitro and expressed as a function of encapsulation efficiency. There was a burst release of ~50% Cl-amidine in the first 24 h and a zero order release from that point up to 16 days, at which time point ~93% of the drug had been released. As Cl-amidine has been associated with anti-cancer effects, the Cl-amidine encapsulated microspheres were assessed for the inhibition of vascular endothelial growth factor (VEGF) expression in the mammalian breast cancer cell line SK-BR-3, including in the presence of the anti-proliferative drug rapamycin. The cytotoxicity of the combinatorial effect of rapamycin with Cl-amidine encapsulated P(3HB) microspheres was found to be 3.5% more effective within a 24 h period. The cells treated with Cl-amidine encapsulated microspheres alone, were found to have 36.5% reduction in VEGF expression when compared with untreated SK-BR-3 cells. This indicates that controlled release of Cl-amidine from P(3HB) microspheres may be effective in anti-cancer treatment, including in synergy with chemotherapeutic agents. Using controlled drug-delivery of Cl-amidine encapsulated in Poly(3-hydroxybutyrate) microspheres may be a promising novel strategy for application in PAD-associated pathologies.
Collapse
Affiliation(s)
- Dina Ahmed
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6XH, UK;
| | - Hima Puthussery
- School of Life Sciences, University of Westminster, London W1W 6XH, UK; (H.P.); (P.B.)
| | - Pooja Basnett
- School of Life Sciences, University of Westminster, London W1W 6XH, UK; (H.P.); (P.B.)
| | - Jonathan C. Knowles
- Department of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK;
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6XH, UK;
- Correspondence: emails: (S.L.); (I.R.); Tel.: +44-(0)207-911-5000 (ext. 64832) (S.L.); +44-(0)114-222-5962 (ext. 64096) (I.R.)
| | - Ipsita Roy
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield S10 2TN, UK
- Correspondence: emails: (S.L.); (I.R.); Tel.: +44-(0)207-911-5000 (ext. 64832) (S.L.); +44-(0)114-222-5962 (ext. 64096) (I.R.)
| |
Collapse
|
13
|
Toughening of Bioceramic Composites for Bone Regeneration. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5100259] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bioceramics are widely considered as elective materials for the regeneration of bone tissue, due to their compositional mimicry with bone inorganic components. However, they are intrinsically brittle, which limits their capability to sustain multiple biomechanical loads, especially in the case of load-bearing bone districts. In the last decades, intense research has been dedicated to combining processes to enhance both the strength and toughness of bioceramics, leading to bioceramic composite scaffolds. This review summarizes the recent approaches to this purpose, particularly those addressed to limiting the propagation of cracks to prevent the sudden mechanical failure of bioceramic composites.
Collapse
|
14
|
Naskar D, Sapru S, Ghosh AK, Reis RL, Dey T, Kundu SC. Nonmulberry silk proteins: multipurpose ingredient in bio-functional assembly. Biomed Mater 2021; 16. [PMID: 34428758 DOI: 10.1088/1748-605x/ac20a0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/24/2021] [Indexed: 01/27/2023]
Abstract
The emerging field of tissue engineering and regenerative medicines utilising artificial polymers is facing many problems. Despite having mechanical stability, non-toxicity and biodegradability, most of them lack cytocompatibility and biocompatibility. Natural polymers (such as collagen, hyaluronic acid, fibrin, fibroin, and others), including blends, are introduced to the field to solve some of the relevant issues. Another natural biopolymer: silkworm silk gained special attention primarily due to its specific biophysical, biochemical, and material properties, worldwide availability, and cost-effectiveness. Silk proteins, namely fibroin and sericin extracted from domesticated mulberry silkwormBombyx mori, are studied extensively in the last few decades for tissue engineering. Wild nonmulberry silkworm species, originated from India and other parts of the world, also produce silk proteins with variations in their nature and properties. Among the nonmulberry silkworm species,Antheraea mylitta(Indian Tropical Tasar),A. assamensis/A. assama(Indian Muga), andSamia ricini/Philosamia ricini(Indian Eri), along withA. pernyi(Chinese temperate Oak Tasar/Tussah) andA. yamamai(Japanese Oak Tasar) exhibit inherent tripeptide motifs of arginyl glycyl aspartic acid in their fibroin amino acid sequences, which support their candidacy as the potential biomaterials. Similarly, sericin isolated from such wild species delivers unique properties and is used as anti-apoptotic and growth-inducing factors in regenerative medicines. Other characteristics such as biodegradability, biocompatibility, and non-inflammatory nature make it suitable for tissue engineering and regenerative medicine based applications. A diverse range of matrices, including but not limited to nano-micro scale structures, nanofibres, thin films, hydrogels, and porous scaffolds, are prepared from the silk proteins (fibroins and sericins) for biomedical and tissue engineering research. This review aims to represent the progress made in medical and non-medical applications in the last couple of years and depict the present status of the investigations on Indian nonmulberry silk-based matrices as a particular reference due to its remarkable potentiality of regeneration of different types of tissues. It also discusses the future perspective in tissue engineering and regenerative medicines in the context of developing cutting-edge techniques such as 3D printing/bioprinting, microfluidics, organ-on-a-chip, and other electronics, optical and thermal property-based applications.
Collapse
Affiliation(s)
- Deboki Naskar
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.,Present address: Cambridge Institute for Medical Research, School of Clinical Medicine, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Sunaina Sapru
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.,Present address: Robert H. Smith Faculty of Agriculture, Food and Environment, The Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, IL, Israel
| | - Ananta K Ghosh
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Rui L Reis
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-4805-017 Barco, Guimaraes, Portugal
| | - Tuli Dey
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra 411007, India
| | - Subhas C Kundu
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.,3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-4805-017 Barco, Guimaraes, Portugal
| |
Collapse
|
15
|
Mohonta SK, Maria KH, Rahman S, Das H, Hoque SM. Synthesis of hydroxyapatite nanoparticle and role of its size in hydroxyapatite/chitosan–gelatin biocomposite for bone grafting. INTERNATIONAL NANO LETTERS 2021. [DOI: 10.1007/s40089-021-00347-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Hinchliffe JD, Parassini Madappura A, Syed Mohamed SMD, Roy I. Biomedical Applications of Bacteria-Derived Polymers. Polymers (Basel) 2021; 13:1081. [PMID: 33805506 PMCID: PMC8036740 DOI: 10.3390/polym13071081] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Plastics have found widespread use in the fields of cosmetic, engineering, and medical sciences due to their wide-ranging mechanical and physical properties, as well as suitability in biomedical applications. However, in the light of the environmental cost of further upscaling current methods of synthesizing many plastics, work has recently focused on the manufacture of these polymers using biological methods (often bacterial fermentation), which brings with them the advantages of both low temperature synthesis and a reduced reliance on potentially toxic and non-eco-friendly compounds. This can be seen as a boon in the biomaterials industry, where there is a need for highly bespoke, biocompatible, processable polymers with unique biological properties, for the regeneration and replacement of a large number of tissue types, following disease. However, barriers still remain to the mass-production of some of these polymers, necessitating new research. This review attempts a critical analysis of the contemporary literature concerning the use of a number of bacteria-derived polymers in the context of biomedical applications, including the biosynthetic pathways and organisms involved, as well as the challenges surrounding their mass production. This review will also consider the unique properties of these bacteria-derived polymers, contributing to bioactivity, including antibacterial properties, oxygen permittivity, and properties pertaining to cell adhesion, proliferation, and differentiation. Finally, the review will select notable examples in literature to indicate future directions, should the aforementioned barriers be addressed, as well as improvements to current bacterial fermentation methods that could help to address these barriers.
Collapse
Affiliation(s)
| | | | | | - Ipsita Roy
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield S1 3JD, UK; (J.D.H.); (A.P.M.); (S.M.D.S.M.)
| |
Collapse
|
17
|
Du Z, Cao G, Li K, Zhang R, Li X. Nanocomposites for the delivery of bioactive molecules in tissue repair: vital structural features, application mechanisms, updated progress and future perspectives. J Mater Chem B 2020; 8:10271-10289. [PMID: 33084730 DOI: 10.1039/d0tb01670e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, nanocomposites have attracted great attention in tissue repair as carriers for bioactive molecule delivery due to their biochemical and nanostructural similarity to that of physiological tissues, and controlled delivery of bioactive molecules. In this review, we aim to comprehensively clarify how the applications of nanocomposites for bioactive molecule delivery in tissue repair are achieved by focusing on the following aspects: (1) vital structural features (size, shape, pore, etc.) of nanocomposites that have crucial effects on the biological properties and function of bioactive molecule-delivery systems, (2) delivery performance of bioactive molecules possessing high entrapment efficiency of bioactive molecules and good controlled- and sustained-release of bioactive molecules, (3) application mechanisms of nanocomposites to deliver and release bioactive molecules in tissue repair, (4) updated research progress of nanocomposites for bioactive molecule delivery in hard and soft tissue repair, and (5) future perspectives in the development of bioactive molecule-delivery systems based on nanocomposites.
Collapse
Affiliation(s)
- Zhipo Du
- Department of Orthopedics, the Fourth Central Hospital of Baoding City, Baoding 072350, China
| | - Guangxiu Cao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| | - Kun Li
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Ruihong Zhang
- Department of Research and Teaching, the Fourth Central Hospital of Baoding City, Baoding 072350, China.
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
18
|
Overcoming barriers confronting application of protein therapeutics in bone fracture healing. Drug Deliv Transl Res 2020; 11:842-865. [PMID: 32783153 DOI: 10.1007/s13346-020-00829-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bone fracture is a major contributor to debilitation and death among patients with bone diseases. Thus, osteogenic protein therapeutics and their delivery to bone have been extensively researched as strategies to accelerate fracture healing. To prevent morbidity and mortality of fractures, which occur frequently in the aging population, there is a critical need for development of first-line therapeutics. Bone morphogenic protein-2 (BMP-2) has been at the forefront of bone regeneration research for its potent osteoinduction, despite safety concerns and biophysiological obstacles of delivery to bone. However, continued pursuit of osteoinductive proteins as a therapeutic option is largely aided by drug delivery systems, playing an imperative role in enhancing safety and efficacy. In this work, we highlighted several types of drug delivery platforms and their biomaterials, to evaluate the suitability in overcoming challenges of therapeutic protein delivery for bone regeneration. To showcase the clinical considerations for each type of platform, we have assessed the most common route of administration strategies for bone regeneration, classifying the platforms as implantable or injectable. Additionally, we have analyzed the commonly utilized models and methodology for safety and efficacy evaluation of these osteogenic protein-loaded systems, to present clinical opinions for future directions of research in this field. It is hoped that this review will promote research and development of clinically translatable osteogenic protein therapeutics, while targeting first-line treatment status for achieving desired outcomes of fracture healing. Graphical abstract.
Collapse
|
19
|
Dalavi PA, Prabhu A, Shastry RP, Venkatesan J. Microspheres containing biosynthesized silver nanoparticles with alginate-nano hydroxyapatite for biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:2025-2043. [PMID: 32648515 DOI: 10.1080/09205063.2020.1793464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Scaffolding system plays an important role in the development of artificial bone for treatment of defective or diseased bone tissue. In the present work, we have developed microspheres (COS-Ag-Alg-HA) containing chitooligosaccharide (COS) coated silver nanoparticles (Ag NPs) with alginate (Alg) and hydroxyapatite (HA) as bone graft substitutes. The developed microspheres were characterized through various analytical techniques such as UV-visible spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction, field emission scanning electron microscopy with EDX and evaluated the mechanical strength by using universal testing machine. In addition to this, antimicrobial activity and biocompatibility of the developed microspheres were evaluated with pathogenic microbes and osteoblast-like cells, respectively. Results suggest that microspheres are rigid, and strong chemical interactions were observed between the materials. The size of the microspheres was ranging from 1.5 ± 0.5 to 4.0 ± 0.5 mm. Significant microbial inhibition was observed against Staphylococcus aureus, and the developed microspheres are biocompatible with osteoblast-like cells. Based on the aforementioned finding results, the developed microsphere is proposed to be a potential candidate for bone tissue repair and regeneration.
Collapse
Affiliation(s)
- Pandurang Appana Dalavi
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangaluru, India
| | - Ashwini Prabhu
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangaluru, India
| | - Rajesh P Shastry
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangaluru, India
| | - Jayachandran Venkatesan
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangaluru, India
| |
Collapse
|
20
|
Vallet-Regí M, Lozano D, González B, Izquierdo-Barba I. Biomaterials against Bone Infection. Adv Healthc Mater 2020; 9:e2000310. [PMID: 32449317 PMCID: PMC7116285 DOI: 10.1002/adhm.202000310] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Chronic bone infection is considered as one of the most problematic biofilm-related infections. Its recurrent and resistant nature, high morbidity, prolonged hospitalization, and costly medical care expenses have driven the efforts of the scientific community to develop new therapies to improve the standards used today. There is great debate on the management of this kind of infection in order to establish consistent and agreed guidelines in national health systems. The scientific research is oriented toward the design of anti-infective biomaterials both for prevention and cure. The properties of these materials must be adapted to achieve better anti-infective performance and good compatibility, which allow a good integration of the implant with the surrounding tissue. The objective of this review is to study in-depth the antibacterial biomaterials and the strategies underlying them. In this sense, this manuscript focuses on antimicrobial coatings, including the new technological advances on surface modification; scaffolding design including multifunctional scaffolds with both antimicrobial and bone regeneration properties; and nanocarriers based on mesoporous silica nanoparticles with advanced properties (targeting and stimuli-response capabilities).
Collapse
Affiliation(s)
- María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas Facultad de Farmacia Universidad Complutense de Madrid Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN C/Monforte de Lemos, 3–5 Madrid 28029, Spain
| | - Daniel Lozano
- Departamento de Química en Ciencias Farmacéuticas Facultad de Farmacia Universidad Complutense de Madrid Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN C/Monforte de Lemos, 3–5 Madrid 28029, Spain
| | - Blanca González
- Departamento de Química en Ciencias Farmacéuticas Facultad de Farmacia Universidad Complutense de Madrid Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN C/Monforte de Lemos, 3–5 Madrid 28029, Spain
| | - Isabel Izquierdo-Barba
- Departamento de Química en Ciencias Farmacéuticas Facultad de Farmacia Universidad Complutense de Madrid Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN C/Monforte de Lemos, 3–5 Madrid 28029, Spain
| |
Collapse
|
21
|
Chindamo G, Sapino S, Peira E, Chirio D, Gonzalez MC, Gallarate M. Bone Diseases: Current Approach and Future Perspectives in Drug Delivery Systems for Bone Targeted Therapeutics. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E875. [PMID: 32370009 PMCID: PMC7279399 DOI: 10.3390/nano10050875] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 12/14/2022]
Abstract
Bone diseases include a wide group of skeletal-related disorders that cause mobility limitations and mortality. In some cases, e.g., in osteosarcoma (OS) and metastatic bone cancer, current treatments are not fully effective, mainly due to low patient compliance and to adverse side effects. To overcome these drawbacks, nanotechnology is currently under study as a potential strategy allowing specific drug release kinetics and enhancing bone regeneration. Polymers, ceramics, semiconductors, metals, and self-assembled molecular complexes are some of the most used nanoscale materials, although in most cases their surface properties need to be tuned by chemical or physical reactions. Among all, scaffolds, nanoparticles (NPs), cements, and hydrogels exhibit more advantages than drawbacks when compared to other nanosystems and are therefore the object of several studies. The aim of this review is to provide information about the current therapies of different bone diseases focusing the attention on new discoveries in the field of targeted delivery systems. The authors hope that this paper could help to pursue further directions about bone targeted nanosystems and their application for bone diseases and bone regeneration.
Collapse
Affiliation(s)
- Giulia Chindamo
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (G.C.); (E.P.); (D.C.); (M.G.)
| | - Simona Sapino
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (G.C.); (E.P.); (D.C.); (M.G.)
| | - Elena Peira
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (G.C.); (E.P.); (D.C.); (M.G.)
| | - Daniela Chirio
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (G.C.); (E.P.); (D.C.); (M.G.)
| | - Mónica Cristina Gonzalez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina;
| | - Marina Gallarate
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (G.C.); (E.P.); (D.C.); (M.G.)
| |
Collapse
|
22
|
Jun Y, Oh H, Karpoormath R, Jha A, Patel R. Role of microsphere as drug carrier for osteogenic differentiation. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1713783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yuju Jun
- Department of Nano Science and Engineering, Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Incheon, South Korea
| | - Hyunyoung Oh
- Department of Energy and Environmental Science and Engineering, Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Incheon, South Korea
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of Kwa Zulu Natal, Durban, South Africa
| | - Amitabh Jha
- Department of Chemistry, Acadia University, Wolfville, Canada
| | - Rajkumar Patel
- Department of Energy and Environmental Science and Engineering, Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Incheon, South Korea
| |
Collapse
|
23
|
Preparation and characterization of cellulose acetate-Laponite® composite membranes produced by supercritical phase inversion. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2019.104651] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
24
|
Ravanbakhsh M, Labbaf S, Karimzadeh F, Pinna A, Houreh AB, Nasr-Esfahani MH. Mesoporous bioactive glasses for the combined application of osteosarcoma treatment and bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109994. [PMID: 31500021 DOI: 10.1016/j.msec.2019.109994] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 06/28/2019] [Accepted: 07/18/2019] [Indexed: 01/07/2023]
Abstract
In this study, mesoporous bioactive glass (MBG) sub-micro particles were prepared through sol-gel synthesis and possessed a uniform and spherical structure with particle size of 302 ± 43 nm, a pore size of 4 nm and a high surface area of 354 m2 g-1. Alendronate (AL) is often used for the treatment of bone associated diseases, in particular osteosarcoma. However, due to the low bioavailability and high toxicity at increased doses, local and sustained release would be an ideal approach to AL delivery. Here, MBGs and aminated MBGs (AMBG) were applied as carriers for AL loading. High encapsulation efficiency of 75% and 85% and loading efficiency of 60% and 63%, for MBG and AMBG, respectively, was achieved. The release profile of AL from AMBG showed a better sustained and controlled release mechanism compared to MBG. In vitro results demonstrated the non-cytotoxic nature of both MBG and AMBG following exposure to MG63 osteoblast like cell line. AL release from MBG and AMBG, even at lower concentration, provoked decreased MG63 proliferation. The osteogenic potential of MBG and AMBG following exposure to dental pulp stem cells was evaluated using alizarin red assay.
Collapse
Affiliation(s)
- M Ravanbakhsh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - S Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - F Karimzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - A Pinna
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - A Baharlou Houreh
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - M H Nasr-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
25
|
Zeng Y, Hoque J, Varghese S. Biomaterial-assisted local and systemic delivery of bioactive agents for bone repair. Acta Biomater 2019; 93:152-168. [PMID: 30711659 PMCID: PMC6615988 DOI: 10.1016/j.actbio.2019.01.060] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 01/05/2023]
Abstract
Although bone tissues possess an intrinsic capacity for repair, there are cases where bone healing is either impaired or insufficient, such as fracture non-union, osteoporosis, osteomyelitis, and cancers. In these cases, treatments like surgical interventions are used, either alone or in combination with bioactive agents, to promote tissue repair and manage associated clinical complications. Improving the efficacy of bioactive agents often requires carriers, with biomaterials being a pivotal player. In this review, we discuss the role of biomaterials in realizing the local and systemic delivery of biomolecules to the bone tissue. The versatility of biomaterials enables design of carriers with the desired loading efficiency, release profile, and on-demand delivery. Besides local administration, systemic administration of drugs is necessary to combat diseases like osteoporosis, warranting bone-targeting drug delivery systems. Thus, chemical moieties with the affinity towards bone extracellular matrix components like apatite minerals have been widely utilized to create bone-targeting carriers with better biodistribution, which cannot be achieved by the drugs alone. Bone-targeting carriers combined with the desired drugs or bioactive agents have been extensively investigated to enhance bone healing while minimizing off-target effects. Herein, these advancements in the field have been systematically reviewed. STATEMENT OF SIGNIFICANCE: Drug delivery is imperative when surgical interventions are not sufficient to address various bone diseases/defects. Biomaterial-assisted delivery systems have been designed to provide drugs with the desired loading efficiency, sustained release, and on-demand delivery to enhance bone healing. By surveying recent advances in the field, this review outlines the design of biomaterials as carriers for the local and systemic delivery of bioactive agents to the bone tissue. Particularly, biomaterials that bear chemical moieties with affinity to bone are attractive, as they can present the desired bioactive agents to the bone tissue efficiently and thus enhance the drug efficacy for bone repair.
Collapse
Affiliation(s)
- Yuze Zeng
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710, USA
| | - Jiaul Hoque
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Shyni Varghese
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
26
|
Seciu AM, Craciunescu O, Stanciuc AM, Zarnescu O. Tailored Biomaterials for Therapeutic Strategies Applied in Periodontal Tissue Engineering. Stem Cells Dev 2019; 28:963-973. [PMID: 31020906 DOI: 10.1089/scd.2019.0016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Several therapeutic strategies are currently in development for severe periodontitis and other associated chronic inflammatory diseases. Guided tissue regeneration of the periodontium is based on surgical implantation of natural or synthetic polymers conditioned as membranes, injectable biomaterials (hydrogels), or three-dimensional (3D) matrices. Combinations of biomaterials with bioactive factors represent the next generation of regenerative strategy. Cell delivery strategy based on scaffold-cell constructs showed potential in periodontitis treatment. Bioengineering of periodontal tissues using cell sheets and genetically modified stem cells is currently proposed to complete existing (pre)clinical procedures for periodontal regeneration. 3D structures can be built using computer-assisted manufacturing technologies to improve the implant architecture effect on new tissue formation. The aim of this review was to summarize the advantages and drawbacks of biomimetic composite matrices used as biomaterials for periodontal tissue engineering. Their conditioning as two-dimensional or 3D scaffolds using conventional or emerging technologies was also discussed. Further biotechnologies are required for developing novel products tailored to stimulate periodontal regeneration. Additional preclinical studies will be useful to closely investigate the mechanisms and identify specific markers involved in cell-implant interactions, envisaging further clinical tests. Future therapeutic protocols will be developed based on these novel procedures and techniques.
Collapse
Affiliation(s)
- Ana-Maria Seciu
- 1Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,2Department of Cellular and Molecular Biology, National Institute R&D for Biological Sciences, Bucharest, Romania
| | - Oana Craciunescu
- 1Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,2Department of Cellular and Molecular Biology, National Institute R&D for Biological Sciences, Bucharest, Romania
| | - Ana-Maria Stanciuc
- 1Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,2Department of Cellular and Molecular Biology, National Institute R&D for Biological Sciences, Bucharest, Romania
| | - Otilia Zarnescu
- 1Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
27
|
Alissa Alam H, Dalgic AD, Tezcaner A, Ozen C, Keskin D. A comparative study of monoaxial and coaxial PCL/gelatin/Poloxamer 188 scaffolds for bone tissue engineering. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1581198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Hani Alissa Alam
- Graduate Department of Biotechnology, Middle East Technical University, Ankara, Turkey
- MODSIMMER, Modeling and Simulation Research & Development Center, Middle East Technical University, Ankara, Turkey
| | - Ali Deniz Dalgic
- MODSIMMER, Modeling and Simulation Research & Development Center, Middle East Technical University, Ankara, Turkey
- Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey
| | - Aysen Tezcaner
- Graduate Department of Biotechnology, Middle East Technical University, Ankara, Turkey
- MODSIMMER, Modeling and Simulation Research & Development Center, Middle East Technical University, Ankara, Turkey
- Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, Turkey
| | - Can Ozen
- Graduate Department of Biotechnology, Middle East Technical University, Ankara, Turkey
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, Turkey
- Central Laboratory, Middle East Technical University, Ankara, Turkey
| | - Dilek Keskin
- Graduate Department of Biotechnology, Middle East Technical University, Ankara, Turkey
- MODSIMMER, Modeling and Simulation Research & Development Center, Middle East Technical University, Ankara, Turkey
- Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
28
|
Ivanov AN, Saveleva MS, Kozadaev MN, Matveeva OV, Sal’kovskiy YE, Lyubun GP, Gorin DA, Norkin IA. New Approaches to Scaffold Biocompatibility Assessment. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00613-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Hasan ML, Padalhin AR, Kim B, Lee BT. Preparation and evaluation of BCP-CSD-agarose composite microsphere for bone tissue engineering. J Biomed Mater Res B Appl Biomater 2019; 107:2263-2272. [PMID: 30676689 DOI: 10.1002/jbm.b.34318] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/19/2018] [Accepted: 12/27/2018] [Indexed: 12/22/2022]
Abstract
Composite microspheres have been widely investigated over the years in order to achieve a sound scaffold with suitable combinations of biodegradable polymers and bioactive ceramics/glasses for bone tissue engineering. In our present study, composite microspheres were prepared for the first time by agarose (1 wt %) enforcement with combination of biphasic calcium phosphate (BCP; 20 wt %) and calcium sulfate dehydrate (CSD; 20 wt %), and analyzed for use in bone regeneration. The one-step fabrication process revealed spheres of sizes ranging from 50 to 1000 μm of BCP-CSD contents effectively formed by natural solidification of agarose matrix, which is very simple, time and cost-effective, and could allow for large scale production. Furthermore, the BCP-CSD-agarose composite microspheres were tested in in vitro and in vivo for bone-forming properties in order to assess their biocompatibility. The rapid diffusion of Ca 2+ ions from CSD of the composite microspheres through agarose matrix potentially increased interactivity with microenvironment and gave support for cell adhesion and proliferation. Moreover, in vivo result demonstrated that fabricated microspheres promoted neovascularization, stimulated fibroblast cell proliferation, and host cell migration occurred throughout the defects and within microspheres, ultimately guided to new bone formation. The developed composite microspheres with novel approach could have potential for bone regeneration application. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2263-2272, 2019.
Collapse
Affiliation(s)
- Md Lemon Hasan
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Andrew R Padalhin
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Boram Kim
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea.,Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
30
|
Fabrication of PCL/PVP Electrospun Fibers loaded with Trans-anethole for Bone Regeneration in vitro. Colloids Surf B Biointerfaces 2018; 171:698-706. [PMID: 30119018 DOI: 10.1016/j.colsurfb.2018.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/26/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022]
Abstract
Trans-anethole (TA) is a phenolic phytocompound widely used in the food and health sector because of its diverse biological properties. However, its role in the promotion of bone formation is not known. With the enhanced bioavailability of TA, we aimed to determine its effect on osteogenesis; TA at different concentrations (5, 10, and 20 μM) was loaded onto polycaprolactone (PCL)/polyvinylpyrrolidone (PVP) fibers by the electrospinning technique. The synthesized PCL/PVP + TA fibers were subjected to physiochemical and material characterization. The addition of TA did not have any effect on fiber thickness, swelling, protein adsorption, degradation, or biomineralization. The fibers were compatible with mouse mesenchymal stem cells (mMSCs). A sustained release of TA from the fibers promoted osteoblast differentiation at the cellular and molecular levels. Furthermore, the release of TA from fibers up-regulated the expression of Runx2, a bone transcription factor, and its co-activators, which are key molecules for osteoblast differentiation. Thus, these results provide insights into the bioavailability of TA in promoting in vitro osteoblast differentiation and the potential applications of TA in bone regeneration.
Collapse
|
31
|
Maji K, Dasgupta S, Pramanik K, Bissoyi A. Preparation and characterization of gelatin-chitosan-nanoβ-TCP based scaffold for orthopaedic application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2018.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Moonga SS, Qin YX. MC3T3 infiltration and proliferation in bovine trabecular scaffold regulated by dynamic flow bioreactor and augmented by low-intensity pulsed ultrasound. J Orthop Translat 2018; 14:16-22. [PMID: 30035029 PMCID: PMC6042526 DOI: 10.1016/j.jot.2018.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/16/2022] Open
Abstract
Background Low-intensity pulsed ultrasound (LIPUS) has been used in both basic research and clinical settings for its therapeutic potential in promoting tissue healing. Clinical data has shown that LIPUS can accelerate fresh fracture healing. However, the treatment for aging osteoporosis and non-union is still unclear. In addition, the mechanism of ultrasound promoted bone healing has remained unknown. Objective It is proposed that noninvasive ultrasound treatment can enhance local fluid flow within the tissue to initiate remodeling and regeneration. The goal of this study was to evaluate the effects of dynamic ultrasound in promoting cellular mechanotransduction within bioengineered organic scaffolds to trigger osteogenesis and mineralization. Methods The experiment was designed in two-fold: to evaluate the role of LIPUS on osteoblastic-like (MC3T3) cell proliferation and mineralization in response to acoustic waves, using biomechanical rate-dependent signals in a bioreactor; and, to evaluate the new scaffold experimentation techniques, in order to generate a potential implantable biomaterial for orthopedic tissue regeneration and repair. Results LIPUS treatment on MC3T3 cells yielded enhanced cellular mineralization (**p < 0.001) in 3-D scaffolding, but reduced the total cell numbers (*p < 0.05), using Alizarin Red staining and cell counting analyses, respectively, in comparison to the control. Conclusion This study suggests that LIPUS, if applied at proper frequency and duty cycle, can promote cell mineralization within the 3-D organic scaffold under in vitro setting. The translational component of this experiment seeks to draw a parallel to the potential pre-treatment of scaffolds for implantation before orthopedic surgery, which could prove to greatly benefit the patient in accelerating fracture healing and tissue regeneration. The Translational Potential of this Article LIPUS stimulation was critical in contributing to the mechanical signaling transductions that activated bone enhancement parameters in MC3T3 cells regulated by bioreactor, and thus has potential to change how we pretreat scaffolds for orthopedic surgery and noninvasively accelerate healing in the future, e.g., in an extreme condition such as long-term space mission.
Collapse
Affiliation(s)
- Surinder S Moonga
- Orthopaedic Bioengineering Research Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.,Stony Brook School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Yi-Xian Qin
- Orthopaedic Bioengineering Research Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
33
|
Madhumathi K, Jeevana Rekha L, Sampath Kumar T. Tailoring antibiotic release for the treatment of periodontal infrabony defects using bioactive gelatin-alginate/apatite nanocomposite films. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.09.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Kolmas J, Pajor K, Pajchel L, Przekora A, Ginalska G, Oledzka E, Sobczak M. Fabrication and physicochemical characterization of porous composite microgranules with selenium oxyanions and risedronate sodium for potential applications in bone tumors. Int J Nanomedicine 2017; 12:5633-5642. [PMID: 28848343 PMCID: PMC5557619 DOI: 10.2147/ijn.s140935] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Nanocrystalline hydroxyapatite containing selenite ions (SeHA; 9.6 wt.% of selenium) was synthesized using wet method and subject to careful physicochemical analysis by powder X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, solid-state nuclear magnetic resonance, wavelength dispersive X-ray fluorescence, and inductively coupled plasma optical emission spectrometry. SeHA was then used to develop the selenium-containing hydroxyapatite/alginate (SeHA/ALG) composite granules. Risedronate sodium (RIS) was introduced to the obtained spherical microgranules of a size of about 1.1-1.5 mm in 2 ways: during the granules' preparation (RIS solution added to a suspension of ALG and SeHA), and as a result of SeHA/ALG granules soaking in aqueous RIS solution. The analysis made using 13C and 31P cross-polarization magic angle spinning nuclear magnetic resonance confirmed the presence of RIS and its interaction with calcium ions. Then, the release of selenium (inductively coupled plasma optical emission spectrometry) and RIS (high-performance liquid chromatography) from microgranules was examined. Moreover, cytotoxicity of fabricated granules was assessed by MTT test. Selenium release was biphasic: the first stage was short and ascribed to a "burst release" probably from a hydrated surface layer of SeHA crystals, while the next stage was significantly longer and ascribed to a sustained release of selenium from the crystals' interior. The study showed that the method of obtaining microgranules containing RIS significantly affects its release profile. Performed cytotoxicity test revealed that fabricated granules had high antitumor activity against osteosarcoma cells. However, because of the "burst release" of selenium during the first 10 h, the granules significantly reduced viability of normal osteoblasts as well.
Collapse
Affiliation(s)
- Joanna Kolmas
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy with Laboratory Medicine Division, Medical University of Warsaw, Warsaw
| | - Kamil Pajor
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy with Laboratory Medicine Division, Medical University of Warsaw, Warsaw
| | - Lukasz Pajchel
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy with Laboratory Medicine Division, Medical University of Warsaw, Warsaw
| | - Agata Przekora
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy with Medical Analytics Division, Medical University of Lublin, Lublin
| | - Grażyna Ginalska
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy with Medical Analytics Division, Medical University of Lublin, Lublin
| | - Ewa Oledzka
- Department of Biomaterials Chemistry, Faculty of Pharmacy with Laboratory Medicine Division, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Sobczak
- Department of Biomaterials Chemistry, Faculty of Pharmacy with Laboratory Medicine Division, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
35
|
Lee JY, Kim SE, Yun YP, Choi SW, Jeon DI, Kim HJ, Park K, Song HR. Osteogenesis and new bone formation of alendronate-immobilized porous PLGA microspheres in a rat calvarial defect model. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.03.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
36
|
Hajiali F, Tajbakhsh S, Shojaei A. Fabrication and Properties of Polycaprolactone Composites Containing Calcium Phosphate-Based Ceramics and Bioactive Glasses in Bone Tissue Engineering: A Review. POLYM REV 2017. [DOI: 10.1080/15583724.2017.1332640] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Faezeh Hajiali
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Saeid Tajbakhsh
- College of Chemical Engineering, University of Tehran, Tehran, Iran
| | - Akbar Shojaei
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
37
|
Khakestani M, Jafari SH, Zahedi P, Bagheri R, Hajiaghaee R. Physical, morphological, and biological studies on PLA/nHA composite nanofibrous webs containing E
quisetum arvense
herbal extract for bone tissue engineering. J Appl Polym Sci 2017. [DOI: 10.1002/app.45343] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Maliheh Khakestani
- Department of Polymer, School of Chemical Engineering, College of Engineering; University of Tehran; P.O. Box 11155-4563 Tehran Iran
- Department of Chemistry, Payame Noor University; P.O. Box 19395-4697 Tehran Iran
| | - Seyed Hassan Jafari
- Department of Polymer, School of Chemical Engineering, College of Engineering; University of Tehran; P.O. Box 11155-4563 Tehran Iran
| | - Payam Zahedi
- Department of Polymer, School of Chemical Engineering, College of Engineering; University of Tehran; P.O. Box 11155-4563 Tehran Iran
| | - Reza Bagheri
- Department of Materials Science and Engineering; Sharif University of Technology; Tehran Iran
| | - Reza Hajiaghaee
- Medicinal Plants Research Center; Institute of Medicinal Plants, ACECR; Karaj Iran
| |
Collapse
|
38
|
Macías-Andrés VI, Li W, Aguilar-Reyes EA, Ding Y, Roether JA, Harhaus L, León-Patiño CA, Boccaccini AR. Preparation and characterization of 45S5 bioactive glass-based scaffolds loaded with PHBV microspheres with daidzein release function. J Biomed Mater Res A 2017; 105:1765-1774. [PMID: 28241393 DOI: 10.1002/jbm.a.36046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 02/17/2017] [Accepted: 02/22/2017] [Indexed: 12/21/2022]
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) microsphere loaded 45S5 bioactive glass (BG) based scaffolds with drug releasing capability have been developed. PHBV microspheres with a mean particle size 4 ± 2 μm loaded with daidzein were obtained by oil-in-water single emulsion solvent evaporation method and applied to the surface of BG scaffolds by dip coating technique. The morphology, in vitro bioactivity in simulated body fluid (SBF), mechanical properties and drug release kinetics of microsphere loaded scaffolds were studied. The microspheres were shown to be homogeneously dispersed on the scaffold surfaces. It was confirmed that hydroxyapatite crystals homogeneously grew not only on the surface of the scaffold but also on the surface of the microspheres within 3 days of immersion in SBF. The daidzein release from the microsphere loaded scaffolds lasted almost 1 month and was determined to be diffusion controlled. The microsphere loaded BG scaffolds with daidzein releasing capability obtained in this study are a candidate for bone tissue engineering. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1765-1774, 2017.
Collapse
Affiliation(s)
- Víctor I Macías-Andrés
- Instituto de Investigación en Metalúrgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, 58030, México
| | - Wei Li
- Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Institute of Biomaterials, Erlangen, 91058, Germany
| | - Ena A Aguilar-Reyes
- Instituto de Investigación en Metalúrgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, 58030, México
| | - Yaping Ding
- Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Institute of Polymer Materials, Erlangen, 91058, Germany
| | - Judith A Roether
- Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Institute of Polymer Materials, Erlangen, 91058, Germany
| | - Leila Harhaus
- Department of Hand-, Plastic and Reconstructive Surgery, Burn Center, Department of Hand- and Plastic Surgery of Heidelberg University, BG Trauma Center Ludwigshafen, Germany.,Department of Plastic Surgery of Heidelberg University, BG Trauma Center Ludwigshafen, Ludwigshafen, 67071, Germany
| | - Carlos A León-Patiño
- Instituto de Investigación en Metalúrgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, 58030, México
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Institute of Biomaterials, Erlangen, 91058, Germany
| |
Collapse
|
39
|
Orciani M, Fini M, Di Primio R, Mattioli-Belmonte M. Biofabrication and Bone Tissue Regeneration: Cell Source, Approaches, and Challenges. Front Bioeng Biotechnol 2017; 5:17. [PMID: 28386538 PMCID: PMC5362636 DOI: 10.3389/fbioe.2017.00017] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/22/2017] [Indexed: 01/06/2023] Open
Abstract
The growing occurrence of bone disorders and the increase in aging population have resulted in the need for more effective therapies to meet this request. Bone tissue engineering strategies, by combining biomaterials, cells, and signaling factors, are seen as alternatives to conventional bone grafts for repairing or rebuilding bone defects. Indeed, skeletal tissue engineering has not yet achieved full translation into clinical practice because of several challenges. Bone biofabrication by additive manufacturing techniques may represent a possible solution, with its intrinsic capability for accuracy, reproducibility, and customization of scaffolds as well as cell and signaling molecule delivery. This review examines the existing research in bone biofabrication and the appropriate cells and factors selection for successful bone regeneration as well as limitations affecting these approaches. Challenges that need to be tackled with the highest priority are the obtainment of appropriate vascularized scaffolds with an accurate spatiotemporal biochemical and mechanical stimuli release, in order to improve osseointegration as well as osteogenesis.
Collapse
Affiliation(s)
- Monia Orciani
- Department of Molecular and Clinical Sciences, Università Politenica delle Marche , Ancona , Italy
| | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute , Bologna , Italy
| | - Roberto Di Primio
- Department of Molecular and Clinical Sciences, Università Politenica delle Marche , Ancona , Italy
| | - Monica Mattioli-Belmonte
- Department of Molecular and Clinical Sciences, Università Politenica delle Marche , Ancona , Italy
| |
Collapse
|
40
|
Zhang L, Pei J, Wang H, Shi Y, Niu J, Yuan F, Huang H, Zhang H, Yuan G. Facile Preparation of Poly(lactic acid)/Brushite Bilayer Coating on Biodegradable Magnesium Alloys with Multiple Functionalities for Orthopedic Application. ACS APPLIED MATERIALS & INTERFACES 2017; 9:9437-9448. [PMID: 28244328 DOI: 10.1021/acsami.7b00209] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recently magnesium and its alloys have been proposed as a promising next generation orthopedic implant material, whereas the poor corrosion behavior, potential cytotoxicity, and the lack of efficient drug delivery system have limited its further clinical application, especially for the local treatment of infections or musculoskeletal disorders and diseases. In this study, we designed and developed a multifunctional bilayer composite coating of poly(lactic acid)/brushite with high interfacial bonding strength on a Mg-Nd-Zn-Zr alloy, aiming to improve the biocorrosion resistance and biocompatibility of the magnesium-based substrate, as well as to further incorporate the biofunctionality of localized drug delivery. The composite coating consisted of an inner layer of poly(lactic acid) serving as a drug carrier and an outer layer composed of brushite generated through chemical solution deposition, where a facile pretreatment of UV irradiation was applied to the poly(lactic acid) coating to facilitate the heterogeneous nucleation of brushite. The in vitro degradation results of electrochemical measurements and immersion tests indicated a considerable reduction of magnesium degradation provided the composite coating. A systematic investigation of cellular response with cell viability, adhesion, and ALP assays confirmed the coated Mg alloy induced no toxicity to MC3T3-E1 osteoblastic cells but rather fostered cell attachment and proliferation and promoted osteogenic differentiation, revealing excellent biosafety and biocompatibility and enhanced osteoinductive potential. An in vitro drug release profile of paclitaxel from the composite coating was monitored with UV-vis spectroscopy, showing an alleviated initial burst release and a sustained and controlled release feature of the drug-loaded composite coating. These findings suggested that the bilayer poly(lactic acid)/brushite coating provided effective protection for Mg alloy, greatly enhanced cytocompatibility and bioactivity, and, moreover, possessed local drug delivery capability; hence magnesium alloy with poly(lactic acid)/brushite coating presents great potential in orthopedic clinical applications, especially for localized bone therapy.
Collapse
Affiliation(s)
- Lei Zhang
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Jia Pei
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Haodong Wang
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Yongjuan Shi
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Jialin Niu
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Feng Yuan
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Hua Huang
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Hua Zhang
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University , Shanghai 200240, China
| |
Collapse
|
41
|
Jayash SN, Hashim NM, Misran M, Baharuddin NA. Formulation and in vitro and in vivo evaluation of a new osteoprotegerin-chitosan gel for bone tissue regeneration. J Biomed Mater Res A 2017; 105:398-407. [PMID: 27684563 DOI: 10.1002/jbm.a.35919] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 12/17/2022]
Abstract
The osteoprotegerin (OPG) system plays a critical role in bone remodelling by regulating osteoclast formation and activity. The study aimed to determine the physicochemical properties and biocompatibility of a newly formulated OPG-chitosan gel. The OPG-chitosan gel was formulated using human OPG protein and water-soluble chitosan. The physicochemical properties were determined using Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Gel morphology was determined using scanning electron microscopy (SEM) and then it was subjected to a protein release assay and biodegradability test. An in vitro cytotoxicity test on normal human periodontal ligament (NHPL) fibroblasts and normal human (NH) osteoblasts was carried out using the AlamarBlue assay. In vivo evaluation in a rabbit model involved creating critical-sized defects in calvarial bone, filling with the OPG-chitosan gel and sacrificing at 12 weeks. In vitro results demonstrated that the 25 kDa OPG-chitosan gel had the highest rate of protein release and achieved 90% degradation in 28 days. At 12 weeks, the defects filled with 25 kDa OPG-chitosan gel showed significant (p < 0.05) new bone formation and the highest expression of osteocalcin and osteopontin compared to controls. Thus, the 25 kDa OPG-chitosan gel could be a promising new biomaterial for tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 398-407, 2017.
Collapse
Affiliation(s)
- Soher Nagi Jayash
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Najihah Mohd Hashim
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
- Centre for Natural Products And Drug Discovery (CENAR), Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Misni Misran
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - N A Baharuddin
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
42
|
Echezarreta-López MM, de Miguel T, Quintero F, Pou J, Landín M. Fabrication of Zn-Sr-doped laser-spinning glass nanofibers with antibacterial properties. J Biomater Appl 2016; 31:819-831. [PMID: 30208807 DOI: 10.1177/0885328216684652] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The morphology and dimensions of bioactive materials are essential attributes to promote tissue culture. Bioactive materials with nanofibrous structure have excellent potential to be used as bone-defect fillers, since they mimic the collagen in the extracellular matrix. On the other hand, bioactive glasses with applications in regenerative medicine may present antibacterial properties, which depend on glass composition, concentration and the microorganisms tested. Likewise, their morphology may influence their antibacterial activity too. In the present work, the laser-spinning technique was used to produce bioactive glass nanofibers of two different compositions: 45S5 Bioglass® and ICIE16M, bioactive glass doped with zinc and strontium. Their antibacterial activity against Staphylococcus aureus was tested by culturing them in dynamic conditions. Bacterial growth index profiles during the first days of experiment can be explained by the variations in the pH values of the media. The bactericidal effect of the doped nanofibers at longer times is justified by the release of zinc and strontium ions. Cytotoxicity was analyzed by means of cell viability tests performed with BALB/3T3 cell line.
Collapse
Affiliation(s)
- María Magdalena Echezarreta-López
- 1 Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Campus Vida, Universidad Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Trinidad de Miguel
- 1 Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Campus Vida, Universidad Santiago de Compostela, Santiago de Compostela 15782, Spain.,2 Departamento de Microbiología y Parasitología, Facultad de Farmacia, Campus Vida, Universidad Santiago de Compostela, Santiago de Compostela, Spain
| | - Félix Quintero
- 3 Applied Physics Department, EE Industrial, University of Vigo, 36310, Spain
| | - Juan Pou
- 3 Applied Physics Department, EE Industrial, University of Vigo, 36310, Spain
| | - Mariana Landín
- 1 Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Campus Vida, Universidad Santiago de Compostela, Santiago de Compostela 15782, Spain
| |
Collapse
|
43
|
Santoro M, Shah SR, Walker JL, Mikos AG. Poly(lactic acid) nanofibrous scaffolds for tissue engineering. Adv Drug Deliv Rev 2016; 107:206-212. [PMID: 27125190 PMCID: PMC5081275 DOI: 10.1016/j.addr.2016.04.019] [Citation(s) in RCA: 268] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/29/2016] [Accepted: 04/18/2016] [Indexed: 12/23/2022]
Abstract
Poly(lactic acid) (PLA) is a synthetic polyester that has shown extensive utility in tissue engineering. Synthesized either by ring opening polymerization or polycondensation, PLA hydrolytically degrades into lactic acid, a metabolic byproduct, making it suitable for medical applications. Specifically, PLA nanofibers have widened the possible uses of PLA scaffolds for regenerative medicine and drug delivery applications. The use of nanofibrous scaffolds imparts a host of desirable properties, including high surface area, biomimicry of native extracellular matrix architecture, and tuning of mechanical properties, all of which are important facets of designing scaffolds for a particular organ system. Additionally, nanofibrous PLA scaffolds hold great promise as drug delivery carriers, where fabrication parameters and drug-PLA compatibility greatly affect the drug release kinetics. In this review, we present the latest advances in the use of PLA nanofibrous scaffolds for musculoskeletal, nervous, cardiovascular, and cutaneous tissue engineering and offer perspectives on their future use.
Collapse
Affiliation(s)
- Marco Santoro
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, United States
| | - Sarita R Shah
- Department of Bioengineering, Rice University, Houston, TX 77030, United States
| | - Jennifer L Walker
- Department of Bioengineering, Rice University, Houston, TX 77030, United States
| | - Antonios G Mikos
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, United States; Department of Bioengineering, Rice University, Houston, TX 77030, United States.
| |
Collapse
|
44
|
Cattalini JP, Roether J, Hoppe A, Pishbin F, Haro Durand L, Gorustovich A, Boccaccini AR, Lucangioli S, Mouriño V. Nanocomposite scaffolds with tunable mechanical and degradation capabilities: co-delivery of bioactive agents for bone tissue engineering. ACTA ACUST UNITED AC 2016; 11:065003. [PMID: 27767020 DOI: 10.1088/1748-6041/11/6/065003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Novel multifunctional nanocomposite scaffolds made of nanobioactive glass and alginate crosslinked with therapeutic ions such as calcium and copper were developed for delivering therapeutic agents, in a highly controlled and sustainable manner, for bone tissue engineering. Alendronate, a well-known antiresorptive agent, was formulated into microspheres under optimized conditions and effectively loaded within the novel multifunctional scaffolds with a high encapsulation percentage. The size of the cation used for the alginate crosslinking impacted directly on porosity and viscoelastic properties, and thus, on the degradation rate and the release profile of copper, calcium and alendronate. According to this, even though highly porous structures were created with suitable pore sizes for cell ingrowth and vascularization in both cases, copper-crosslinked scaffolds showed higher values of porosity, elastic modulus, degradation rate and the amount of copper and alendronate released, when compared with calcium-crosslinked scaffolds. In addition, in all cases, the scaffolds showed bioactivity and mechanical properties close to the endogenous trabecular bone tissue in terms of viscoelasticity. Furthermore, the scaffolds showed osteogenic and angiogenic properties on bone and endothelial cells, respectively, and the extracts of the biomaterials used promoted the formation of blood vessels in an ex vivo model. These new bioactive nanocomposite scaffolds represent an exciting new class of therapeutic cell delivery carrier with tunable mechanical and degradation properties; potentially useful in the controlled and sustainable delivery of therapeutic agents with active roles in bone formation and angiogenesis, as well as in the support of cell proliferation and osteogenesis for bone tissue engineering.
Collapse
Affiliation(s)
- Juan P Cattalini
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, PC1113, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhong T, Jiao Y, Guo L, Ding J, Nie Z, Tan L, Huang R. Investigations on porous PLA composite scaffolds with amphiphilic block PLA-b-PEG to enhance the carrying property for hydrophilic drugs of excess dose. J Appl Polym Sci 2016. [DOI: 10.1002/app.44489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tian Zhong
- Department of Chemistry and Pharmacy; Zhuhai College of Jilin University; Zhuhai Guangdong 519041 China
| | | | - Lingling Guo
- Department of Materials Technology and Engineering; Research Institute of Zhejiang University-Taizhou; Taizhou Zhejiang 318000 China
| | - Jiamin Ding
- Department of Materials Technology and Engineering; Research Institute of Zhejiang University-Taizhou; Taizhou Zhejiang 318000 China
| | - Zhuping Nie
- Department of Materials Technology and Engineering; Research Institute of Zhejiang University-Taizhou; Taizhou Zhejiang 318000 China
| | - Lianjiang Tan
- Shanghai Center for Systems Biomedicine; Shanghai Jiao Tong University; Shanghai 200240 China
| | - Ran Huang
- Department of Materials Technology and Engineering; Research Institute of Zhejiang University-Taizhou; Taizhou Zhejiang 318000 China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai 200240 China
| |
Collapse
|
46
|
Tsekoura EK, K C RB, Uludag H. Biomaterials to Facilitate Delivery of RNA Agents in Bone Regeneration and Repair. ACS Biomater Sci Eng 2016; 3:1195-1206. [PMID: 33440509 DOI: 10.1021/acsbiomaterials.6b00387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bone healing after traumatic injuries or pathological diseases remains an important worldwide problem. In search of safer and more effective approaches to bone regeneration and repair, RNA-based therapeutic agents, specifically microRNAs (miRNAs) and short interfering RNA (siRNA), are beginning to be actively explored. In this review, we summarize current attempts to employ miRNAs and siRNAs in preclinical models of bone repair. We provide a summary of current limitations when attempting to utilize bioactive nucleic acids for therapeutic purposes and position the unique aspects of RNA reagents for clinical bone repair. Delivery strategies for RNA reagents are emphasized and nonviral carriers (biomaterial-based) employed to deliver such reagents are reviewed. Critical features of biomaterial carriers and various delivery technologies centered around nanoparticulate systems are highlighted. We conclude with the authors' perspectives on the future of the field, outlining main critical issues important to address as RNA reagents are explored for clinical applications.
Collapse
Affiliation(s)
- Eleni K Tsekoura
- Department of Chemical & Materials Engineering, Faculty of Engineering, ‡Department of Biomedical Engineering, Faculty of Medicine & Dentistry, and §Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Remant Bahadur K C
- Department of Chemical & Materials Engineering, Faculty of Engineering, Department of Biomedical Engineering, Faculty of Medicine & Dentistry, and §Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Hasan Uludag
- Department of Chemical & Materials Engineering, Faculty of Engineering, Department of Biomedical Engineering, Faculty of Medicine & Dentistry, and Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
47
|
Nicolini V, Caselli M, Ferrari E, Menabue L, Lusvardi G, Saladini M, Malavasi G. SiO₂-CaO-P₂O₅ Bioactive Glasses: A Promising Curcuminoids Delivery System. MATERIALS 2016; 9:ma9040290. [PMID: 28773414 PMCID: PMC5502983 DOI: 10.3390/ma9040290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 12/25/2022]
Abstract
In this paper, we report the study of the loading and the release of curcuminoids by bioactive glasses (BG) and mesoporous bioactive glasses (MBG). Through a detailed spectroscopic study, it was possible to determine the amount and the type of molecules released in water and in simulated body fluid (SBF). In particular, curcumin and K2T21 show a good ability to be released in di-keto and keto-enolic form, depending from the pH. However, after 24 h, the amount of pristine curcumin release is very low with a consequent increment of degradation products derived by curcuminoids. The presence of –OH groups on curcuminoids is a fundamental pre-requisite in order to obtain a high loading and release in polar solution such as water and SBF. The substrate on which we loaded the drugs does not seem to affect significantly the loading and the release of the drugs. The environment, instead, affects the release: for all the drugs, the release in SBF, buffered at pH of 7.4, is slightly worse than the release in water (basic pH values).
Collapse
Affiliation(s)
- Valentina Nicolini
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, Modena 41125, Italy.
| | - Monica Caselli
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, Modena 41125, Italy.
| | - Erika Ferrari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, Modena 41125, Italy.
| | - Ledi Menabue
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, Modena 41125, Italy.
| | - Gigliola Lusvardi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, Modena 41125, Italy.
| | - Monica Saladini
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, Modena 41125, Italy.
| | - Gianluca Malavasi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, Modena 41125, Italy.
| |
Collapse
|
48
|
Ma D, An G, Liang M, Liu Y, Zhang B, Wang Y. A composited PEG-silk hydrogel combining with polymeric particles delivering rhBMP-2 for bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 65:221-31. [PMID: 27157747 DOI: 10.1016/j.msec.2016.04.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/20/2016] [Accepted: 04/11/2016] [Indexed: 11/24/2022]
Abstract
Given the fabulous potential of promoting bone regeneration, BMP-2 has been investigated widely in the bone tissue engineering field. A sophisticated biomaterial loaded with BMP-2, which could avoid the required supraphysiological dose leading to high medical costs and risks of complications, has been considered as a promising strategy to treat non-healing bone defects. In this study, we developed a simple approach to engineer a composited hydrogel consisting polymeric particles (PLA/PLGA) used as a BMP-2 delivery vehicle. Compared with other groups, the introduction of PLA into PEG-silk gels endowed the hydrogel new physicochemical characteristics especially hydrophobicity which inhibited the burst release of BMP-2 and enhanced gel's structural stability. Moreover, such composited gels could stabilize entrapped proteins and maintain their bioactivity fully in vitro. In vivo, the bio-degradability experiment demonstrated this system was biocompatible and the reinforced hydrophobicity significantly decreased degradation rate, and in rat critical-sized cranial defects model, the gel containing PLA promoted the most bone formation. These findings demonstrated the introduction of PLA changed physicochemical features of gels more suitable as a BMP-2 carrier indicated by inducing bone regeneration efficiently in large bone defects at low delivered dose and this system may own translational potential.
Collapse
Affiliation(s)
- Dakun Ma
- Department of Spine Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Gang An
- Department of Spine Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Min Liang
- Department of Orthopedic Surgery, Heilongjiang, Provincial Hospital, Harbin, 150001, China
| | - Yugang Liu
- Department of Orthopedic Surgery, Affiliated Hospital of Hebei University of Engineering, Hebei, 056002, China
| | - Bin Zhang
- Institute of Hard Tissue Development and Regeneration, Harbin Medical University, Harbin 150001, China.
| | - Yansong Wang
- Department of Spine Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; Institute of Hard Tissue Development and Regeneration, Harbin Medical University, Harbin 150001, China; China Orthopedic Regenerative Medicine (CORMed), Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
49
|
Balmayor ER, Geiger JP, Aneja MK, Berezhanskyy T, Utzinger M, Mykhaylyk O, Rudolph C, Plank C. Chemically modified RNA induces osteogenesis of stem cells and human tissue explants as well as accelerates bone healing in rats. Biomaterials 2016; 87:131-146. [PMID: 26923361 DOI: 10.1016/j.biomaterials.2016.02.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/10/2016] [Accepted: 02/16/2016] [Indexed: 01/24/2023]
Abstract
Limitations associated to the use of growth factors represent a major hurdle to musculoskeletal regeneration. On the one hand, they are needed to induce neo-tissue formation for the substitution of a necrotic or missing tissue. On the other hand, these factors are used in supraphysiological concentrations, are short lived and expensive and result in many side effects. Here we develop a gene transfer strategy based on the use of chemically modified mRNA (cmRNA) coding for human bone morphogenetic protein 2 (hBMP-2) that is non-immunogenic and highly stable when compared to unmodified mRNA. Transfected stem cells secrete hBMP-2, show elevated alkaline phosphatase levels and upregulated expression of RunX2, ALP, Osterix, Osteocalcin, Osteopontin and Collagen Type I genes. Mineralization was induced as seen by positive Alizarin red staining. hBMP-2 cmRNA transfected human fat tissue also yielded an osteogenic response in vitro as indicated by expression of hBMP-2, RunX2, ALP and Collagen Type I. Delivering hBMP-2 cmRNA to a femur defect in a rat model results in new bone tissue formation as early as 2 weeks after application of very low doses. Overall, our studies demonstrate the feasibility and therapeutic potential of a new cmRNA-based gene therapy strategy that is safe and efficient. When applied clinically, this approach could overcome BMP-2 growth factor associated limitations in bone regeneration.
Collapse
Affiliation(s)
- Elizabeth R Balmayor
- Institute of Molecular Immunology and Experimental Oncology, Technical University Munich, Ismaninger Str. 22, 81675 Munich, Germany; Ethris GmbH, Semmelweisstr. 3, 82152 Planegg, Germany; Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| | | | | | - Taras Berezhanskyy
- Institute of Molecular Immunology and Experimental Oncology, Technical University Munich, Ismaninger Str. 22, 81675 Munich, Germany; Ethris GmbH, Semmelweisstr. 3, 82152 Planegg, Germany
| | | | - Olga Mykhaylyk
- Institute of Molecular Immunology and Experimental Oncology, Technical University Munich, Ismaninger Str. 22, 81675 Munich, Germany; Ethris GmbH, Semmelweisstr. 3, 82152 Planegg, Germany
| | | | - Christian Plank
- Institute of Molecular Immunology and Experimental Oncology, Technical University Munich, Ismaninger Str. 22, 81675 Munich, Germany; Ethris GmbH, Semmelweisstr. 3, 82152 Planegg, Germany.
| |
Collapse
|
50
|
Tang D, Tare RS, Yang LY, Williams DF, Ou KL, Oreffo ROC. Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials 2016; 83:363-82. [PMID: 26803405 DOI: 10.1016/j.biomaterials.2016.01.024] [Citation(s) in RCA: 370] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/21/2015] [Accepted: 01/01/2016] [Indexed: 02/08/2023]
Abstract
The rising incidence of bone disorders has resulted in the need for more effective therapies to meet this demand, exacerbated by an increasing ageing population. Bone tissue engineering is seen as a means of developing alternatives to conventional bone grafts for repairing or reconstructing bone defects by combining biomaterials, cells and signalling factors. However, skeletal tissue engineering has not yet achieved full translation into clinical practice as a consequence of several challenges. The use of additive manufacturing techniques for bone biofabrication is seen as a potential solution, with its inherent capability for reproducibility, accuracy and customisation of scaffolds as well as cell and signalling factor delivery. This review highlights the current research in bone biofabrication, the necessary factors for successful bone biofabrication, in addition to the current limitations affecting biofabrication, some of which are a consequence of the limitations of the additive manufacturing technology itself.
Collapse
Affiliation(s)
- Daniel Tang
- Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, United Kingdom
| | - Rahul S Tare
- Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, United Kingdom; Engineering Sciences, Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan, ROC; Research Centre for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei, 110, Taiwan, ROC; School of Medicine, College of Medicine, China Medical University, Taichung, 40402, Taiwan, ROC
| | - David F Williams
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, 110, Taiwan, ROC; Institute of Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Keng-Liang Ou
- Research Centre for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei, 110, Taiwan, ROC; Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, 110, Taiwan, ROC; Research Centre for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei, 110, Taiwan, ROC; Department of Dentistry, Taipei Medical University-Shuang Ho Hospital, New Taipei City, 235, Taiwan, ROC.
| | - Richard O C Oreffo
- Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, United Kingdom.
| |
Collapse
|