1
|
Jashire Nezhad N, Safari A, Namavar MR, Nami M, Karimi-Haghighi S, Pandamooz S, Dianatpour M, Azarpira N, Khodabandeh Z, Zare S, Hooshmandi E, Bayat M, Owjfard M, Zafarmand SS, Fadakar N, Jaberi AR, Salehi MS, Borhani-Haghighi A. Short-term beneficial effects of human dental pulp stem cells and their secretome in a rat model of mild ischemic stroke. J Stroke Cerebrovasc Dis 2023; 32:107202. [PMID: 37354874 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/01/2023] [Accepted: 05/29/2023] [Indexed: 06/26/2023] Open
Abstract
Although cell therapy has been applied in regenerative medicine for decades, recent years have seen greatly increased attention being given to the use of stem cell-based derivatives such as cell-free secretome. Dental pulp stem cells (DPSCs) are widely available, easily accessible, and have high neuroprotective and angiogenic properties. In addition, DPSC-derived secretome contains a rich mixture of trophic factors. The current investigation evaluated the short-term therapeutic effects of human DPSCs and their secretome in a rat model of mild ischemic stroke. Mild ischemic stroke was induced by 30 min middle cerebral artery occlusion, and hDPSCs or their secretome was administered intra-arterially and intranasally. Neurological function, infarct size, spatial working memory, and relative expression of seven target genes in two categories of neurotrophic and angiogenic factors were assessed three days after stroke. In the short-term, all treatments reduced the severity of neurological and histological deficits caused by ischemic stroke. Moreover, transient middle cerebral artery occlusion led to the striatal and cortical over-expression of BDNF, NT-3, and angiogenin, while NGF and VEGF expression was reduced. Almost all interventions were able to modulate the expression of target genes after stroke. The obtained data revealed that single intra-arterial administration of hDPSCs or their secretome, single intranasal transplantation of hDPSCs, or repeated intranasal administration of hDPSC-derived secretome was able to ameliorate the devastating effects of a mild stroke, at least in the short-term.
Collapse
Affiliation(s)
- Nahid Jashire Nezhad
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Anahid Safari
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Namavar
- Histomorphometry & Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran; Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Nami
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khodabandeh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Etrat Hooshmandi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Nima Fadakar
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Rahimi Jaberi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | |
Collapse
|
2
|
Goraltchouk A, Mankovskaya S, Kuznetsova T, Hladkova Z, Hollander JM, Luppino F, Seregin A. Comparative evaluation of rhFGF18 and rhGDF11 treatment in a transient ischemia stroke model. Restor Neurol Neurosci 2023; 41:257-270. [PMID: 38363623 DOI: 10.3233/rnn-231347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Background Pharmacological treatments for ischemic stroke remain limited to thrombolysis, which is associated with increased risk of potentially fatal hemorrhage. Treatments with Recombinant Human Fibroblast Growth Factor 18 (rhFGF18) and Growth and Differentiation Factor 11 (rhGDF11) appear promising based on different preclinical models. The goal of this study was to compare the effects of rhFGF18 and rhGDF11 directly on survival, behavioral deficits, and histological fingerprint of cerebral ischemia in the Wistar rat middle cerebral artery occlusion (MCAO) model of stroke. Methods Ischemia-reperfusion injury was induced using a 2-hour transient MCAO. Animals were administered rhFGF18 (infusion), rhGDF11 (multi-injection), or Phosphate Buffered Saline (PBS) vehicle control and followed for 42 days. Motor-Cognitive deficits were evaluated using the Morris Water Maze at Days 0 (pre-MCAO), 7, 21, and 42. Histopathological assessments were performed on Days 21 and 42. Results Day 7 post-ischemia water maze performance times increased 38.3%, 2.1%, and 23.1% for PBS, rhFGF18, and rhGDF11-treated groups, respectively. Fraction of neurons with abnormal morphology (chromatolysis, pyknotic nuclei, somal degeneration) decreased in all groups toward Day 42 and was lowest for rhFGF18. AChE-positive fiber density and activity increased over time in the rhFGF18 group, remained unchanged in the rhGDF11 treatment arm, and declined in the PBS control. Metabolic increases were greatest in rhGDF11 treated animals, with both rhFGF18 and rhGDF11 achieving improvements over PBS, as evidenced by increased succinate dehydrogenase and lactate dehydrogenase activity. Finally, rhFGF18 treatment exhibited a trend for reduced mortality relative to PBS (5.6%, 95% CI [27.3%, 0.1% ] vs. 22.2%, 95% CI [47.6%, 6.4% ]). Conclusions rhFGF18 treatment appears promising in improving survival and promoting motor-cognitive recovery following cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
| | | | | | - Zhanna Hladkova
- Institute of Physiology, National Academy of Sciences, Minsk, Belarus
| | - Judith M Hollander
- Remedium Bio, Inc., Needham, MA, USA
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | | | | |
Collapse
|
3
|
Safiullov Z, Izmailov A, Sokolov M, Markosyan V, Kundakchan G, Garifulin R, Shmarov M, Naroditsky B, Logunov D, Islamov R. Autologous Genetically Enriched Leucoconcentrate in the Preventive and Acute Phases of Stroke Treatment in a Mini-Pig Model. Pharmaceutics 2022; 14:pharmaceutics14102209. [PMID: 36297644 PMCID: PMC9611398 DOI: 10.3390/pharmaceutics14102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/21/2022] [Accepted: 10/12/2022] [Indexed: 12/05/2022] Open
Abstract
The natural limitations of regeneration in the CNS are major problems for the treatment of neurological disorders, including ischaemic brain strokes. Among the approaches being actively developed to inhibit post-ischaemic negative consequences is the delivery of therapeutic genes encoding neuroprotective molecules to the brain. Unfortunately, there are currently no proven and available medicines that contain recombinant human genes for the treatment of ischaemic cerebral stroke. Of particular interest is the development of treatments for patients at risk of ischaemic stroke. In the present study, we propose a proof of concept for the use of an autologous, genetically enriched leucoconcentrate temporally secreting recombinant vascular endothelial growth factor (VEGF), glial-cell-line-derived neurotrophic factor (GDNF) and the neural cell adhesion molecule (NCAM) for the treatment of stroke. In a mini-pig ischaemic stroke model, genetically enriched leucoconcentrate was infused 4 h after surgery (gene therapy in acute phase) or 2 days before stroke modelling (preventive gene therapy). On day 21, after the stroke modelling, the post-ischaemic brain recovery was examined by morphologic and immunofluorescence analysis. The benefits of treating a stroke with genetically enriched leucoconcentrate both for preventive purposes and in the acute phase were confirmed by an improved performance in behavioural tests, higher preservation of brain tissue and positive post-ischaemic brain remodelling in the peri-infarct area. These results suggest that the employment of autologous leucocytes enabling the temporary production of the recombinant therapeutic molecules to correct the pathological process in the CNS may be one of the breakthrough approaches in gene therapy.
Collapse
Affiliation(s)
- Zufar Safiullov
- The Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Andrei Izmailov
- The Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Mikhail Sokolov
- The Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Vage Markosyan
- The Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Grayr Kundakchan
- The Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Ravil Garifulin
- The Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Maksim Shmarov
- The National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Boris Naroditsky
- The National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Denis Logunov
- The National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Rustem Islamov
- The Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
- Correspondence:
| |
Collapse
|
4
|
Salehi MS, Safari A, Pandamooz S, Jurek B, Hooshmandi E, Owjfard M, Bayat M, Zafarmand SS, Miyan JA, Borhani-Haghighi A. The Beneficial Potential of Genetically Modified Stem Cells in the Treatment of Stroke: a Review. Stem Cell Rev Rep 2022; 18:412-440. [PMID: 34033001 PMCID: PMC8144279 DOI: 10.1007/s12015-021-10175-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 12/16/2022]
Abstract
The last two decades have witnessed a surge in investigations proposing stem cells as a promising strategy to treat stroke. Since growth factor release is considered as one of the most important aspects of cell-based therapy, stem cells over-expressing growth factors are hypothesized to yield higher levels of therapeutic efficiency. In pre-clinical studies of the last 15 years that were investigating the efficiency of stem cell therapy for stroke, a variety of stem cell types were genetically modified to over-express various factors. In this review we summarize the current knowledge on the therapeutic efficiency of stem cell-derived growth factors, encompassing techniques employed and time points to evaluate. In addition, we discuss several types of stem cells, including the recently developed model of epidermal neural crest stem cells, and genetically modified stem cells over-expressing specific factors, which could elevate the restorative potential of naive stem cells. The restorative potential is based on enhanced survival/differentiation potential of transplanted cells, apoptosis inhibition, infarct volume reduction, neovascularization or functional improvement. Since the majority of studies have focused on the short-term curative effects of genetically engineered stem cells, we emphasize the need to address their long-term impact.
Collapse
Affiliation(s)
- Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Anahid Safari
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Benjamin Jurek
- Institute of Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Etrat Hooshmandi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Jaleel A Miyan
- Faculty of Biology, Division of Neuroscience & Experimental Psychology, The University of Manchester, Manchester, UK
| | | |
Collapse
|
5
|
Li C, Sun T, Jiang C. Recent advances in nanomedicines for the treatment of ischemic stroke. Acta Pharm Sin B 2021; 11:1767-1788. [PMID: 34386320 PMCID: PMC8343119 DOI: 10.1016/j.apsb.2020.11.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/27/2020] [Accepted: 09/13/2020] [Indexed: 12/20/2022] Open
Abstract
Ischemic stroke is a cerebrovascular disease normally caused by interrupted blood supply to the brain. Ischemia would initiate the cascade reaction consisted of multiple biochemical events in the damaged areas of the brain, where the ischemic cascade eventually leads to cell death and brain infarction. Extensive researches focusing on different stages of the cascade reaction have been conducted with the aim of curing ischemic stroke. However, traditional treatment methods based on antithrombotic therapy and neuroprotective therapy are greatly limited for their poor safety and treatment efficacy. Nanomedicine provides new possibilities for treating stroke as they could improve the pharmacokinetic behavior of drugs in vivo, achieve effective drug accumulation at the target site, enhance the therapeutic effect and meanwhile reduce the side effect. In this review, we comprehensively describe the pathophysiology of stroke, traditional treatment strategies and emerging nanomedicines, summarize the barriers and methods for transporting nanomedicine to the lesions, and illustrate the latest progress of nanomedicine in treating ischemic stroke, with a view to providing a new feasible path for the treatment of cerebral ischemia.
Collapse
Key Words
- AEPO, asialo-erythropoietin
- APOE, apolipoprotein E
- BBB, blood‒brain barrier
- BCECs, brain capillary endothelial cells
- Blood‒brain barrier
- CAT, catalase
- COX-1, cyclooxygenase-1
- CXCR-4, C-X-C chemokine receptor type 4
- Ce-NPs, ceria nanoparticles
- CsA, cyclosporine A
- DAMPs, damage-associated molecular patterns
- GFs, growth factors
- GPIIb/IIIa, glycoprotein IIb/IIIa
- HMGB1, high mobility group protein B1
- Hb, hemoglobin
- ICAM-1, intercellular adhesion molecule-1
- IL-1β, interleukin-1β
- IL-6, interleukin-6
- Ischemic cascade
- LFA-1, lymphocyte function-associated antigen-1
- LHb, liposomal Hb
- MCAO, middle cerebral artery occlusion
- MMPs, matrix metalloproteinases
- MSC, mesenchymal stem cell
- NF-κB, nuclear factor-κB
- NGF, nerve growth factor
- NMDAR, N-methyl-d-aspartate receptor
- NOS, nitric oxide synthase
- NPs, nanoparticles
- NSCs, neural stem cells
- Nanomedicine
- Neuroprotectant
- PBCA, poly-butylcyanoacrylate
- PCMS, poly (chloromethylstyrene)
- PEG, poly-ethylene-glycol
- PEG-PLA, poly (ethylene-glycol)-b-poly (lactide)
- PLGA NPs, poly (l-lactide-co-glycolide) nanoparticles
- PSD-95, postsynaptic density protein-95
- PSGL-1, P-selectin glycoprotein ligand-1
- RBCs, red blood cells
- RES, reticuloendothelial system
- RGD, Arg-Gly-Asp
- ROS, reactive oxygen species
- Reperfusion
- SDF-1, stromal cell-derived factor-1
- SHp, stroke homing peptide
- SOD, superoxide dismutase
- SUR1-TRPM4, sulfonylurea receptor 1-transient receptor potential melastatin-4
- Stroke
- TEMPO, 2,2,6,6-tetramethylpiperidine-1-oxyl
- TIA, transient ischemic attack
- TNF-α, tumor necrosis factor-α
- Thrombolytics
- cRGD, cyclic Arg-Gly-Asp
- e-PAM-R, arginine-poly-amidoamine ester
- iNOS, inducible nitric oxide synthase
- miRNAs, microRNAs
- nNOS, neuron nitric oxide synthase
- siRNA, small interfering RNA
Collapse
|
6
|
Asgharzade S, Talaei A, Farkhondeh T, Forouzanfar F. Combining Growth Factor and Stem Cell Therapy for Stroke Rehabilitation, A Review. Curr Drug Targets 2021; 21:781-791. [PMID: 31914912 DOI: 10.2174/1389450121666200107100747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/28/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022]
Abstract
Stroke is a serious, life-threatening condition demanding vigorous search for new therapies. Recent research has focused on stem cell-based therapies as a viable choice following ischemic stroke, based on studies displaying that stem cells transplanted to the brain not only survive but also cause functional recovery. Growth factors defined as polypeptides that regulate the growth and differentiation of many cell types. Many studies have demonstrated that combined use of growth factors may increase results by the stimulation of endogenous neurogenesis, anti-inflammatory, neuroprotection properties, and enhancement of stem cell survival rates and so may be more effective than a single stem cell therapy. This paper reviews and discusses the most promising new stroke recovery research, including combination treatment.
Collapse
Affiliation(s)
- Samira Asgharzade
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Andisheh Talaei
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Markosyan V, Safiullov Z, Izmailov A, Fadeev F, Sokolov M, Kuznetsov M, Trofimov D, Kim E, Kundakchyan G, Gibadullin A, Salafutdinov I, Nurullin L, Bashirov F, Islamov R. Preventive Triple Gene Therapy Reduces the Negative Consequences of Ischemia-Induced Brain Injury after Modelling Stroke in a Rat. Int J Mol Sci 2020; 21:ijms21186858. [PMID: 32962079 PMCID: PMC7558841 DOI: 10.3390/ijms21186858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Currently, the main fundamental and clinical interest for stroke therapy is focused on developing a neuroprotective treatment of a penumbra region within the therapeutic window. The development of treatments for ischemic stroke in at-risk patients is of particular interest. Preventive gene therapy may significantly reduce the negative consequences of ischemia-induced brain injury. In the present study, we suggest the approach of preventive gene therapy for stroke. Adenoviral vectors carrying genes encoding vascular endothelial growth factor (VEGF), glial cell-derived neurotrophic factor (GDNF) and neural cell adhesion molecule (NCAM) or gene engineered umbilical cord blood mononuclear cells (UCB-MC) overexpressing recombinant VEGF, GDNF, and NCAM were intrathecally injected before distal occlusion of the middle cerebral artery in rats. Post-ischemic brain recovery was investigated 21 days after stroke modelling. Morphometric and immunofluorescent analysis revealed a reduction of infarction volume accompanied with a lower number of apoptotic cells and decreased expression of Hsp70 in the peri-infarct region in gene-treated animals. The lower immunopositive areas for astrocytes and microglial cells markers, higher number of oligodendrocytes and increased expression of synaptic proteins suggest the inhibition of astrogliosis, supporting the corresponding myelination and functional recovery of neurons in animals receiving preventive gene therapy. In this study, for the first time, we provide evidence of the beneficial effects of preventive triple gene therapy by an adenoviral- or UCB-MC-mediated intrathecal simultaneous delivery combination of vegf165, gdnf, and ncam1 on the preservation and recovery of the brain in rats with subsequent modelling of stroke.
Collapse
Affiliation(s)
- Vage Markosyan
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (V.M.); (Z.S.); (A.I.); (F.F.); (M.S.); (M.K.); (D.T.); (E.K.); (A.G.); (F.B.)
| | - Zufar Safiullov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (V.M.); (Z.S.); (A.I.); (F.F.); (M.S.); (M.K.); (D.T.); (E.K.); (A.G.); (F.B.)
| | - Andrei Izmailov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (V.M.); (Z.S.); (A.I.); (F.F.); (M.S.); (M.K.); (D.T.); (E.K.); (A.G.); (F.B.)
| | - Filip Fadeev
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (V.M.); (Z.S.); (A.I.); (F.F.); (M.S.); (M.K.); (D.T.); (E.K.); (A.G.); (F.B.)
| | - Mikhail Sokolov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (V.M.); (Z.S.); (A.I.); (F.F.); (M.S.); (M.K.); (D.T.); (E.K.); (A.G.); (F.B.)
| | - Maksim Kuznetsov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (V.M.); (Z.S.); (A.I.); (F.F.); (M.S.); (M.K.); (D.T.); (E.K.); (A.G.); (F.B.)
| | - Dmitry Trofimov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (V.M.); (Z.S.); (A.I.); (F.F.); (M.S.); (M.K.); (D.T.); (E.K.); (A.G.); (F.B.)
| | - Evgeny Kim
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (V.M.); (Z.S.); (A.I.); (F.F.); (M.S.); (M.K.); (D.T.); (E.K.); (A.G.); (F.B.)
| | - Grayr Kundakchyan
- Institute of Fundamental Medicine and Biology, Kazan [Volga Region] Federal University, 420008 Kazan, Russia; (G.K.); (I.S.)
| | - Airat Gibadullin
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (V.M.); (Z.S.); (A.I.); (F.F.); (M.S.); (M.K.); (D.T.); (E.K.); (A.G.); (F.B.)
| | - Ilnur Salafutdinov
- Institute of Fundamental Medicine and Biology, Kazan [Volga Region] Federal University, 420008 Kazan, Russia; (G.K.); (I.S.)
| | - Leniz Nurullin
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center of Kazan Scientific Center of Russian Academy of Sciences, 119991 Kazan, Russia;
| | - Farid Bashirov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (V.M.); (Z.S.); (A.I.); (F.F.); (M.S.); (M.K.); (D.T.); (E.K.); (A.G.); (F.B.)
| | - Rustem Islamov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (V.M.); (Z.S.); (A.I.); (F.F.); (M.S.); (M.K.); (D.T.); (E.K.); (A.G.); (F.B.)
- Correspondence:
| |
Collapse
|
8
|
Farokhi-Sisakht F, Farhoudi M, Sadigh-Eteghad S, Mahmoudi J, Mohaddes G. Cognitive Rehabilitation Improves Ischemic Stroke-Induced Cognitive Impairment: Role of Growth Factors. J Stroke Cerebrovasc Dis 2019; 28:104299. [DOI: 10.1016/j.jstrokecerebrovasdis.2019.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/24/2019] [Accepted: 07/13/2019] [Indexed: 12/20/2022] Open
|
9
|
Spiliopoulos S, Festas G, Reppas L, Brountzos E. Intra-arterial administration of cell-based biological agents for ischemic stroke therapy. Expert Opin Biol Ther 2019; 19:249-259. [PMID: 30615496 DOI: 10.1080/14712598.2019.1566454] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/05/2019] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Ischemic stroke is becoming a primary cause of disability and death worldwide. To date, therapeutic options remain limited focusing on mechanical thrombolysis or administration of thrombolytic agents. However, these therapies do not promote neuroprotection and neuro-restoration of the ischemic area of the brain. AREAS COVERED This review highlights the option of minimal invasive, intra-arterial, administration of biological agents for stroke therapy. The authors provide an update of all available studies, discuss issues that influence outcomes and describe future perspectives which aim to improve clinical outcomes. New therapeutic options based on cellular and molecular interactions following an ischemic brain event, will be highlighted. EXPERT OPINION Intra-arterial administration of biological agents during trans-catheter thrombolysis or thrombectomy could limit neuronal cell death and facilitate regeneration or neurogenesis following ischemic brain injury. Despite the initial progress, further meticulous studies are needed in order to establish the clinical use of stem cell-induced neuroprotection and neuroregeneration.
Collapse
Affiliation(s)
- Stavros Spiliopoulos
- a 2nd Department of Radiology, Division of Interventional Radiology, School of Medicine , National and Kapodistrian University of Athens, Attikon University Hospital , Athens , Greece
| | - Georgios Festas
- a 2nd Department of Radiology, Division of Interventional Radiology, School of Medicine , National and Kapodistrian University of Athens, Attikon University Hospital , Athens , Greece
| | - Lazaros Reppas
- a 2nd Department of Radiology, Division of Interventional Radiology, School of Medicine , National and Kapodistrian University of Athens, Attikon University Hospital , Athens , Greece
| | - Elias Brountzos
- a 2nd Department of Radiology, Division of Interventional Radiology, School of Medicine , National and Kapodistrian University of Athens, Attikon University Hospital , Athens , Greece
| |
Collapse
|
10
|
Sokolov ME, Bashirov FV, Markosyan VA, Povysheva TV, Fadeev FO, Izmailov AA, Kuztetsov MS, Safiullov ZZ, Shmarov MM, Naroditskyi BS, Palotás A, Islamov RR. Triple-Gene Therapy for Stroke: A Proof-of-Concept in Vivo Study in Rats. Front Pharmacol 2018; 9:111. [PMID: 29497380 PMCID: PMC5818439 DOI: 10.3389/fphar.2018.00111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 01/31/2018] [Indexed: 12/26/2022] Open
Abstract
Natural brain repair after stroke is extremely limited, and current therapeutic options are even more scarce with no clinical break-through in sight. Despite restricted regeneration in the central nervous system, we have previously proved that human umbilical cord blood mono-nuclear cells (UCB-MC) transduced with adenoviral vectors carrying genes encoding vascular endothelial growth factor (VEGF), glial cell-derived neurotrophic factor (GDNF), and neural cell adhesion molecule (NCAM) successfully rescued neurons in amyotrophic lateral sclerosis and spinal cord injury. This proof-of-principle project was aimed at evaluating the beneficial effects of the same triple-gene approach in stroke. Rats subjected to distal occlusion of the middle cerebral artery were treated intrathecally with a combination of these genes either directly or using our cell-based (UCB-MC) approach. Various techniques and markers were employed to evaluate brain injury and subsequent recovery after treatment. Brain repair was most prominent when therapeutic genes were delivered via adenoviral vector- or UCB-MC-mediated approach. Remodeling of brain cortex in the stroke area was confirmed by reduction of infarct volume and attenuated neural cell death, depletion of astrocytes and microglial cells, and increase in the number of oligodendroglial cells and synaptic proteins expression. These results imply that intrathecal injection of genetically engineered UCB-MC over-expressing therapeutic molecules (VEGF, GDNF, and NCAM) following cerebral blood vessel occlusion might represent a novel avenue for future research into treating stroke.
Collapse
Affiliation(s)
- Mikhail E Sokolov
- Department of Medical Biology and Genetics, Kazan State Medical University, Kazan, Russia
| | - Farid V Bashirov
- Department of Medical Biology and Genetics, Kazan State Medical University, Kazan, Russia
| | - Vage A Markosyan
- Department of Medical Biology and Genetics, Kazan State Medical University, Kazan, Russia
| | - Tatyana V Povysheva
- Department of Medical Biology and Genetics, Kazan State Medical University, Kazan, Russia
| | - Filip O Fadeev
- Department of Medical Biology and Genetics, Kazan State Medical University, Kazan, Russia
| | - Andrey A Izmailov
- Department of Medical Biology and Genetics, Kazan State Medical University, Kazan, Russia
| | - Maxim S Kuztetsov
- Department of Medical Biology and Genetics, Kazan State Medical University, Kazan, Russia
| | - Zufar Z Safiullov
- Department of Medical Biology and Genetics, Kazan State Medical University, Kazan, Russia
| | - Maxim M Shmarov
- Gamaleya Research Institute of Epidemiology and Microbiology, Moscow, Russia
| | - Boris S Naroditskyi
- Gamaleya Research Institute of Epidemiology and Microbiology, Moscow, Russia
| | - András Palotás
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia.,Asklepios-Med (Private Medical Practice and Research Center), Szeged, Hungary
| | - Rustem R Islamov
- Department of Medical Biology and Genetics, Kazan State Medical University, Kazan, Russia.,Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia.,Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan, Russia
| |
Collapse
|
11
|
Bardania H, Tarvirdipour S, Dorkoosh F. Liposome-targeted delivery for highly potent drugs. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 45:1478-1489. [DOI: 10.1080/21691401.2017.1290647] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Shabnam Tarvirdipour
- Biomedical Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Farid Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|