1
|
Humanizing Miniature Hearts through 4-Flow Cannulation Perfusion Decellularization and Recellularization. Sci Rep 2018; 8:7458. [PMID: 29748585 PMCID: PMC5945628 DOI: 10.1038/s41598-018-25883-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 04/11/2018] [Indexed: 12/24/2022] Open
Abstract
Despite improvements in pre-clinical drug testing models, predictability of clinical outcomes continues to be inadequate and costly due to poor evidence of drug metabolism. Humanized miniature organs integrating decellularized rodent organs with tissue specific cells are translational models that can provide further physiological understanding and evidence. Here, we evaluated 4-Flow cannulated rat hearts as the fundamental humanized organ model for cardiovascular drug validation. Results show clearance of cellular components in all chambers in 4-Flow hearts with efficient perfusion into both coronary arteries and cardiac veins. Furthermore, material characterization depicts preserved organization and content of important matrix proteins such as collagens, laminin, and elastin. With access to the complete vascular network, different human cell types were delivered to show spatial distribution and integration into the matrix under perfusion for up to three weeks. The feature of 4-Flow cannulation is the preservation of whole heart conformity enabling ventricular pacing via the pulmonary vein as demonstrated by noninvasive monitoring with fluid pressure and ultrasound imaging. Consequently, 4-Flow hearts surmounting organ mimicry challenges with intact complexity in vasculature and mechanical compliance of the whole organ providing an ideal platform for improving pre-clinical drug validation in addition to understanding cardiovascular diseases.
Collapse
|
2
|
Rehnelt S, Malan D, Juhasz K, Wolters B, Doerr L, Beckler M, Kettenhofen R, Bohlen H, Bruegmann T, Sasse P. Frequency-Dependent Multi-Well Cardiotoxicity Screening Enabled by Optogenetic Stimulation. Int J Mol Sci 2017; 18:E2634. [PMID: 29211031 PMCID: PMC5751237 DOI: 10.3390/ijms18122634] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 11/17/2022] Open
Abstract
Side effects on cardiac ion channels causing lethal arrhythmias are one major reason for drug withdrawals from the market. Field potential (FP) recording from cardiomyocytes, is a well-suited tool to assess such cardiotoxic effects of drug candidates in preclinical drug development, but it is currently limited to the spontaneous beating of the cardiomyocytes and manual analysis. Herein, we present a novel optogenetic cardiotoxicity screening system suited for the parallel automated frequency-dependent analysis of drug effects on FP recorded from human-induced pluripotent stem cell-derived cardiomyocytes. For the expression of the light-sensitive cation channel Channelrhodopsin-2, we optimised protocols using virus transduction or transient mRNA transfection. Optical stimulation was performed with a new light-emitting diode lid for a 96-well FP recording system. This enabled reliable pacing at physiologically relevant heart rates and robust recording of FP. Thereby we detected rate-dependent effects of drugs on Na⁺, Ca2+ and K⁺ channel function indicated by FP prolongation, FP shortening and the slowing of the FP downstroke component, as well as generation of afterdepolarisations. Taken together, we present a scalable approach for preclinical frequency-dependent screening of drug effects on cardiac electrophysiology. Importantly, we show that the recording and analysis can be fully automated and the technology is readily available using commercial products.
Collapse
Affiliation(s)
- Susanne Rehnelt
- Institute of Physiology I, Medical Faculty, University of Bonn, 53127 Bonn, Germany.
| | - Daniela Malan
- Institute of Physiology I, Medical Faculty, University of Bonn, 53127 Bonn, Germany.
| | - Krisztina Juhasz
- Nanion Technologies GmbH, 80636 Munich, Germany.
- Present address: Institute for Nanoelectronics, Department of Electrical Engineering and Information Technology, Technische Universität München, 80339 Munich, Germany.
| | - Benjamin Wolters
- Part of the Ncardia Group, Axiogenesis AG, 50829 Cologne, Germany.
| | - Leo Doerr
- Nanion Technologies GmbH, 80636 Munich, Germany.
| | | | - Ralf Kettenhofen
- Part of the Ncardia Group, Axiogenesis AG, 50829 Cologne, Germany.
| | - Heribert Bohlen
- Part of the Ncardia Group, Axiogenesis AG, 50829 Cologne, Germany.
| | - Tobias Bruegmann
- Institute of Physiology I, Medical Faculty, University of Bonn, 53127 Bonn, Germany.
- Research Training Group 1873, University of Bonn, 53127 Bonn, Germany.
| | - Philipp Sasse
- Institute of Physiology I, Medical Faculty, University of Bonn, 53127 Bonn, Germany.
| |
Collapse
|
3
|
Lapp H, Bruegmann T, Malan D, Friedrichs S, Kilgus C, Heidsieck A, Sasse P. Frequency-dependent drug screening using optogenetic stimulation of human iPSC-derived cardiomyocytes. Sci Rep 2017; 7:9629. [PMID: 28851973 PMCID: PMC5575076 DOI: 10.1038/s41598-017-09760-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/31/2017] [Indexed: 11/29/2022] Open
Abstract
Side effects on cardiac ion channels are one major reason for new drugs to fail during preclinical evaluation. Herein we propose a simple optogenetic screening tool measuring extracellular field potentials (FP) from paced cardiomyocytes to identify drug effects over the whole physiological heart range, which is essential given the rate-dependency of ion channel function and drug action. Human induced pluripotent stem cell-derived cardiomyocytes were transduced with an adeno-associated virus to express Channelrhodopsin2 and plated on micro-electrode arrays. Global pulsed illumination (470 nm, 1 ms, 0.9 mW/mm2) was applied at frequencies from 1 to 2.5 Hz, which evoked FP simultaneously in all cardiomyocytes. This synchronized activation allowed averaging of FP from all electrodes resulting in one robust FP signal for analysis. Field potential duration (FPD) was ~25% shorter at 2.5 Hz compared to 1 Hz. Inhibition of hERG channels prolonged FPD only at low heart rates whereas Ca2+ channel block shortened FPD at all heart rates. Optogenetic pacing also allowed analysis of the maximum downstroke velocity of the FP to detect drug effects on Na+ channel availability. In principle, the presented method is well scalable for high content cardiac toxicity screening or personalized medicine for inherited cardiac channelopathies.
Collapse
Affiliation(s)
- Hendrik Lapp
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Tobias Bruegmann
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
- Research Training Group 1873, University of Bonn, 53127, Bonn, Germany
| | - Daniela Malan
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Stephanie Friedrichs
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Carsten Kilgus
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Alexandra Heidsieck
- Zentralinstitut für Medizintechnik, Technische Universität München, München, Germany
| | - Philipp Sasse
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany.
| |
Collapse
|
4
|
Eder A, Vollert I, Hansen A, Eschenhagen T. Human engineered heart tissue as a model system for drug testing. Adv Drug Deliv Rev 2016; 96:214-24. [PMID: 26026976 DOI: 10.1016/j.addr.2015.05.010] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/11/2015] [Accepted: 05/21/2015] [Indexed: 12/29/2022]
Abstract
Drug development is time- and cost-intensive and, despite extensive efforts, still hampered by the limited value of current preclinical test systems to predict side effects, including proarrhythmic and cardiotoxic effects in clinical practice. Part of the problem may be related to species-dependent differences in cardiomyocyte biology. Therefore, the event of readily available human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CM) has raised hopes that this human test bed could improve preclinical safety pharmacology as well as drug discovery approaches. However, hiPSC-CM are immature and exhibit peculiarities in terms of ion channel function, gene expression, structural organization and functional responses to drugs that limit their present usefulness. Current efforts are thus directed towards improving hiPSC-CM maturity and high-content readouts. Culturing hiPSC-CM as 3-dimensional engineered heart tissue (EHT) improves CM maturity and anisotropy and, in a 24-well format using silicone racks, enables automated, multiplexed high content readout of contractile function. This review summarizes the principal technology and focuses on advantages and disadvantages of this technology and its potential for preclinical drug screening.
Collapse
|
5
|
High-performance beating pattern function of human induced pluripotent stem cell-derived cardiomyocyte-based biosensors for hERG inhibition recognition. Biosens Bioelectron 2015; 67:146-53. [DOI: 10.1016/j.bios.2014.07.080] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/25/2014] [Accepted: 07/31/2014] [Indexed: 12/11/2022]
|
6
|
Ikeuchi T, Espulgar W, Shimizu E, Saito M, Lee JK, Dou X, Yamaguchi Y, Tamiya E. Optical microscopy imaging for the diagnosis of the pharmacological reaction of mouse embryonic stem cell-derived cardiomyocytes (mESC-CMs). Analyst 2015; 140:6500-7. [DOI: 10.1039/c5an01144b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantitative diagnosis of pharmacological chronotropic reactions on mouse embryonic stem cell-derived cardiomyocytes (mESC-CMs) was successfully performed by utilizing derivative imaging analysis on recorded videos.
Collapse
Affiliation(s)
- Tomohiko Ikeuchi
- Department of Applied Physics
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| | - Wilfred Espulgar
- Department of Applied Physics
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| | - Eiichi Shimizu
- Department of Applied Physics
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| | - Masato Saito
- Department of Applied Physics
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| | - Jong-Kook Lee
- Department of Cardiovascular Regenerative Medicine
- Osaka University
- Suita
- Japan
| | - Xiaoming Dou
- Photonics and Bio-medical Research Institute
- Department of Physics
- Faculty of Science
- East China University of Science and Technology (ECUST)
- Shanghai
| | - Yoshinori Yamaguchi
- Department of Applied Physics
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| | - Eiichi Tamiya
- Department of Applied Physics
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| |
Collapse
|
7
|
Heijman J, Dobrev D. Rat engineered heart tissue: a novel tool in the safety pharmacology toolkit? Basic Res Cardiol 2014; 109:437. [DOI: 10.1007/s00395-014-0437-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 08/29/2014] [Indexed: 12/28/2022]
|
8
|
Heijman J, Voigt N, Carlsson LG, Dobrev D. Cardiac safety assays. Curr Opin Pharmacol 2014; 15:16-21. [DOI: 10.1016/j.coph.2013.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/04/2013] [Accepted: 11/07/2013] [Indexed: 12/22/2022]
|
9
|
Parameswaran S, Kumar S, Verma RS, Sharma RK. Cardiomyocyte culture - an update on the in vitro cardiovascular model and future challenges. Can J Physiol Pharmacol 2013; 91:985-98. [PMID: 24289068 DOI: 10.1139/cjpp-2013-0161] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The success of any work with isolated cardiomyocytes depends on the reproducibility of cell isolation, because the cells do not divide. To date, there is no suitable in vitro model to study human adult cardiac cell biology. Although embryonic stem cells and induced pluripotent stem cells are able to differentiate into cardiomyocytes in vitro, the efficiency of this process is low. Isolation and expansion of human cardiomyocyte progenitor cells from cardiac surgical waste or, alternatively, from fetal heart tissue is another option. However, to overcome various issues related to human tissue usage, especially ethical concerns, researchers use large- and small-animal models to study cardiac pathophysiology. A simple model to study the changes at the cellular level is cultures of cardiomyocytes. Although primary murine cardiomyocyte cultures have their own advantages and drawbacks, alternative strategies have been developed in the last two decades to minimise animal usage and interspecies differences. This review discusses the use of freshly isolated murine cardiomyocytes and cardiomyocyte alternatives for use in cardiac disease models and other related studies.
Collapse
Affiliation(s)
- Sreejit Parameswaran
- a Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | | | | | | |
Collapse
|
10
|
Möller C. Keeping the rhythm: hERG and beyond in cardiovascular safety pharmacology. Expert Rev Clin Pharmacol 2012; 3:321-9. [PMID: 22111613 DOI: 10.1586/ecp.10.24] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Following its involvement in life-threatening cardiac arrhythmias, the catchword 'hERG' has become infamous in the drug discovery community. The blockade of the ion channel coded by the human ether-á-go-go-related gene (hERG) has been correlated to a prolongation of the QT interval in the ECG, which again is correlated to a potential risk of a life-threatening polymorphic ventricular tachycardia - torsades de pointes (TdP). Therefore, in vitro investigations for blockade of this ion channel have become a standard, starting early in most drug discovery projects and often accompanying the whole project; at some stage, scientists in many medicinal chemistry programs have to deal with hERG channel liabilities. Data for the compound effects on hERG channel activity are generally part of the safety pharmacology risk assessment in regulatory submissions and, at this stage, are ideally conducted in compliance with good laboratory practice. With the withdrawal of clobutinol from the market, owing to its perceived risk of introducing TdP, the importance of the hERG channel has very recently been reconfirmed. Despite being of such importance for drug discovery, the relevance and impact of hERG data are sometimes misinterpreted, as there are drugs that block the hERG-coded ion channel but do not cause TdP, and drugs that cause TdP but do not block the hERG channel. This review aims to provide an overview of TdP, including the cardiac action potential and the ion channels involved in it, as well as on the relevance and interpretation of in vitro hERG channel data and their impact for drug discovery projects. Finally, novel cardiac safety test systems beyond in vitro hERG channel screening are discussed.
Collapse
Affiliation(s)
- Clemens Möller
- Evotec AG, Discovery Alliances, Schnackenburgallee 114, Hamburg, Germany.
| |
Collapse
|
11
|
Abstract
One of the main reasons for drug failures in clinical development, or postmarket launch, is lacking or compromised safety margins at therapeutic doses. Organ toxicity with poorly defined mechanisms and adverse drug reactions associated with on- and off-target effects are the major contributors to safety-related shortfalls of many clinical drug candidates. Therefore, to avoid high attrition rates in clinical trials, it is imperative to test compounds for potential adverse reactions during early drug discovery. Beyond a small number of targets associated with clinically acknowledged adverse drug reactions, there is little consensus on other targets that are important to consider at an early stage for in vitro safety pharmacology assessment. We consider here a limited number of safety-related targets, from different target families, which were selected as part of in vitro safety pharmacology profiling panels integrated in the drug-development process at Novartis. The best way to assess these targets, using a biochemical or a functional readout, is discussed. In particular, the importance of using cell-based profiling assays for the characterization of an agonist action at some GPCRs is highlighted. A careful design of in vitro safety pharmacology profiling panels allows better prediction of potential adverse effects of new chemical entities early in the drug-discovery process. This contributes to the selection of the best candidate for clinical development and, ultimately, should contribute to a decreased attrition rate.
Collapse
|
12
|
Xu C, Police S, Hassanipour M, Li Y, Chen Y, Priest C, O'Sullivan C, Laflamme MA, Zhu WZ, Van Biber B, Hegerova L, Yang J, Delavan-Boorsma K, Davies A, Lebkowski J, Gold JD. Efficient generation and cryopreservation of cardiomyocytes derived from human embryonic stem cells. Regen Med 2011; 6:53-66. [PMID: 21175287 DOI: 10.2217/rme.10.91] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIM Human embryonic stem cells (hESCs) represent a novel cell source to treat diseases such as heart failure and for use in drug screening. In this study, we aim to promote efficient generation of cardiomyocytes from hESCs by combining the current optimal techniques of controlled growth of undifferentiated cells and specific induction for cardiac differentiation. We also aim to examine whether these methods are scalable and whether the differentiated cells can be cryopreserved. METHODS & RESULTS hESCs were maintained without conditioned medium or feeders and were sequentially treated with activin A and bone morphogenetic protein-4 in a serum-free medium. This led to differentiation into cell populations containing high percentages of cardiomyocytes. The differentiated cells expressed appropriate cardiomyocyte markers and maintained contractility in culture, and the majority of the cells displayed working chamber (atrial and ventricular) type electrophysiological properties. In addition, the cell growth and differentiation process was adaptable to large culture formats. Moreover, the cardiomyocytes survived following cryopreservation, and viable cardiac grafts were detected after transplantation of cryopreserved cells into rat hearts following myocardial infarctions. CONCLUSION These results demonstrate that cardiomyocytes of high quality can be efficiently generated and cryopreserved using hESCs maintained in serum-free medium, a step forward towards the application of these cells to human clinical use or drug discovery.
Collapse
Affiliation(s)
- Chunhui Xu
- Geron Corporation, Menlo Park, CA 94025, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Meyer T, Stuerz K, Guenther E, Edamura M, Kraushaar U. Cardiac slices as a predictive tool for arrhythmogenic potential of drugs and chemicals. Expert Opin Drug Metab Toxicol 2010; 6:1461-75. [PMID: 21067457 DOI: 10.1517/17425255.2010.526601] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
IMPORTANCE OF THE FIELD cardiac arrhythmia represents one of the primary safety pharmacological concerns in drug development. The most prominent example is drug induced ventricular tachycardia of the Torsade des Pointes type. The mechanism how this type of arrhythmia develops is a complex multi-cellular phenomenon. It can only be insufficiently reflected by cellular or molecular assays. However, organ models - such as Langendorff hearts - or in vivo experiments are expensive and time consuming and not suitable for assays requiring an increased throughput. AREAS COVERED IN THIS REVIEW here, we describe and review an assay bridging the gap between cardiomyocyte based assays and organ based systems - cardiac slices. This assay is reviewed in direct comparison with established safety pharmacological assays. WHAT THE READER WILL GAIN while slices have played an important role in brain research for > 2 decades, cardiac slices are experiencing a renaissance due to the novel challenges in safety pharmacology just in the last few years. Cardiac slices can be cultured and recorded over several days. It is possible to access electrophysiological data with a high number of electrodes - up to 256 electrodes - embedded in the surface of a microelectrode array. TAKE HOME MESSAGE cardiac slices close the gap between cellular and organ based assays in cardiac safety pharmacology. The tissue properties of a functional cardiac syncytium are more accurately reflected by a slice rather than a single cell.
Collapse
Affiliation(s)
- Thomas Meyer
- Multi Channel Systems MCS GmbH, Aspenhaustr. 21, 72770 Reutlingen, Germany.
| | | | | | | | | |
Collapse
|
14
|
Vidarsson H, Hyllner J, Sartipy P. Differentiation of human embryonic stem cells to cardiomyocytes for in vitro and in vivo applications. Stem Cell Rev Rep 2010; 6:108-20. [PMID: 20091143 DOI: 10.1007/s12015-010-9113-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The ability of human embryonic stem cells to differentiate into spontaneously contracting cardiomyocyte-like cells has attracted substantial interest from the scientific community over the last decade. From having been difficult to control, human cardiomyogenesis in vitro is now becoming a process which, to a certain extent, can be effectively manipulated and directed. Although much research remains, new and improved protocols for guiding pluripotent stem cells to the cardiomyocyte lineage are accumulating in the scientific literature. However, the stem cell derived cardiomyocytes described to date, generally resemble immature embryonic/fetal cardiomyocytes, and they are in some functional and structural aspects different from adult cardiomyocytes. Thus, a future challenge will be to design strategies that eventually may allow the cells to reach a higher degree of maturation in vitro. Nevertheless, the cells which can be prepared using current protocols still have wide spread utility, and they have begun to find their way into the drug discovery platforms used in the pharmaceutical industry. In addition, stem cell derived cardiomyocytes and cardiac progenitors are anticipated to have a tremendous impact on how heart disease will be treated in the future. Here, we will discuss recent strategies for the generation of cardiomyocytes from human embryonic stem cells and recapitulate their features, as well as highlight some in vitro applications for the cells. Finally, opportunities in the area of cardiac regenerative medicine will be illustrated.
Collapse
Affiliation(s)
- Hilmar Vidarsson
- Cellartis AB, Arvid Wallgrens Backe 20, SE-413 46, Göteborg, Sweden
| | | | | |
Collapse
|
15
|
Hamon J, Whitebread S. In Vitro
Safety Pharmacology Profiling: An Important Tool to Decrease Attrition. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/9783527627448.ch12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
16
|
Farkas AS, Nattel S. Minimizing Repolarization-Related Proarrhythmic Risk in Drug Development and Clinical Practice. Drugs 2010; 70:573-603. [DOI: 10.2165/11535230-000000000-00000] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Cavero I. Exploratory Safety Pharmacology: a new safety paradigm to de-risk drug candidates prior to selection for regulatory science investigations. Expert Opin Drug Saf 2009; 8:627-47. [DOI: 10.1517/14740330903362422] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Report and recommendations of the workshop of the European Centre for the Validation of Alternative Methods for Drug-Induced Cardiotoxicity. Cardiovasc Toxicol 2009; 9:107-25. [PMID: 19572114 DOI: 10.1007/s12012-009-9045-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 04/17/2009] [Indexed: 10/20/2022]
Abstract
Cardiotoxicity is among the leading reasons for drug attrition and is therefore a core subject in non-clinical and clinical safety testing of new drugs. European Centre for the Validation of Alternative Methods held in March 2008 a workshop on "Alternative Methods for Drug-Induced Cardiotoxicity" in order to promote acceptance of alternative methods reducing, refining or replacing the use of laboratory animals in this field. This review reports the outcome of the workshop. The participants identified the major clinical manifestations, which are sensitive to conventional drugs, to be arrhythmias, contractility toxicity, ischaemia toxicity, secondary cardiotoxicity and valve toxicity. They gave an overview of the current use of alternative tests in cardiac safety assessments. Moreover, they elaborated on new cardiotoxicological endpoints for which alternative tests can have an impact and provided recommendations on how to cover them.
Collapse
|
19
|
Park SJ, Choi KS, Shin DH, Kim JS, Jang DS, Youm JB, Choe H, Earm YE, Kim SJ. Effects of mixed herbal extracts from parched Puerariae radix, gingered Magnoliae cortex, Glycyrrhizae radix and Euphorbiae radix (KIOM-79) on cardiac ion channels and action potentials. J Korean Med Sci 2009; 24:403-12. [PMID: 19543501 PMCID: PMC2698184 DOI: 10.3346/jkms.2009.24.3.403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 07/25/2008] [Indexed: 11/20/2022] Open
Abstract
KIOM-79, a mixture of ethanol extracts from four herbs (parched Puerariae radix, gingered Magnoliae cortex, Glycyrrhizae radix and Euphorbiae radix), has been developed for the potential therapeutic application to diabetic symptoms. Because screening of unexpected cardiac arrhythmia is compulsory for the new drug development, we investigated the effects of KIOM-79 on the action potential (AP) and various ion channel currents in cardiac myocytes. KIOM-79 decreased the upstroke velocity (V(max)) and plateau potential while slightly increased the duration of action potential (APD). Consistent with the decreased V(max) and plateau potential, the peak amplitude of Na+ current (I(Na)) and Ca2+ current (I(Ca,L)) were decreased by KIOM-79. KIOM-79 showed dual effects on hERG K+ current; increase of depolarization phase current (I(depol)) and decreased tail current at repolarization phase (I(tail)). The increase of APD was suspected due to the decreased I(tail). In computer simulation, the change of cardiac action potential could be well simulated based on the effects of KIOM-79 on various membrane currents. As a whole, the influence of KIOM-79 on cardiac ion channels are minor at concentrations effective for the diabetic models (0.1-10 microg/mL). The results suggest safety in terms of the risk of cardiac arrhythmia. Also, our study demonstrates the usefulness of the cardiac computer simulation in screening drug-induced long-QT syndrome.
Collapse
Affiliation(s)
- Su Jung Park
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
| | - Kwan Seok Choi
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Hoon Shin
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
| | - Jin Sook Kim
- Department of Herbal Pharmaceutical Development, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Dae Sik Jang
- Department of Herbal Pharmaceutical Development, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Jae Beom Youm
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology and Biophysics, Cardiovascular and Metabolic Disease Center, Inje University College of Medicine, Busan, Korea
| | - Han Choe
- Department of Physiology and Research Institute for Biomacromolecules, University of Ulsan College of Medicine, Seoul, Korea
| | - Yung E Earm
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Kidney Research Institute (KRI), Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|
20
|
Large scale production of stem cells and their derivatives. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2009; 114:201-35. [PMID: 19513633 DOI: 10.1007/10_2008_27] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stem cells have been envisioned to become an unlimited cell source for regenerative medicine. Notably, the interest in stem cells lies beyond direct therapeutic applications. They might also provide a previously unavailable source of valuable human cell types for screening platforms, which might facilitate the development of more efficient and safer drugs. The heterogeneity of stem cell types as well as the numerous areas of application suggests that differential processes are mandatory for their in vitro culture. Many of the envisioned applications would require the production of a high number of stem cells and their derivatives in scalable, well-defined and potentially clinical compliant manner under current good manufacturing practice (cGMP). In this review we provide an overview on recent strategies to develop bioprocesses for the expansion, differentiation and enrichment of stem cells and their progenies, presenting examples for adult and embryonic stem cells alike.
Collapse
|
21
|
Stummann TC, Wronski M, Sobanski T, Kumpfmueller B, Hareng L, Bremer S, Whelan MP. Digital Movie Analysis for Quantification of Beating Frequencies, Chronotropic Effects, and Beating Areas in Cardiomyocyte Cultures. Assay Drug Dev Technol 2008; 6:375-85. [DOI: 10.1089/adt.2008.129] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tina C. Stummann
- European Centre for the Validation of Alternative Methods, Institute for Health and Consumer Protection, Joint Research Centre, European Commission, Ispra (VA), Italy
| | - Mateusz Wronski
- Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Wroclaw, Poland
| | - Tomasz Sobanski
- Nanotechnology and Molecular Imaging Unit, Institute for Health and Consumer Protection, Joint Research Centre, European Commission, Ispra (VA), Italy
| | - Benjamin Kumpfmueller
- European Centre for the Validation of Alternative Methods, Institute for Health and Consumer Protection, Joint Research Centre, European Commission, Ispra (VA), Italy
| | - Lars Hareng
- European Centre for the Validation of Alternative Methods, Institute for Health and Consumer Protection, Joint Research Centre, European Commission, Ispra (VA), Italy
| | - Susanne Bremer
- European Centre for the Validation of Alternative Methods, Institute for Health and Consumer Protection, Joint Research Centre, European Commission, Ispra (VA), Italy
| | - Maurice P. Whelan
- Nanotechnology and Molecular Imaging Unit, Institute for Health and Consumer Protection, Joint Research Centre, European Commission, Ispra (VA), Italy
| |
Collapse
|