1
|
Dong L, Chen Y, Wang K, Li H, Di G. Static electric field (SEF) exposure promotes the proliferation of B lymphocytes. Int Immunopharmacol 2023; 125:111006. [PMID: 37913568 DOI: 10.1016/j.intimp.2023.111006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023]
Abstract
With the rapid development of ultra-high voltage direct current (UHV DC) transmission technology, the intensity of electric fields in the surrounding environment of UHV DC transmission lines significantly increased, which raised public concerns about the potential health effects of electric fields. Previous studies have shown that the exposure of electromagnetic field was associated with cancer. B lymphocytes can produce autoantibodies and tumor growth factors through proliferation, which contributes to the development of cancer. Therefore, this study explored the effect and mechanism of static electric field (SEF) generated by DC transmission lines on the proliferation levels of B lymphocytes. Male mice were exposed to SEF. After the exposure of 7 and 14 days, the proliferation levels of B lymphocytes in the spleens of mice were measured, respectively. To validate biological effect discovered in animal experiments and elucidate the mechanism of the effect from the perspective of signaling pathways, lymphocytes were exposed to SEF. After the exposure of 24, 48 or 72 h, the proliferation levels of B lymphocytes, the expression levels of key proteins and cell cycle were determined. This study found that SEF exposure activated NF-κB pathway by stimulating ERK1/2 pathway and promoted B lymphocytes to enter S phase from G0/G1 phase. Meanwhile, SEF exposure also promoted B lymphocytes to enter G2 phase. Namely, SEF exposure significantly promoted the proliferation of B lymphocytes. This discovery provided theoretical and practical support for the prevention or application of negative or positive effects caused by SEF exposure and provided directions for future research.
Collapse
Affiliation(s)
- Li Dong
- Institute of Environmental Process, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yuhua Chen
- Institute of Environmental Process, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Kanyu Wang
- Institute of Environmental Process, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Hanxin Li
- Institute of Environmental Process, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Guoqing Di
- Institute of Environmental Process, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, PR China.
| |
Collapse
|
2
|
Efimova AA, Popov AS, Kazantsev AV, Semenyuk PI, Le-Deygen IM, Lukashev NV, Yaroslavov AA. pH-Sensitive Liposomes with Embedded 3-(isobutylamino)cholan-24-oic Acid: What Is the Possible Mechanism of Fast Cargo Release? MEMBRANES 2023; 13:407. [PMID: 37103834 PMCID: PMC10141028 DOI: 10.3390/membranes13040407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
pH-sensitive liposomes have great potential for biomedical applications, in particular as nanocontainers for the delivery of biologically active compounds to specific areas of the human body. In this article, we discuss the possible mechanism of fast cargo release from a new type of pH-sensitive liposomes with embedded ampholytic molecular switch (AMS, 3-(isobutylamino)cholan-24-oic acid) with carboxylic anionic groups and isobutylamino cationic ones attached to the opposite ends of the steroid core. AMS-containing liposomes demonstrated the rapid release of the encapsulated substance when altering the pH of an outer solution, but the exact mechanism of the switch action has not yet been accurately determined. Here, we report on the details of fast cargo release based on the data obtained using ATR-FTIR spectroscopy as well as atomistic molecular modeling. The findings of this study are relevant to the potential application of AMS-containing pH-sensitive liposomes for drug delivery.
Collapse
Affiliation(s)
- Anna A. Efimova
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Anton S. Popov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Alexey V. Kazantsev
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Pavel I. Semenyuk
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninkie Gory 1/40, 119992 Moscow, Russia
| | - Irina M. Le-Deygen
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Nikolay V. Lukashev
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Alexander A. Yaroslavov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| |
Collapse
|
3
|
Abstract
The evolution of lipids in nanoscience exemplifies the powerful coupling of advances in science and technology. Here, we describe two waves of discovery and innovation in lipid materials: one historical and one still building. The first wave leveraged the relatively simple capability for lipids to orient at interfaces, building layers of functional groups. This simple form of building with atoms yielded a stunning range of technologies: lubricant additives that dramatically extended machine lifetimes, molecules that enabled selective ore extraction in mining, and soaps that improved human health. It also set the stage for many areas of modern nanoscience. The second wave of lipid materials, still growing, uses the more complex toolkits lipids offer for building with atoms, including controlling atomic environment to control function (e.g., pKa tuning) and the generation of more arbitrary two-dimensional and three-dimensional structures, including lipid nanoparticles for COVID-19 mRNA vaccines.
Collapse
Affiliation(s)
- Anni Shi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shelley A Claridge
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Elsheikh MA, Rizk SA, Elnaggar YSR, Abdallah OY. Nanoemulsomes for Enhanced Oral Bioavailability of the Anticancer Phytochemical Andrographolide: Characterization and Pharmacokinetics. AAPS PharmSciTech 2021; 22:246. [PMID: 34617166 DOI: 10.1208/s12249-021-02112-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/02/2021] [Indexed: 01/12/2023] Open
Abstract
Andrographolide (AG) is an antitumor phytochemical that acts against non-Hodgkin's lymphoma. However, AG shows low oral bioavailability due to extensive first-pass metabolism and P-glycoprotein efflux. Novel biocompatible lipoprotein-simulating nanosystems, emulsomes (EMLs), have gained significant attention due to their composition of natural components, in addition to being lymphotropic. Loading AG on EMLs is believed to mitigate the disadvantage of AG and enhance its lymphatic transport. This study developed a chylomicron-simulating system (EMLs) as a novel tool to overcome the AG oral delivery obstacles. Optimized EML-AG had a promising vesicular size of 281.62 ± 1.73 nm, a zeta potential of - 22.73 ± 0.06 mV, and a high entrapment efficiency of 96.55% ± 0.25%, which favors lymphatic targeting. In vivo pharmacokinetic studies of EML-AG showed significant enhancement (> sixfold increase) in the rate and extent of AG absorption compared with free AG. However, intraperitoneal injection of a cycloheximide inhibitor caused a significant decrease in AG absorption (~ 52%), confirming the lymphatic targeting potential of EMLs. Therefore, EMLs can be a promising novel nanoplatform for circumventing AG oral delivery obstacles and provide targeted delivery to the lymphatic system at a lower dose with fewer side effects.
Collapse
|
5
|
Yaroslavov AA, Efimova AA, Krasnikov EA, Trosheva KS, Popov AS, Melik-Nubarov NS, Krivtsov GG. Chitosan-based multi-liposomal complexes: Synthesis, biodegradability and cytotoxicity. Int J Biol Macromol 2021; 177:455-462. [PMID: 33636261 DOI: 10.1016/j.ijbiomac.2021.02.169] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 01/31/2023]
Abstract
Anionic liposomes were electrostatically adsorbed onto the surface of cationic chitosan particles cross-linked by sulfate anions, forming multi-liposomal containers (MLCs) for encapsulation and delivery of bioactive substances. An increase in molecular mass of chitosan from 30 to 300 kDa results in a size increase of chitosan particles, from 200 to 400 nm. Being saturated by liposomes, chitosan particles give MLCs of 320-540 nm. Each chitosan particle carries between 60 and 200 liposomes. The proteolytic complex Morikrase, a mixture of enzymes with various specificities, induces degradation of MLCs down to particles of size 10-15 nm; the higher the molecular mass of chitosan, the slower the enzyme-induced MLCs' degradation. pH variation within 5.5-7 and cholesterol incorporation into the liposomal membrane both have a minor effect on the rate of MLCs' biodegradation. Both the MLCs and the products of their biodegradation show low cytotoxicity. These results are of interest for constructing biodegradable capacious carriers of bioactive substances.
Collapse
Affiliation(s)
- A A Yaroslavov
- Lomonosov Moscow State University, Moscow 119991, Russia
| | - A A Efimova
- Lomonosov Moscow State University, Moscow 119991, Russia.
| | - E A Krasnikov
- Lomonosov Moscow State University, Moscow 119991, Russia
| | - K S Trosheva
- Lomonosov Moscow State University, Moscow 119991, Russia
| | - A S Popov
- Lomonosov Moscow State University, Moscow 119991, Russia
| | | | - G G Krivtsov
- Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia
| |
Collapse
|
6
|
Efimova AA, Popov AS, Krivtsov GG. Anionic Liposomes in Contact with Cationic Chitosan Particles. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220110225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Yaroslavov A, Efimova A, Smirnova N, Erzunov D, Lukashev N, Grozdova I, Melik-Nubarov N. A novel approach to a controlled opening of liposomes. Colloids Surf B Biointerfaces 2020; 190:110906. [DOI: 10.1016/j.colsurfb.2020.110906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 01/09/2023]
|
8
|
Efimova AA, Trosheva KS, Krasnikov EA, Krivtsov GG, Yaroslavov AA. Complexes of Anionic Cholesterol-Containing Liposomes and Cationic Chitosan Microparticles. POLYMER SCIENCE SERIES A 2020. [DOI: 10.1134/s0965545x19060026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Electrostatic complexes between thermosensitive cationic microgels and anionic liposomes: Formation and triggered release of encapsulated enzyme. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.07.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
He J, Hajj KA, Knapp CM, Whitehead KA. Development of a clinically relevant chemoresistant mantle cell lymphoma cell culture model. Exp Biol Med (Maywood) 2019; 244:865-872. [PMID: 31208205 DOI: 10.1177/1535370219857594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mantle cell lymphoma is an aggressive subtype of non-Hodgkin’s lymphoma that claims the lives of tens of thousands of people every year. Although combination chemotherapy treatments such as CHOP have yielded promising outcomes in the clinic, the development of chemoresistance in patients has limited their long-term success. The lack of in vitro chemoresistance models has limited our ability to understand the mechanisms by which cells develop resistance, and thus our ability to develop novel therapeutics to overcome this issue. Here, we describe the development of a clinically relevant chemoresistant mantle cell lymphoma model using the JeKo-1 cell line. This was achieved through a stepwise treatment selection strategy using gradually increasing concentrations of CHOP. We show that resistant JeKo-1 cells display strong recovery and fast proliferation after treatment with an IC50 dose of CHOP. We also found that resistant JeKo-1 cells overexpress three oncogenes implicated in the development of mantle cell lymphoma—Cyclin D1, Mcl-1, and Bcl-2—compared to normal JeKo-1 cells. We anticipate that in vitro models such as this one will enable the discovery of new therapeutic strategies for overcoming chemoresistance and improve clinical outcomes in mantle cell lymphoma patients. Impact statement Mantle cell lymphoma remains one of the deadliest subtypes of non-Hodgkin’s lymphoma, in large part because patients become resistant to frontline chemotherapy. The development of strategies to treat advanced disease will be contingent upon testing in appropriate models. Most in vitro models of resistant mantle cell lymphoma are laboratory grade models that do not recapitulate the low level of chemoresistance typically observed in patients, limiting their utility. This study develops a clinically relevant in vitro model that can be used to establish the mechanisms of resistance and test new therapeutics intended to treat recurrent disease.
Collapse
Affiliation(s)
- Jia He
- 1 Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Khalid A Hajj
- 2 Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Christopher M Knapp
- 2 Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Kathryn A Whitehead
- 1 Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,2 Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
11
|
Wang MY, Qu Y, Hu DR, Chen LJ, Shi K, Jia YP, Yi YY, Wei Q, Niu T, Qian ZY. Methotrexate-loaded biodegradable polymeric micelles for lymphoma therapy. Int J Pharm 2019; 557:74-85. [DOI: 10.1016/j.ijpharm.2018.12.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 12/29/2022]
|
12
|
Ghosh S, Lalani R, Patel V, Bardoliwala D, Maiti K, Banerjee S, Bhowmick S, Misra A. Combinatorial nanocarriers against drug resistance in hematological cancers: Opportunities and emerging strategies. J Control Release 2019; 296:114-139. [DOI: 10.1016/j.jconrel.2019.01.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/16/2022]
|
13
|
Qiu L, Dong C, Kan X. Lymphoma-targeted treatment using a folic acid-decorated vincristine-loaded drug delivery system. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:863-872. [PMID: 29713144 PMCID: PMC5909786 DOI: 10.2147/dddt.s152420] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose B-cell lymphoma is the most frequently diagnosed lymphoid tumor. Folic acid (FA)-decorated systems were found to be preferentially internalized on the B-cell lymphoma cell line which is reported to express the folate receptor. This study was designed to develop an FA-decorated vincristine (VCR)-loaded system for targeted lymphoma treatment. Methods FA-decorated lipid was synthesized. VCR-loaded lipid-polymer hybrid nanoparticles (LPNs) were fabricated. In vitro cell lines and an in vivo lymphoma animal model was used to evaluate the anti B-cell lymphoma effect. Results FA-decorated, VCR-loaded LPNs (FA-VCR/LPNs) have shown a targeted effect in delivery to B-cell lymphoma cells. FA-VCR/LPNs also showed the highest anti-tumor effect in murine-bearing lymphoma xenografts. Conclusion FA-VCR/LPNs can achieve targeted delivery of VCR, bring about an outstanding therapeutic effect to treat lymphoma, and also reduce the systemic toxicity. FA-VCR/LPNs could be an excellent system for lymphoma therapy.
Collapse
Affiliation(s)
- Lei Qiu
- Department of Internal Medicine Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Ji'nan, Shandong Province, People's Republic of China
| | - Chao Dong
- Department of Oncology, 105 Hospital of People's Liberation Army, Heifei, Anhui Province, People's Republic of China
| | - Xuan Kan
- Department of Oncology, Hospital of Traditional Chinese Medicine of Laiwu City, Laiwu, Shandong Province, People's Republic of China
| |
Collapse
|
14
|
Knapp CM, He J, Lister J, Whitehead KA. Lipid nanoparticle siRNA cocktails for the treatment of mantle cell lymphoma. Bioeng Transl Med 2018; 3:138-147. [PMID: 30065968 PMCID: PMC6063866 DOI: 10.1002/btm2.10088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/25/2018] [Accepted: 03/01/2018] [Indexed: 12/27/2022] Open
Abstract
Mantle cell lymphoma is an aggressive and incurable subtype of non‐Hodgkin B cell lymphoma. Patients typically present with advanced disease, and most patients succumb within a decade of diagnosis. There is a clear and urgent need for novel therapeutic approaches that will affect mantle cell lymphoma through a unique mechanism compared to current therapies. This study examined the use of RNA interference (RNAi) therapy to attack mantle cell lymphoma at the mRNA level, silencing genes associated with cancer cell proliferation. We identified a lipid nanoparticle formulated with the lipidoid 306O13 that delivered siRNA to JeKo‐1 and MAVER‐1 mantle cell lymphoma cell lines. Three therapeutic gene targets were examined for their effect on lymphoma growth. These included Cyclin D1, which is a cell cycle regulator, as well as Bcl‐2 and Mcl‐1, which prevent apoptosis. Gene knockdown with siRNA doses as low at 10 nM increased lymphoma cell apoptosis without carrier‐mediated toxicity. Silencing of Cyclin D1 induced apoptosis despite a twofold “compensation” upregulation of Cyclin D2. Upon simultaneous silencing of all three genes, nearly 75% of JeKo‐1 cells were apoptosing 3 days post‐transfection. Furthermore, cells proliferated at only 15% of their pretreatment rate. These data suggest that lipid nanoparticles‐formulated, multiplexed siRNA “cocktails” may serve as a beneficial addition to the treatment regimens for mantle cell lymphoma and other aggressive cancers.
Collapse
Affiliation(s)
| | - Jia He
- Dept. of Biomedical Engineering Carnegie Mellon University, 5000 Forbes Ave. Pittsburgh PA 15213
| | - John Lister
- Div. of Hematology and Cellular Therapy Allegheny Health Network Cancer Institute Pittsburgh PA 15224
| | - Kathryn A Whitehead
- Dept. of Chemical Engineering.,Dept. of Biomedical Engineering Carnegie Mellon University, 5000 Forbes Ave. Pittsburgh PA 15213
| |
Collapse
|
15
|
Efimova AA, Mulashkin FD, Rudenskaya GN, Evtushenko EG, Orlov VN, Melik-Nubarov NS, Krivtsov GG, Yaroslavov AA. Biodegradable Electrostatic Complexes of Chitosan Cationic Microparticles and Anionic Liposomes. POLYMER SCIENCE SERIES B 2018. [DOI: 10.1134/s1560090418010037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Yaroslavov AA, Efimova AA, Mulashkin FD, Rudenskaya GN, Krivtsov GG. Biodegradable liposome–chitosan complexes: enzyme-mediated release of encapsulated substances. MENDELEEV COMMUNICATIONS 2018. [DOI: 10.1016/j.mencom.2018.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Fenton OS, Kauffman KJ, Kaczmarek JC, McClellan RL, Jhunjhunwala S, Tibbitt MW, Zeng MD, Appel EA, Dorkin JR, Mir FF, Yang JH, Oberli MA, Heartlein MW, DeRosa F, Langer R, Anderson DG. Synthesis and Biological Evaluation of Ionizable Lipid Materials for the In Vivo Delivery of Messenger RNA to B Lymphocytes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 28681930 DOI: 10.1002/adma.201606944] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/27/2017] [Indexed: 04/14/2023]
Abstract
B lymphocytes regulate several aspects of immunity including antibody production, cytokine secretion, and T-cell activation; moreover, B cell misregulation is implicated in autoimmune disorders and cancers such as multiple sclerosis and non-Hodgkin's lymphomas. The delivery of messenger RNA (mRNA) into B cells can be used to modulate and study these biological functions by means of inducing functional protein expression in a dose-dependent and time-controlled manner. However, current in vivo mRNA delivery systems fail to transfect B lymphocytes and instead primarily target hepatocytes and dendritic cells. Here, the design, synthesis, and biological evaluation of a lipid nanoparticle (LNP) system that can encapsulate mRNA, navigate to the spleen, transfect B lymphocytes, and induce more than 60 pg of protein expression per million B cells within the spleen is described. Importantly, this LNP induces more than 85% of total protein production in the spleen, despite LNPs being observed transiently in the liver and other organs. These results demonstrate that LNP composition alone can be used to modulate the site of protein induction in vivo, highlighting the critical importance of designing and synthesizing new nanomaterials for nucleic acid delivery.
Collapse
Affiliation(s)
- Owen S Fenton
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kevin J Kauffman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - James C Kaczmarek
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Rebecca L McClellan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Siddharth Jhunjhunwala
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Mark W Tibbitt
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Manhao D Zeng
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Eric A Appel
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Joseph R Dorkin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Faryal F Mir
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Jung H Yang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Matthias A Oberli
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | | | - Frank DeRosa
- Shire Pharmaceuticals, Lexington, MA, 02421, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel G Anderson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
18
|
An electrostatic conjugate composed of liposomes, polylysine and a polylactide micelle: a biodegradability–cytotoxicity relationship. MENDELEEV COMMUNICATIONS 2017. [DOI: 10.1016/j.mencom.2017.05.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Ni S, Qiu L, Zhang G, Zhou H, Han Y. Lymph cancer chemotherapy: delivery of doxorubicin-gemcitabine prodrug and vincristine by nanostructured lipid carriers. Int J Nanomedicine 2017; 12:1565-1576. [PMID: 28280326 PMCID: PMC5338998 DOI: 10.2147/ijn.s120685] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Radiation and chemotherapy are the most common course of treatment for B-cell lymphoma. Doxorubicin (DOX), gemcitabine (GEM), and vincristine (VCR) are the commonly used antilymphoma chemotherapeutic drugs. The aim of this study is to construct a novel drug delivery system for the combination delivery of the three drugs on lymphoma. MATERIALS AND METHODS DOX-GEM prodrug was synthesized. Novel nanostructured lipid carriers (NLCs) containing DOX-GEM prodrug and VCR were prepared and used to treat B-cell lymphoma through in vivo treatment to a lymph cancer animal model. The systemic toxicity of the nanomedicine was also evaluated during the treatment. RESULTS DOX-GEM prodrug and VCR-loaded NLCs (DOX-GEM VCR NLCs) exhibited the highest antitumor effect in B-cell lymphoma cells and lymphoma animal xenografts when compared with the single drug-loaded NLCs and the drug solutions. CONCLUSION It could be concluded that the highest antitumor effect can be achieved by the system due to the stable drug-loading capacity, attractive anticancer therapeutic effects, and reduced toxicities in human Burkitt's lymphoma cell line and mice-bearing cancer model. The resulting DOX-GEM VCR NLCs could be an efficient antilymph cancer agent and could be developed further for the treatment of other tumors.
Collapse
Affiliation(s)
- Shuqin Ni
- Department of Internal Medicine Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Ji'nan, Shandong, People's Republic of China
| | - Lei Qiu
- Department of Internal Medicine Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Ji'nan, Shandong, People's Republic of China
| | - Guodong Zhang
- Department of Internal Medicine Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Ji'nan, Shandong, People's Republic of China
| | - Haiyan Zhou
- Department of Internal Medicine Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Ji'nan, Shandong, People's Republic of China
| | - Yong Han
- Department of Internal Medicine Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Ji'nan, Shandong, People's Republic of China
| |
Collapse
|
20
|
Efimova AA, Chvalun SN, Kulebyakina AI, Kozlova EV, Yaroslavov AA. Synthesis and properties of conjugates involving liposomes, a linear polymer, and the micelle of a polylactide-poly(ethylene glycol) block copolymer. POLYMER SCIENCE SERIES A 2016. [DOI: 10.1134/s0965545x16020061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Knapp CM, He J, Lister J, Whitehead KA. Lipidoid nanoparticle mediated silencing of Mcl-1 induces apoptosis in mantle cell lymphoma. Exp Biol Med (Maywood) 2016; 241:1007-13. [PMID: 27022142 DOI: 10.1177/1535370216640944] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Conventional chemo-immunotherapy fails to cure the majority of mantle cell lymphoma patients and causes substantial toxicity. Resistant mantle cell lymphoma cells commonly overexpress and are dependent on the anti-apoptotic protein, Mcl-1, for survival. In this study, we use potent lipidoid nanoparticles to deliver siRNA to silence Mcl-1 expression. Studies were conducted using two different mantle cell lymphoma cell lines, a normal (JeKo-1) and an aggressive (MAVER-1) line, to assess the ability of lipidoid nanoparticles to be used broadly in the treatment of mantle cell lymphoma. Mcl-1 mRNA silencing and protein knockdown was observed as early as one day after treatment and the lipidoid nanoparticles achieved sustained silencing of Mcl-1 mRNA for at least four days in both JeKo-1 and MAVER-1 cells. Eighty percent silencing was achieved at three days post-transfection in JeKo-1 cells while 50% silencing was achieved in MAVER-1 cells, which are more resistant to transfection. Interestingly, silencing of Mcl-1 induced apoptosis in nearly 30% of both JeKo-1 and MAVER-1 cells three days post-transfection. Additionally, Mcl-1 silencing and the resultant apoptosis in mantle cell lymphoma cells were dose dependent. These data suggest that lipidoid nanoparticles siRNA therapy targeting Mcl-1 has potential as a new treatment modality for mantle cell lymphoma and many other cancers that overexpress Mcl-1. The combination of anti-Mcl-1 lipidoid nanoparticles with other forms of targeted therapy offers hope for reducing or replacing cytotoxic chemotherapy as standard treatment for mantle cell lymphoma.
Collapse
Affiliation(s)
- Christopher M Knapp
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jia He
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - John Lister
- Division of Hematology and Cellular Therapy, Allegheny Health Network Cancer Institute, Pittsburgh, PA 15224, USA
| | - Kathryn A Whitehead
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
22
|
Efimova AA, Kostenko SN, Orlov VN, Yaroslavov AA. Effect of cholesterol on the phase state and permeability of mixed liposomes composed of anionic diphosphatidylglycerol and zwitterionic dipalmitoylphosphatidylcholine. MENDELEEV COMMUNICATIONS 2016. [DOI: 10.1016/j.mencom.2016.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Efimova AA, Sybachin AV, Chvalun SN, Kulebyakina AI, Kozlova EV, Yaroslavov AA. Biodegradable multi-liposomal containers. POLYMER SCIENCE SERIES B 2015. [DOI: 10.1134/s1560090415020050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Yaroslavov AA, Efimova AA, Sybachin AV, Chvalun SN, Kulebyakina AI, Kozlova EV. Biodegradable multi-liposomal containers. RSC Adv 2015. [DOI: 10.1039/c5ra00835b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Structure of multiliposomal nanocontainer on base of anionic liposomes, polycation and polylactide.
Collapse
|
25
|
Rituximab and bortezomib (RB): a new effective regimen for refractory or relapsed indolent lymphomas. Med Oncol 2014; 32:353. [DOI: 10.1007/s12032-014-0353-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 11/12/2014] [Indexed: 11/26/2022]
|