1
|
Li X, Su Z, Wang C, Wu W, Zhang Y, Wang C. Mapping the evolution of inhaled drug delivery research: Trends, collaborations, and emerging frontiers. Drug Discov Today 2024; 29:103864. [PMID: 38141779 DOI: 10.1016/j.drudis.2023.103864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Inhaled drug delivery is a unique administration route known for its ability to directly target pulmonary or brain regions, facilitating rapid onset and circumventing the hepatic first-pass effect. To characterize current global trends and provide a visual overview of the latest trends in inhaled drug delivery research, bibliometric analysis of data acquired from the Web of Science Core Collection database was performed via VOSviewer and CiteSpace. Inhaled drug delivery can not only be utilized in respiratory diseases but also has potential in other types of diseases for both fundamental and clinical applications. Overall, we provide an overview of present trends, collaborations, and newly discovered frontiers of inhaled drug delivery.
Collapse
Affiliation(s)
- Xinyuan Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, PR China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 404120, PR China
| | - Zhengxing Su
- Sichuan Kelun Pharmaceutical Research Institute Co. Ltd, Chengdu 611138, Sichuan, PR China
| | - Chunyou Wang
- Department of Dermatology, The First Affiliated Hospital, Army Medical University, 30 Gaotanyan Street, Chongqing 400038, PR China
| | - Wen Wu
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 404120, PR China.
| | - Yan Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, PR China.
| | - Chenhui Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, PR China.
| |
Collapse
|
2
|
Drivers of absolute systemic bioavailability after oral pulmonary inhalation in humans. Eur J Pharm Biopharm 2021; 164:36-53. [PMID: 33895293 DOI: 10.1016/j.ejpb.2021.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/22/2021] [Accepted: 04/15/2021] [Indexed: 11/23/2022]
Abstract
There are few studies in humans dealing with the relationship between physico-chemical properties of drugs and their systemic bioavailability after administration via oral inhalation route (Fpulm). Getting further insight in the determinants of Fpulm after oral pulmonary inhalation could be of value for drugs considered for a systemic delivery as a result of poor oral bioavailability, as well as for drugs considered for a local delivery to anticipate their undesirable systemic effects. To better delineate the parameters influencing the systemic delivery after oral pulmonary inhalation in humans, we studied the influence of physico-chemical and permeability properties obtained in silico on the rate and extent of Fpulm in a series of 77 compounds with or without marketing approval for pulmonary delivery, and intended either for local or for systemic delivery. Principal component analysis (PCA) showed mainly that Fpulm was positively correlated with Papp and negatively correlated with %TPSA, without a significant influence of solubility and ionization fraction, and no apparent link with lipophilicity and drug size parameters. As a result of the small sample set, the performance of the different models as predictive of Fpulm were quite average with random forest algorithm displaying the best performance. As a whole, the different models captured between 50 and 60% of the variability with a prediction error of less than 20%. Tmax data suggested a significant positive influence of lipophilicity on absorption rate while charge apparently had no influence. A significant linear relationship between Cmax and dose (R2 = "0.79) highlighted that Cmax was primarily dependent on dose and absorption rate and could be used to estimate Cmax in humans for new inhaled drugs.
Collapse
|
3
|
Sou T, Bergström CAS. Contemporary Formulation Development for Inhaled Pharmaceuticals. J Pharm Sci 2020; 110:66-86. [PMID: 32916138 DOI: 10.1016/j.xphs.2020.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022]
Abstract
Pulmonary delivery has gained increased interests over the past few decades. For respiratory conditions, targeted drug delivery directly to the site of action can achieve a high local concentration for efficacy with reduced systemic exposure and adverse effects. For systemic conditions, the unique physiology of the lung evolutionarily designed for rapid gaseous exchange presents an entry route for systemic drug delivery. Although the development of inhaled formulations has come a long way over the last few decades, many aspects of it remain to be elucidated. In particular, a reliable and well-understood method for in vitro-in vivo correlations remains to be established. With the rapid and ongoing advancement of technology, there is much potential to better utilise computational methods including different types of modelling and simulation approaches to support inhaled formulation development. This review intends to provide an introduction on some fundamental concepts in pulmonary drug delivery and inhaled formulation development followed by discussions on some challenges and opportunities in the translation of inhaled pharmaceuticals from preclinical studies to clinical development. The review concludes with some recent advancements in modelling and simulation approaches that could play an increasingly important role in modern formulation development of inhaled pharmaceuticals.
Collapse
Affiliation(s)
- Tomás Sou
- Drug Delivery, Department of Pharmacy, Uppsala University, Uppsala, Sweden; Pharmacometrics, Department of Pharmacy, Uppsala University, Uppsala, Sweden.
| | - Christel A S Bergström
- Drug Delivery, Department of Pharmacy, Uppsala University, Uppsala, Sweden; The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Rosenberg Y, Saxena A. Acetylcholinesterase inhibition resulting from exposure to inhaled OP can be prevented by pretreatment with BChE in both macaques and minipigs. Neuropharmacology 2020; 174:108150. [PMID: 32442543 PMCID: PMC7365266 DOI: 10.1016/j.neuropharm.2020.108150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
More frequent and widespread nerve agent attacks highlight the need for efficacious pre- and post-exposure organophosphate (OP) counter-measures to protect military and civilian populations. Because of critical targeting of acetylcholinesterase (AChE) in the CNS by OPs, a pre-treatment candidate for preventing/reducing poisoning will be a broadly acting molecule that scavenges OPs in blood before they reach their physiological targets. Prophylactic human butyrylcholinesterase (HuBChE), the leading pretreatment candidate, has been shown to protect against multiple LD50's of nerve agents in rodents, macaques, and minipigs. This review describes the development of a HuBChE bioscavenger pretreatment from early proof-of-concept studies to pre-clinical studies with the native injectable enzyme and the development of aerosolized forms of recombinant enzyme, which can be delivered by inhalation nebulizer devices, to effect protection against inhaled OP nerve agents and insecticides. Early animal studies utilized parenteral exposure. However, lungs are the portal of entry for most volatile OP vapors and represent the major means of OP intoxication. In this regard, pretreat-ment with 7.5 mg/kg of HuBChE by IM injection protected minipigs against lethal sarin vapor and prevented AChE inhibition in the blood. This is similar to the five-day protection in macaques by an aerosolized rHuBChE using a nebulizer against aerosolized paraoxon (estimated to be an 8 mg/kg estimated human dose). Importantly, lethal inhaled doses of OP may be smaller relative to the same dose delivered by injection, thus reducing the protective HuBChE dose, while a combination of HuBChE and post-exposure oxime may prolong protection.
Collapse
Affiliation(s)
| | - Ashima Saxena
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| |
Collapse
|
5
|
Pulmonary Delivery of Isoniazid in Nanogel-Loaded Chitosan Hybrid Microparticles for Inhalation. J Aerosol Med Pulm Drug Deliv 2019; 32:78-87. [DOI: 10.1089/jamp.2018.1460] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
6
|
Nawroth JC, Barrile R, Conegliano D, van Riet S, Hiemstra PS, Villenave R. Stem cell-based Lung-on-Chips: The best of both worlds? Adv Drug Deliv Rev 2019; 140:12-32. [PMID: 30009883 PMCID: PMC7172977 DOI: 10.1016/j.addr.2018.07.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/06/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023]
Abstract
Pathologies of the respiratory system such as lung infections, chronic inflammatory lung diseases, and lung cancer are among the leading causes of morbidity and mortality, killing one in six people worldwide. Development of more effective treatments is hindered by the lack of preclinical models of the human lung that can capture the disease complexity, highly heterogeneous disease phenotypes, and pharmacokinetics and pharmacodynamics observed in patients. The merger of two novel technologies, Organs-on-Chips and human stem cell engineering, has the potential to deliver such urgently needed models. Organs-on-Chips, which are microengineered bioinspired tissue systems, recapitulate the mechanochemical environment and physiological functions of human organs while concurrent advances in generating and differentiating human stem cells promise a renewable supply of patient-specific cells for personalized and precision medicine. Here, we discuss the challenges of modeling human lung pathophysiology in vitro, evaluate past and current models including Organs-on-Chips, review the current status of lung tissue modeling using human pluripotent stem cells, explore in depth how stem-cell based Lung-on-Chips may advance disease modeling and drug testing, and summarize practical consideration for the design of Lung-on-Chips for academic and industry applications.
Collapse
Affiliation(s)
| | | | | | - Sander van Riet
- Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, the Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, the Netherlands
| | | |
Collapse
|
7
|
Mayers I, Bhutani M. Considerations in establishing bioequivalence of inhaled compounds. Expert Opin Drug Deliv 2017; 15:153-162. [PMID: 28918665 DOI: 10.1080/17425247.2018.1381084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Generic inhalers are often perceived as inferior to their branded counterparts; however, they are safe and effective if they can meet the regulatory requirements. The approach to assess bioequivalence (BE) in oral dosage form products is not sufficient to address the complexities of inhalational products (e.g., patient-device interface); hence, more considerations are needed and caution should be applied in determining BE of inhaled compounds. AREAS COVERED This review outlines the evaluation process for generic inhalers, explores the regulatory approaches in BE assessment, and highlights the considerations and challenges in the current in vitro and in vivo approaches (lung deposition, pharmacokinetic, pharmacodynamic/clinical studies, and patient-device interface) for establishing BE of inhaled compounds. EXPERT OPINION The ultimate goals in this field are to establish uniformity in the regulatory approaches to speed the drug submission process in different regions, clear physicians' misconception of generic inhalers, and have meaningful clinical endpoints such as improvement in patient quality of life when compared to placebo and brand name drugs. As inhalational drugs become more common for other indications such as antibiotics, the technologies developed for inhaled compounds in the treatment of chronic pulmonary diseases may be extrapolated to these other agents.
Collapse
Affiliation(s)
- Irvin Mayers
- a Division of Pulmonary Medicine, Department of Medicine , University of Alberta , Edmonton , AB , Canada
| | - Mohit Bhutani
- a Division of Pulmonary Medicine, Department of Medicine , University of Alberta , Edmonton , AB , Canada
| |
Collapse
|
8
|
Mayers I, Bhutani M. Regulatory Approaches and Considerations in Establishing Bioequivalence of Inhaled Compounds. J Aerosol Med Pulm Drug Deliv 2017; 31:18-24. [PMID: 28708443 DOI: 10.1089/jamp.2017.1398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
To be considered bioequivalent to their branded counterparts, generic drugs must meet the standards for bioequivalence (BE) described by the regulatory agencies. While BE of generic inhalational drugs can be evaluated using a similar approach as that for oral dosage from products or drugs that are delivered systemically, the approach is insufficient to address the complexities of inhalational products (e.g., localized site of action, device-patient interface). Therefore, more considerations are needed and caution should be applied when evaluating BE of inhaled compounds. The purpose of this review is to highlight the considerations and challenges in establishing BE of inhaled compounds by (1) outlining the current regulatory approaches (from Health Canada, the U.S. Food and Drug Administration, and the European Medicines Agency) to assess BE for subsequent entry inhaled products (SEIPs) and (2) reviewing the literature pertaining to testing considerations of SEIPs to establish BE.
Collapse
Affiliation(s)
- Irvin Mayers
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, Canada
| | - Mohit Bhutani
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, Canada
| |
Collapse
|
9
|
Rosenberg YJ, Fink JB. Creation of a protective pulmonary bioshield against inhaled organophosphates using an aerosolized bioscavenger. Ann N Y Acad Sci 2016; 1374:151-8. [PMID: 27371808 DOI: 10.1111/nyas.13106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/18/2016] [Accepted: 04/22/2016] [Indexed: 01/15/2023]
Abstract
In addition to the global use of organophosphate (OP) pesticides for agriculture, OP nerve agents and pesticides have been employed on battlefields and by terrorists (e.g., a recent sarin attack in Syria). These occurrences highlight the need for an effective countermeasure against OP exposure. Human butyrylcholinesterase (HuBChE) is a leading candidate, but injection of the high doses required for protection present pharmacokinetic challenges. An aerosolized recombinant form (aer-rHuBChE) that can neutralize inhaled OPs at the portal of entry has been assessed for its efficacy in protecting macaques against respiratory toxicity following inhalation exposure to the pesticide paraoxon (aer-Px). While protection in macaques has been demonstrated using the MicroSprayer® delivery device, administration to humans will likely employ a vibrating mesh nebulizer (VMN). Compared to the 50-70% lung deposition achieved in adult humans with a VMN, deposition in macaques is <5%, an initial major obstacle to demonstrating protection. Such problems have been partly overcome by using a more efficient modified VMN and proportionally higher doses, which together generate an effective rHuBChE pulmonary bioshield and protect against high levels of inhaled Px.
Collapse
Affiliation(s)
| | - James B Fink
- Department of Respiratory Care, Georgia State, University, Atlanta, Georgia
| |
Collapse
|
10
|
Berg T, Hegelund Myrbäck T, Olsson M, Seidegård J, Werkström V, Zhou XH, Grunewald J, Gustavsson L, Nord M. Gene expression analysis of membrane transporters and drug-metabolizing enzymes in the lung of healthy and COPD subjects. Pharmacol Res Perspect 2014; 2:e00054. [PMID: 25505599 PMCID: PMC4186441 DOI: 10.1002/prp2.54] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 04/24/2014] [Accepted: 05/02/2014] [Indexed: 01/06/2023] Open
Abstract
This study describes for the first time the expression levels of genes encoding membrane transporters and drug-metabolizing enzymes in the lungs of ex-smoking patients with chronic obstructive pulmonary disease (COPD). Membrane transporters and drug-metabolizing enzymes are key determinants of drug uptake, metabolism, and elimination for systemically administered as well as inhaled drugs, with consequent influence on clinical efficacy and patient safety. In this study, while no difference in gene expression was found between healthy and COPD subjects, we identified a significant regional difference in mRNA expression of both membrane transporters and drug-metabolizing enzymes between central and peripheral tissue in both healthy and COPD subjects. The majority of the differentially expressed genes were higher expressed in the central airways such as the transporters SLC2A1 (GLUT1), SLC28A3 (CNT3), and SLC22A4 (OCTN1) and the drug-metabolizing enzymes GSTZ1, GSTO2, and CYP2F1. Together, this increased knowledge of local pharmacokinetics in diseased and normal lung may improve modeling of clinical outcomes of new chemical entities intended for inhalation therapy delivered to COPD patients. In addition, based on the similarities between COPD and healthy subjects regarding gene expression of membrane transporters and drug-metabolizing enzymes, our results suggest that clinical pharmacological studies in healthy volunteers could be a valid model of COPD patients regarding drug disposition of inhaled drugs in terms of drug metabolism and drug transporters.
Collapse
Affiliation(s)
- Tove Berg
- Respiratory Medicine Unit, Department of Medicine Solna and CMM, Karolinska Institutet and Karolinska University Hospital Solna Stockholm, Sweden
| | | | | | | | | | | | - Johan Grunewald
- Respiratory Medicine Unit, Department of Medicine Solna and CMM, Karolinska Institutet and Karolinska University Hospital Solna Stockholm, Sweden
| | - Lena Gustavsson
- Molecular Medicine, Department of Laboratory Medicine, Lund University Medicon Village, Lund, Sweden
| | | |
Collapse
|