1
|
Wang T, Zou J, Wu Q, Wang R, Yuan CL, Shu J, Zhai BB, Huang XT, Liu NZ, Hua FY, Wang XC, Mei WJ. Tanshinone IIA derivatives induced S-phase arrest through stabilizing c-myc G-quadruplex DNA to regulate ROS-mediated PI3K/Akt/mTOR pathway. Eur J Pharmacol 2021; 912:174586. [PMID: 34710368 DOI: 10.1016/j.ejphar.2021.174586] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023]
Abstract
Herein, a derivate from tanshinone IIA, 1,6,6-trimethyl-11-phenyl-7,8,9,10-tetrahydro-6H-furo[2',3':1,2]phenanthro[3,4-d]imidazole (TA25), has been synthesized and investigated as potential inhibitor against the proliferation, migration and invasion of lung cancer cells. MTT assay and cell colony formation assay results showed that TA25 exhibits acceptable inhibitory effect against the proliferation of lung cancer A549 cells, and the value of IC50 was about 17.9 μM. This result was further confirmed by the inhibition of TA25 against the growth of xenograft lung cancer cells on zebrafish bearing tumor (A549 lung cancer cells). The results of wound-healing assay and FITC-gelatin invasion assay displayed that TA25 could inhibit the migration and invasion of lung cancer A549 cells. Moreover, the studies on the binding properties of TA25 interact with c-myc G-quadruplex DNA suggested that TA25 can bind in the G-quarter plane formed from G7, G11, G16 and G20 with c-myc G-quadruplex DNA through π-π stacking. Further study of the potential anti-cancer mechanism indicated that TA25 can induce S-phase arrest in lung cancer A549 cells, and this phenomenon resulted from the promotion of the production of reactive oxygen species and DNA damage in A549 cells under the action of TA25. Further research revealed that TA25 could inhibit the PI3K/Akt/mTOR signal pathway and increase the expression of p53 protein. Overall, TA25 can be developed into a promising inhibitor against the proliferation, migration and invasion of lung cancer cells and has potential clinical application in the near future.
Collapse
Affiliation(s)
- Teng Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jun Zou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qiong Wu
- Guangdong Province Engineering Technology Centre for Molecular Probe and Bio-medicine Imaging, Guangzhou, 510006, China.
| | - Rui Wang
- The First Affiliation Hospital, Guangdong Pharmaceutical University, Guangzhou, 510062, China
| | - Chan-Ling Yuan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jing Shu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Bing-Bing Zhai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiao-Ting Huang
- Guangdong Province Engineering Technology Centre for Molecular Probe and Bio-medicine Imaging, Guangzhou, 510006, China
| | - Ning-Zhi Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Feng-Yang Hua
- The First Affiliation Hospital, Guangdong Pharmaceutical University, Guangzhou, 510062, China
| | - Xi-Cheng Wang
- The First Affiliation Hospital, Guangdong Pharmaceutical University, Guangzhou, 510062, China; Guangdong Province Engineering Technology Centre for Molecular Probe and Bio-medicine Imaging, Guangzhou, 510006, China.
| | - Wen-Jie Mei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Province Engineering Technology Centre for Molecular Probe and Bio-medicine Imaging, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Ke H, Wu Y, Wang R, Wu X. Creation of a Prognostic Risk Prediction Model for Lung Adenocarcinoma Based on Gene Expression, Methylation, and Clinical Characteristics. Med Sci Monit 2020; 26:e925833. [PMID: 33021972 PMCID: PMC7549534 DOI: 10.12659/msm.925833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background This study aimed to identify important marker genes in lung adenocarcinoma (LACC) and establish a prognostic risk model to predict the risk of LACC in patients. Material/Methods Gene expression and methylation profiles for LACC and clinical information about cases were downloaded from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases, respectively. Differentially expressed genes (DEGs) and differentially methylated genes (DMGs) between cancer and control groups were selected through meta-analysis. Pearson coefficient correlation analysis was performed to identify intersections between DEGs and DMGs and a functional analysis was performed on the genes that were correlated. Marker genes and clinical factors significantly related to prognosis were identified using univariate and multivariate Cox regression analyses. Risk prediction models were then created based on the marker genes and clinical factors. Results In total, 1975 DEGs and 2095 DMGs were identified. After comparison, 16 prognosis-related genes (EFNB2, TSPAN7, INPP5A, VAMP2, CALML5, SNAI2, RHOBTB1, CKB, ATF7IP2, RIMS2, RCBTB2, YBX1, RAB27B, NFATC1, TCEAL4, and SLC16A3) were selected from 265 overlapping genes. Four clinical factors (pathologic N [node], pathologic T [tumor], pathologic stage, and new tumor) were associated with prognosis. The prognostic risk prediction models were constructed and validated with other independent datasets. Conclusions An integrated model that combines clinical factors and gene markers is useful for predicting risk of LACC in patients. The 16 genes that were identified, including EFNB2, TSPAN7, INPP5A, VAMP2, and CALML5, may serve as novel biomarkers for diagnosis of LACC and prediction of disease prognosis.
Collapse
Affiliation(s)
- Honggang Ke
- Department of Cardiovascular and Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (mainland)
| | - Yunyu Wu
- Qixiu Campus, Nantong University, Nantong, Jiangsu, China (mainland)
| | - Runjie Wang
- Department of Oncology, Wuxi People's Hospital, Wuxi, Jiangsu, China (mainland)
| | - Xiaohong Wu
- Department of Medical Oncology, Affiliated Hospital of Jiangnan University and Wuxi 4th People's Hospital, Wuxi, Jiangsu, China (mainland)
| |
Collapse
|
3
|
de Marinis F, Bria E, Ciardiello F, Crinò L, Douillard JY, Griesinger F, Lambrechts D, Perol M, Ramalingam SS, Smit EF, Gridelli C. International Experts Panel Meeting of the Italian Association of Thoracic Oncology on Antiangiogenetic Drugs for Non-Small Cell Lung Cancer: Realities and Hopes. J Thorac Oncol 2016; 11:1153-69. [PMID: 27063293 DOI: 10.1016/j.jtho.2016.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/07/2016] [Accepted: 03/26/2016] [Indexed: 12/21/2022]
Abstract
Angiogenesis, one of the hallmarks of cancer, occurs when new blood vessels feed malignant cells, providing oxygen and nutrients, promoting tumor growth, and allowing tumor cells to escape into the circulation, thus leading to metastases. To date, a series of antiangiogenic drugs (either monoclonal antibodies or small molecules) have been approved by regulatory agencies for the treatment of advanced non-small cell lung cancer, and they are currently available for both first- and second-line therapy. The overall benefit of these drugs seems modest (although clearly significant), especially when administered as a single agent, and there is no clear consensus with regard to which patients should be candidates to receive these drugs across the different disease settings. From the biological perspective, angiogenesis represents a difficult and complex process to explore, given the interference with other key pathways and the dynamic evolution during the disease's history. Indeed, this process is complicated by the presence of multiple targets to hit, polymorphisms, hypoxia-dependent modifications, and epigenetics. These difficulties do not allow capture of which specific key pathways can be identified as biomarkers of efficacy so as to maximize to overall benefit of such drugs. An International Experts Panel Meeting was inspired by the absence of clear recommendations to address which patients should receive antiangiogenic drugs in the context of advanced non-small cell lung cancer so as to support decisions for clinical practice on a daily basis and determine priorities for future research. After a literature review and panelists consensus, a series of recommendations were defined to support decisions for the daily clinical practice and to indicate a potential road map for translational research.
Collapse
Affiliation(s)
- Filippo de Marinis
- Thoracic Oncology Division, European Institute of Oncology, Milan, Italy
| | - Emilio Bria
- Medical Oncology, Department of Medicine, University Hospital of Verona, Verona, Italy
| | - Fortunato Ciardiello
- Medical Oncology, Department of Clinical and Experimental Medicine 'F. Magrassi e A. Lanzara, Second University of Naples, Naples, Italy
| | - Lucio Crinò
- Medical Oncology Division, S. Maria della Misericordia Hospital, Perugia, Italy
| | | | - Frank Griesinger
- Department of Hematology and Oncology, University Division, Internal Medicine-Oncology, Pius-Hospital Oldenburg, University of Oldenburg, Germany
| | - Diether Lambrechts
- VIB Vesalius Research Center, Department of Oncology, University of Leuven, Belgium
| | - Maurice Perol
- Department of Medical Oncology, Léon Bérard Cancer Center, Lyon, France
| | | | - Egbert F Smit
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Cesare Gridelli
- Medical Oncology, A.O. 'S.G. Moscati' Hospital, Avellino, Italy.
| |
Collapse
|
4
|
Tyr1068-phosphorylated epidermal growth factor receptor (EGFR) predicts cancer stem cell targeting by erlotinib in preclinical models of wild-type EGFR lung cancer. Cell Death Dis 2015; 6:e1850. [PMID: 26247735 PMCID: PMC4558509 DOI: 10.1038/cddis.2015.217] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/19/2015] [Accepted: 06/24/2015] [Indexed: 12/12/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) have shown strong activity against non-small-cell lung cancer (NSCLC) patients harboring activating epidermal growth factor receptor (EGFR) mutations. However, a fraction of EGFR wild-type (WT) patients may have an improvement in terms of response rate and progression-free survival when treated with erlotinib, suggesting that factors other than EGFR mutation may lead to TKI sensitivity. However, at present, no sufficiently robust clinical or biological parameters have been defined to identify WT-EGFR patients with greater chances of response. Therapeutics validation has necessarily to focus on lung cancer stem cells (LCSCs) as they are more difficult to eradicate and represent the tumor-maintaining cell population. Here, we investigated erlotinib response of lung CSCs with WT-EGFR and identified EGFR phosphorylation at tyrosine1068 (EGFRtyr1068) as a powerful biomarker associated with erlotinib sensitivity both in vitro and in preclinical CSC-generated xenografts. In contrast to the preferential cytotoxicity of chemotherapy against the more differentiated cells, in EGFRtyr1068 cells, erlotinib was even more active against the LCSCs compared with their differentiated counterpart, acquiring potential value as CSC-directed therapeutics in the context of WT-EGFR lung cancer. Although tumor growth was inhibited to a similar extent during erlotinib or chemotherapy administration to responsive tumors, erlotinib proved superior to chemotherapy in terms of higher tolerability and reduced tumor aggressiveness after treatment suspension, substantiating the possibility of preferential LCSC targeting, both in adenocarcinoma (ADC) and squamous cell carcinoma (SCC) tumors. We conclude that EGFRtyr1068 may represent a potential candidate biomarker predicting erlotinib response at CSC-level in EGFR-WT lung cancer patients. Finally, besides its invariable association with erlotinib sensitivity in EGFR-WT lung CSCs, EGFRtyr1068 was associated with EGFR-sensitizing mutations in cell lines and patient tumors, with relevant diagnostic, clinical and therapeutic implications.
Collapse
|