1
|
Zhang J, Qiao Q, Xu H, Zhou R, Liu X. Human cell polyploidization: The good and the evil. Semin Cancer Biol 2021; 81:54-63. [PMID: 33839294 DOI: 10.1016/j.semcancer.2021.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023]
Abstract
Therapeutic resistance represents a major cause of death for most lethal cancers. However, the underlying mechanisms of such resistance have remained unclear. The polyploid cells are due to an increase in DNA content, commonly associated with cell enlargement. In human, they play a variety of roles in physiology and pathologic conditions and perform the specialized functions during development, inflammation, and cancer. Recent work shows that cancer cells can be induced into polyploid giant cancer cells (PGCCs) that leads to reprogramming of surviving cancer cells to acquire resistance. In this article, we will review the polyploidy involved in development and inflammation, and the process of PGCCs formation and propagation that benefits to cell survival. We will discuss the potential opportunities in fighting resistant cancers. The increased knowledge of PGCCs will offer a completely new paradigm to explore the therapeutic intervention for lethal cancers.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Qing Qiao
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Hong Xu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Ru Zhou
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xinzhe Liu
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
2
|
Singh M, Malhotra L, Haque MA, Kumar M, Tikhomirov A, Litvinova V, Korolev AM, Ethayathulla AS, Das U, Shchekotikhin AE, Kaur P. Heteroarene-fused anthraquinone derivatives as potential modulators for human aurora kinase B. Biochimie 2021; 182:152-165. [PMID: 33417980 DOI: 10.1016/j.biochi.2020.12.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/10/2020] [Accepted: 12/29/2020] [Indexed: 01/30/2023]
Abstract
The quest for effective anticancer therapeutics continues to be extensively pursued. Over the past century, several drugs have been developed, however, a majority of these drugs have a poor therapeutic index and increased toxicity profile. Hence, there still exists ample opportunity to discover safe and effective anticancer drugs. Aurora Kinase B (AurB), a member of the Aurora kinase family and a key regulator of mitotic cell division, is found to be frequently overexpressed in a variety of human cancers and has thus emerged as an attractive target for the design of anticancer therapeutics. In the present study, a structure-based scaffold hopping approach was utilized to modify the heterocyclic moiety of (S)-3-(3-aminopyrrolidine-1-carbonyl)-4,11-dihydroxy-2-methylanthra [2,3-b]furan-5,10-dione (anthrafuran 1) to generate a series of heteroarene-fused anthraquinone derivatives, which were then subjected to virtual screening for the identification of potential AurB inhibitors. The obtained hits were subsequently synthesized and evaluated by using a combination of in silico and biophysical techniques for elucidating their in vitro binding and inhibition activity with recombinantly expressed AurB. Four identified hits presented an improved binding profile as compared to their parent analog anthrafuran 1. One derivative, anthrathiophene 2 demonstrated excellent in vitro inhibition of AurB (7.3 μM).
Collapse
Affiliation(s)
- Mandeep Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Lakshay Malhotra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Md Anzarul Haque
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Mukesh Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Alexander Tikhomirov
- Gause Institute of New Antibiotics, Moscow, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Valeria Litvinova
- Gause Institute of New Antibiotics, Moscow, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Alexander M Korolev
- Gause Institute of New Antibiotics, Moscow, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - A S Ethayathulla
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Uddipan Das
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Andrey E Shchekotikhin
- Gause Institute of New Antibiotics, Moscow, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India.
| |
Collapse
|
3
|
Shin SY, Ahn S, Yoon H, Jung H, Jung Y, Koh D, Lee YH, Lim Y. Colorectal anticancer activities of polymethoxylated 3-naphthyl-5-phenylpyrazoline-carbothioamides. Bioorg Med Chem Lett 2016; 26:4301-9. [PMID: 27476140 DOI: 10.1016/j.bmcl.2016.07.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/07/2016] [Accepted: 07/18/2016] [Indexed: 01/08/2023]
Abstract
To develop potent chemotherapeutic agents for treating colorectal cancers, polymethoxylated 3-naphthyl-5-phenylpyrazoline-carbothioamide derivatives were designed. Twenty-two novel derivatives were synthesized and their cytotoxicities were measured using a clonogenic long-term survival assay. Of these derivatives, 3-(1-hydroxynaphthalen-2-yl)-N-(3-methoxyphenyl)-5-(4-methoxyphenyl)-pyrazoline-1-carbothioamide (NPC 15) exhibited the best half-maximal cell growth inhibitory concentrations (196.35nM). To explain its cytotoxicity, further biological experiments were performed. Treatment with NPC 15 inhibited cell cycle progression and triggered apoptosis through the caspase-mediated pathway. Its inhibitory effects on several kinases participating in the cell cycle were investigated using an in vitro kinase assay. Its half-maximal inhibitory concentrations for aurora kinases A and B were 105.03μM and 8.53μM, respectively. Further analysis showed that NPC 15 decreased phosphorylation of aurora kinases A, B, and C and phosphorylation of histone H3, a substrate of aurora kinases A and B. Its molecular binding mode for aurora kinase B was elucidated using in silico docking. In summary, polymethoxylated 3-naphthyl-5-phenylpyrazoline-carbothioamides could be potent chemotherapeutic agents.
Collapse
Affiliation(s)
- Soon Young Shin
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Seunghyun Ahn
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701, Republic of Korea
| | - Hyuk Yoon
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701, Republic of Korea
| | - Hyeryoung Jung
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701, Republic of Korea
| | - Yearam Jung
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701, Republic of Korea
| | - Dongsoo Koh
- Department of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea
| | - Young Han Lee
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea.
| | - Yoongho Lim
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701, Republic of Korea.
| |
Collapse
|
4
|
Falchook GS, Bastida CC, Kurzrock R. Aurora Kinase Inhibitors in Oncology Clinical Trials: Current State of the Progress. Semin Oncol 2015; 42:832-48. [PMID: 26615129 DOI: 10.1053/j.seminoncol.2015.09.022] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Aurora kinase family of kinases (Aurora A, B, and C) are involved in multiple mitotic events, and aberrant expression of these kinases is associated with tumorigenesis. Aurora A and Aurora B are validated anticancer targets, and the development of Aurora kinase inhibitors has progressed from preclinical to clinical studies. A variety of Aurora A, B and pan-Aurora kinase inhibitors have entered the clinic. The main side effects include febrile neutropenia, stomatitis, gastrointestinal toxicity, hypertension, and fatigue. Responses including complete remissions have been described in diverse, advanced malignancies, most notably ovarian cancer and acute myelogenous leukemia. This review highlights the biologic rationale for Aurora kinase as a target, and clinical trials involving Aurora kinase inhibitors, with particular emphasis on published early phase studies, and the observed anti-tumor activity of these agents.
Collapse
Affiliation(s)
| | - Christel C Bastida
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy, Moores Cancer Center, University of California San Diego, La Jolla, CA
| |
Collapse
|
5
|
Defaux J, Antoine M, Le Borgne M, Schuster T, Seipelt I, Aicher B, Teifel M, Günther E, Gerlach M, Marchand P. Discovery of 7-Aryl-Substituted (1,5-Naphthyridin-4-yl)ureas as Aurora Kinase Inhibitors. ChemMedChem 2013; 9:217-32. [DOI: 10.1002/cmdc.201300384] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/04/2013] [Indexed: 11/09/2022]
|
6
|
Shin SY, Yoon H, Hwang D, Ahn S, Kim DW, Koh D, Lee YH, Lim Y. Benzochalcones bearing pyrazoline moieties show anti-colorectal cancer activities and selective inhibitory effects on aurora kinases. Bioorg Med Chem 2013; 21:7018-24. [PMID: 24095020 DOI: 10.1016/j.bmc.2013.09.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/06/2013] [Accepted: 09/06/2013] [Indexed: 12/22/2022]
|
7
|
Slatter AF, Campbell S, Angell RM. Development of a fluorescence intensity assay for the mitotic serine/threonine protein kinase Aurora-A. ACTA ACUST UNITED AC 2012; 18:219-25. [PMID: 22983166 DOI: 10.1177/1087057112459888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Aurora kinases are a group of serine/threonine protein kinases that regulate key steps during mitosis, and deregulation of these proteins (e.g., by gene amplification or overexpression) has been linked to a wide variety of tumor types. Thus, Aurora-A and Aurora-B have been intensely studied as targets for anticancer therapy and are now clinically validated targets. Here we report on the development of a novel fluorescence intensity binding assay for Aurora-A kinase inhibitors using a fluorescently labeled probe compound that shows intramolecular quenching when unbound but exhibits a dramatic increase in fluorescence when bound to Aurora-A.
Collapse
|
8
|
He G, Qiu M, Li R, Ouyang L, Wu F, Song X, Cheng L, Xiang M, Yu L. Multicomplex-Based Pharmacophore-Guided 3D-QSAR Studies of N-Substituted 2′-(Aminoaryl)Benzothiazoles as Aurora-A Inhibitors. Chem Biol Drug Des 2012; 79:960-71. [DOI: 10.1111/j.1747-0285.2012.01366.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Green MR, Woolery JE, Mahadevan D. Update on Aurora Kinase Targeted Therapeutics in Oncology. Expert Opin Drug Discov 2011; 6:291-307. [PMID: 21556291 DOI: 10.1517/17460441.2011.555395] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION: Mammalian cells contain three distinct serine/threonine protein kinases with highly conserved catalytic domains, including aurora A and B kinases that are essential regulators of mitotic entry and progression. Overexpression of aurora A and/or B kinase is associated with high proliferation rates and poor prognosis, making them ideal targets for anti-cancer therapy. Disruption of mitotic machinery is a proven anti-cancer strategy employed by multiple chemotherapeutic agents. Numerous small molecule inhibitors of the aurora kinases have been discovered and tested in vivo and in vitro, with a few currently in phase II testing. AREAS COVERED: This review provides the reader with updated results from both preclinical and human studies for each of the aurora kinase inhibitors (AKI) that are currently being investigated. The paper also covers in detail the late breaking and phase I data presented for AKIs thereby allowing the reader to compare and contrast individual and classrelated effects of AKIs. EXPERT OPINION: While the successful development and approval of an AKI for anti-cancer therapy remains unresolved, pre-clinical identification of resistant mechanisms would help design better early phase clinical trials where relevant combinations may be evaluated prior to phase II testing. The authors believe that aurora kinases are important anti-cancer targets that operate in collaboration with other oncogenes intimately involved in uncontrolled tumor proliferation and by providing a unique, targeted and complimentary anti-cancer mechanism, expand the available armamentarium against cancer.
Collapse
Affiliation(s)
- Myke R Green
- Section of Hematology/Oncology, Arizona Cancer Center, Tucson, AZ
| | | | | |
Collapse
|
10
|
Aurora-A kinase inhibitor scaffolds and binding modes. Drug Discov Today 2010; 16:260-9. [PMID: 21147253 DOI: 10.1016/j.drudis.2010.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 09/17/2010] [Accepted: 12/07/2010] [Indexed: 01/08/2023]
Abstract
Aurora kinases (A-C) belong to the serine/threonine protein kinase family. In recent years, the constitutive or elevated expression of Aurora kinases has been found in cancer cells and oncogene transfected cells. In this review, we summarize the common binding modes of Aurora-A kinase inhibitors, the hot spot residues in the binding sites and the privileged inhibitor structures. Our review of the reported chemical scaffolds of Aurora-A kinase inhibitors and their binding modes could provide a useful framework from which new design strategies for inhibitors might be assessed or developed.
Collapse
|
11
|
Uncovering new substrates for Aurora A kinase. EMBO Rep 2010; 11:977-84. [PMID: 21072059 DOI: 10.1038/embor.2010.171] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 09/20/2010] [Accepted: 10/01/2010] [Indexed: 12/23/2022] Open
Abstract
Aurora A is a serine/threonine kinase that is essential for a wide variety of cell-cycle-related events, but only a small number of its substrates are known. We present and validate a strategy by which to identify Aurora A substrates and their phosphorylation sites. We developed a computational approach integrating various types of biological information to generate a list of 90 potential Aurora substrates, with a prediction accuracy of about 80%. We also demonstrated the specific phosphorylation of NUSAP (nucleolar and spindle-associated protein) by Aurora A in vivo. Our results provide a means by which to develop an understanding of Aurora A function and suggest unexpected roles for this kinase.
Collapse
|
12
|
Hardwicke MA, Oleykowski CA, Plant R, Wang J, Liao Q, Moss K, Newlander K, Adams JL, Dhanak D, Yang J, Lai Z, Sutton D, Patrick D. GSK1070916, a potent Aurora B/C kinase inhibitor with broad antitumor activity in tissue culture cells and human tumor xenograft models. Mol Cancer Ther 2009; 8:1808-17. [PMID: 19567821 DOI: 10.1158/1535-7163.mct-09-0041] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The protein kinases, Aurora A, B, and C have critical roles in the regulation of mitosis and are frequently overexpressed or amplified in human tumors. GSK1070916, is a novel ATP competitive inhibitor that is highly potent and selective for Aurora B/C kinases. Human tumor cells treated with GSK1070916 show dose-dependent inhibition of phosphorylation on serine 10 of Histone H3, a substrate specific for Aurora B kinase. Moreover, GSK1070916 inhibits the proliferation of tumor cells with EC(50) values of <10 nmol/L in over 100 cell lines spanning a broad range of tumor types. Although GSK1070916 has potent activity against proliferating cells, a dramatic shift in potency is observed in primary, nondividing, normal human vein endothelial cells, consistent with the proposed mechanism. We further determined that treated cells do not arrest in mitosis but instead fail to divide and become polyploid, ultimately leading to apoptosis. GSK1070916 shows dose-dependent inhibition of phosphorylation of an Aurora B-specific substrate in mice and consistent with its broad cellular activity, has antitumor effects in 10 human tumor xenograft models including breast, colon, lung, and two leukemia models. These results show that GSK1070916 is a potent Aurora B/C kinase inhibitor that has the potential for antitumor activity in a wide range of human cancers.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Aurora Kinase A
- Aurora Kinase B
- Aurora Kinases
- Aza Compounds/therapeutic use
- Blotting, Western
- Cell Cycle/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Enzyme-Linked Immunosorbent Assay
- Female
- Fluorescent Antibody Technique
- Humans
- Immunoenzyme Techniques
- Indoles/therapeutic use
- Mice
- Mice, Inbred NOD
- Mice, Nude
- Mice, SCID
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Phosphorylation/drug effects
- Protein Kinase Inhibitors/therapeutic use
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Umbilical Veins/cytology
- Umbilical Veins/drug effects
- Xenograft Model Antitumor Assays
Collapse
|
13
|
Sardon T, Cottin T, Xu J, Giannis A, Vernos I. Development and biological evaluation of a novel aurora A kinase inhibitor. Chembiochem 2009; 10:464-78. [PMID: 19199284 DOI: 10.1002/cbic.200800600] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
STOP DIVIDING: In the quest for antitumorigenic compounds, aurora A kinase has recently emerged as a potential drug target. In this paper three novel aurora inhibitors (shown in the illustration) have been tested for their biological activity in cultured cells. One of them (TC-28) appears to be a promising specific aurora A inhibitor in vivo. The aurora kinase family groups several serine/threonine kinases with key regulatory functions during cell division. The three mammalian members, aurora A, B and C, are frequently over-expressed in human tumors and the aurora A gene is located in a genomic region frequently amplified in breast and colon cancer. All these data have fuelled the idea that aurora kinases are promising targets for anticancer therapy. Indeed some inhibitory compounds are currently being evaluated in clinical trials. However, it was recently shown that mutations in the targeted kinase can confer resistance to a broad range of inhibitors and render patients resistant to treatments. Moreover, aurora A over-expression results in increased resistance to antimitotic agents. The development of new compounds targeting aurora A is therefore highly relevant. We describe here the synthesis of three novel aurora kinase inhibitors, TC-28, TC-34 and TC-107. We report their properties as aurora inhibitors in vitro and their effect on human tissue culture cell lines. Interestingly, our results show that TC-28 has properties compatible with the specific inhibition of aurora A, in vivo.
Collapse
Affiliation(s)
- Teresa Sardon
- CRG-Cell and Developmental Biology Program, Parc de Recerca Biomedica de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
14
|
A Specific Pharmacophore Model of Aurora B Kinase Inhibitors and Virtual Screening Studies Based on it. Chem Biol Drug Des 2009; 73:115-26. [DOI: 10.1111/j.1747-0285.2008.00751.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Deng XQ, Wang HY, Zhao YL, Xiang ML, Jiang PD, Cao ZX, Zheng YZ, Luo SD, Yu LT, Wei YQ, Yang SY. Pharmacophore Modelling and Virtual Screening for Identification of New Aurora-A Kinase Inhibitors. Chem Biol Drug Des 2008; 71:533-9. [DOI: 10.1111/j.1747-0285.2008.00663.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|