1
|
Zhao Y, Yuan C, Shi Y, Liu X, Luo L, Zhang L, Pešić M, Yao H, Li L. Drug screening approaches for small-molecule compounds in cancer-targeted therapy. J Drug Target 2025; 33:368-383. [PMID: 39575843 DOI: 10.1080/1061186x.2024.2427185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 02/08/2025]
Abstract
Small-molecule compounds exhibit distinct pharmacological properties and clinical effectiveness. Over the past decade, advances in covalent drug discovery have led to successful small-molecule drugs, such as EGFR, BTK, and KRAS (G12C) inhibitors, for cancer therapy. Researchers are paying more attention to refining drug screening methods aiming for high throughput, fast speed, high specificity, and accuracy. Therefore, the discovery and development of small-molecule drugs has been facilitated by significantly reducing screening time and financial resources, and increasing promising lead compounds compared with traditional methods. This review aims to introduce classical and emerging methods for screening small-molecule compounds in targeted cancer therapy. It includes classification, principles, advantages, disadvantages, and successful applications, serving as valuable references for subsequent researchers.
Collapse
Affiliation(s)
- Yelin Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenyu Yuan
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuchen Shi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaohong Liu
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Xicheng District, Beijing, China
| | - Liaoxin Luo
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Li Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research, 'Siniša Stanković'- National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Hongjuan Yao
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liang Li
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Thomas PB, Alinezhad S, Joshi A, Sweeney K, Tse BWC, Tevz G, McPherson S, Nelson CC, Williams ED, Vela I. Introduction of Androgen Receptor Targeting shRNA Inhibits Tumor Growth in Patient-Derived Prostate Cancer Xenografts. Curr Oncol 2023; 30:9437-9447. [PMID: 37999103 PMCID: PMC10670201 DOI: 10.3390/curroncol30110683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/16/2023] [Accepted: 10/21/2023] [Indexed: 11/25/2023] Open
Abstract
Patient-derived xenograft (PDX) models have been established as important preclinical cancer models, overcoming some of the limitations associated with the use of cancer cell lines. The utility of prostate cancer PDX models has been limited by an inability to genetically manipulate them in vivo and difficulties sustaining PDX-derived cancer cells in culture. Viable, short-term propagation of PDX models would allow in vitro transfection with traceable reporters or manipulation of gene expression relevant to different studies within the prostate cancer field. Here, we report an organoid culture system that supports the growth of prostate cancer PDX cells in vitro and permits genetic manipulation, substantially increasing the scope to use PDXs to study the pathobiology of prostate cancer and define potential therapeutic targets. We have established a short-term PDX-derived in vitro cell culture system which enables genetic manipulation of prostate cancer PDXs LuCaP35 and BM18. Genetically manipulated cells could be re-established as viable xenografts when re-implanted subcutaneously in immunocompromised mice and were able to be serially passaged. Tumor growth of the androgen-dependent LuCaP35 PDX was significantly inhibited following depletion of the androgen receptor (AR) in vivo. Taken together, this system provides a method to generate novel preclinical models to assess the impact of controlled genetic perturbations and allows for targeting specific genes of interest in the complex biological setting of solid tumors.
Collapse
Affiliation(s)
- Patrick B. Thomas
- School of Biomedical Sciences at Translational Research Institute (TRI), Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia; (P.B.T.)
- Australian Prostate Cancer Research Centre—Queensland, Brisbane, QLD 4102, Australia
- Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD 4102, Australia
| | - Saeid Alinezhad
- School of Biomedical Sciences at Translational Research Institute (TRI), Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia; (P.B.T.)
- Australian Prostate Cancer Research Centre—Queensland, Brisbane, QLD 4102, Australia
| | - Andre Joshi
- School of Biomedical Sciences at Translational Research Institute (TRI), Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia; (P.B.T.)
- Australian Prostate Cancer Research Centre—Queensland, Brisbane, QLD 4102, Australia
- Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD 4102, Australia
- Department of Urology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - Katrina Sweeney
- School of Biomedical Sciences at Translational Research Institute (TRI), Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia; (P.B.T.)
- Australian Prostate Cancer Research Centre—Queensland, Brisbane, QLD 4102, Australia
| | - Brian W. C. Tse
- Preclinical Imaging Facility, Translational Research Institute (TRI), Brisbane, QLD 4102, Australia;
| | - Gregor Tevz
- School of Biomedical Sciences at Translational Research Institute (TRI), Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia; (P.B.T.)
- Australian Prostate Cancer Research Centre—Queensland, Brisbane, QLD 4102, Australia
| | - Stephen McPherson
- School of Biomedical Sciences at Translational Research Institute (TRI), Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia; (P.B.T.)
- Australian Prostate Cancer Research Centre—Queensland, Brisbane, QLD 4102, Australia
| | - Colleen C. Nelson
- School of Biomedical Sciences at Translational Research Institute (TRI), Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia; (P.B.T.)
- Australian Prostate Cancer Research Centre—Queensland, Brisbane, QLD 4102, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Elizabeth D. Williams
- School of Biomedical Sciences at Translational Research Institute (TRI), Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia; (P.B.T.)
- Australian Prostate Cancer Research Centre—Queensland, Brisbane, QLD 4102, Australia
- Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD 4102, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Ian Vela
- School of Biomedical Sciences at Translational Research Institute (TRI), Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia; (P.B.T.)
- Australian Prostate Cancer Research Centre—Queensland, Brisbane, QLD 4102, Australia
- Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD 4102, Australia
- Department of Urology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| |
Collapse
|
3
|
Nascimento-Gonçalves E, Seixas F, Ferreira R, Colaço B, Parada B, Oliveira PA. An overview of the latest in state-of-the-art murine models for prostate cancer. Expert Opin Drug Discov 2021; 16:1349-1364. [PMID: 34224283 DOI: 10.1080/17460441.2021.1943354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Prostate cancer (PCa) is a complex, heterogenous and multifocal disease, which is debilitating for patients and often fatal - due to bone metastasis and castration-resistant cancer. The use of murine models that mimic human disease has been crucial in the development of innovative therapies and for better understanding the mechanisms associated with initiation and progression of PCa. AREAS COVERED This review presents a critical analysis of murine models for the study of PCa, highlighting their strengths, weaknesses and applications. EXPERT OPINION In animal models, disease may not occur exactly as it does in humans, and sometimes the levels of efficacy that certain treatments obtain in animal models cannot be translated into clinical practice. To choose the most appropriate animal model for each research work, it is crucial to understand the anatomical and physiological differences between the mouse and the human prostate, while it is also important to identify biological similarities and differences between murine and human prostate tumors. Although significant progress has already been made, thanks to many years of research and study, the number of new challenges and obstacles to overcome mean there is a long and difficult road still to travel.
Collapse
Affiliation(s)
- Elisabete Nascimento-Gonçalves
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, UTAD, Vila Real, Portugal.,Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (Laqv-requimte),department of Chemistry, University of Aveiro (UA), Portugal
| | - Fernanda Seixas
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Animal and Veterinary Research Centre (CECAV), UTAD, Vila Real, Portugal
| | - Rita Ferreira
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (Laqv-requimte),department of Chemistry, University of Aveiro (UA), Portugal
| | - Bruno Colaço
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, UTAD, Vila Real, Portugal.,Department of Zootechnics, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Belmiro Parada
- Faculty of Medicine, University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (Icbr), Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Urology and Renal Transplantation Department, Coimbra University Hospital Centre (CHUC), Coimbra, Portugal
| | - Paula A Oliveira
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, UTAD, Vila Real, Portugal
| |
Collapse
|
4
|
Pistollato F, Bernasconi C, McCarthy J, Campia I, Desaintes C, Wittwehr C, Deceuninck P, Whelan M. Alzheimer's Disease, and Breast and Prostate Cancer Research: Translational Failures and the Importance to Monitor Outputs and Impact of Funded Research. Animals (Basel) 2020; 10:E1194. [PMID: 32674379 PMCID: PMC7401638 DOI: 10.3390/ani10071194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 12/24/2022] Open
Abstract
Dementia and cancer are becoming increasingly prevalent in Western countries. In the last two decades, research focused on Alzheimer's disease (AD) and cancer, in particular, breast cancer (BC) and prostate cancer (PC), has been substantially funded both in Europe and worldwide. While scientific research outcomes have contributed to increase our understanding of the disease etiopathology, still the prevalence of these chronic degenerative conditions remains very high across the globe. By definition, no model is perfect. In particular, animal models of AD, BC, and PC have been and still are traditionally used in basic/fundamental, translational, and preclinical research to study human disease mechanisms, identify new therapeutic targets, and develop new drugs. However, animals do not adequately model some essential features of human disease; therefore, they are often unable to pave the way to the development of drugs effective in human patients. The rise of new technological tools and models in life science, and the increasing need for multidisciplinary approaches have encouraged many interdisciplinary research initiatives. With considerable funds being invested in biomedical research, it is becoming pivotal to define and apply indicators to monitor the contribution to innovation and impact of funded research. Here, we discuss some of the issues underlying translational failure in AD, BC, and PC research, and describe how indicators could be applied to retrospectively measure outputs and impact of funded biomedical research.
Collapse
Affiliation(s)
- Francesca Pistollato
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (C.B.); (I.C.); (C.W.); (P.D.); (M.W.)
| | - Camilla Bernasconi
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (C.B.); (I.C.); (C.W.); (P.D.); (M.W.)
| | - Janine McCarthy
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (C.B.); (I.C.); (C.W.); (P.D.); (M.W.)
- Physicians Committee for Responsible Medicine (PCRM), Washington, DC 20016, USA;
| | - Ivana Campia
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (C.B.); (I.C.); (C.W.); (P.D.); (M.W.)
| | - Christian Desaintes
- European Commission, Directorate General for Research and Innovation (RTD), 1000 Brussels, Belgium;
| | - Clemens Wittwehr
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (C.B.); (I.C.); (C.W.); (P.D.); (M.W.)
| | - Pierre Deceuninck
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (C.B.); (I.C.); (C.W.); (P.D.); (M.W.)
| | - Maurice Whelan
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (C.B.); (I.C.); (C.W.); (P.D.); (M.W.)
| |
Collapse
|
5
|
Badal S, Aiken W, Morrison B, Valentine H, Bryan S, Gachi A, Ragin C. Disparities in prostate cancer incidence and mortality rates: Solvable or not? Prostate 2020; 80:3-16. [PMID: 31702061 PMCID: PMC8378246 DOI: 10.1002/pros.23923] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/18/2019] [Indexed: 12/21/2022]
Abstract
Prostate cancer (PCa) is recognized as a disease possessing not only great variation in its geographic and racial distribution but also tremendous variation in its potential to cause morbidity and death and it, therefore, ought not to be considered a homogenous disease entity. Morbidity and death from PCa are disproportionately higher in men of African ancestry (MAA) who are generally observed to have more aggressive disease and worse outcomes following treatment compared to men of European ancestry (MEA). The higher rates of PCa among MAA relative to MEA appear to be multifactorial and related to inherent differences in biological aggressiveness; a continued lack of awareness of the disease and methods of prevention; a lower prevalence of screen-detected PCa; comparatively lower access to quality healthcare as well as systemic and institutionalized disparities in the administration of optimal care to MAA in developed countries such as the United States of America where high-quality care is available. Even when access to quality healthcare is assured in equal access settings, it appears that MAA still have worse outcomes after PCa treatment stage-for-stage and grade-for-grade compared to MEA, suggesting that, inherent racial, ethnic and biological differences are paramount in predicting poor outcomes. This review has explored the different contributing factors to the current disparities in PCa incidence and mortality rates with emphasis on the incongruence in how research has been conducted in understanding the disease towards developing therapies.
Collapse
Affiliation(s)
- Simone Badal
- Department of Basic Medical Sciences, Faculty of Medical Sciences, University of the West Indies, Kingston, Jamaica
| | - William Aiken
- Department of Surgery, Faculty of Medical Sciences, University of the West Indies, Kingston, Jamaica
| | - Belinda Morrison
- Department of Surgery, Faculty of Medical Sciences, University of the West Indies, Kingston, Jamaica
| | - Henkel Valentine
- Department of Basic Medical Sciences, Faculty of Medical Sciences, University of the West Indies, Kingston, Jamaica
| | - Sophia Bryan
- Department of Basic Medical Sciences, Faculty of Medical Sciences, University of the West Indies, Kingston, Jamaica
| | - Andrew Gachi
- Department of pathology, Aga Khan University Hospital, 3 Avenue, Parklands, Nairobi, Kenya
| | - Camille Ragin
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- African Caribbean Cancer Consortium
| |
Collapse
|
6
|
Triscott J, Rubin MA. Prostate Power Play: Does Pik3ca Accelerate Pten-Deficient Cancer Progression? Cancer Discov 2019; 8:682-685. [PMID: 29858226 DOI: 10.1158/2159-8290.cd-18-0369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
<b/> PI3K pathway alterations are frequently recurrent in metastatic prostate cancer and are associated with the development of currently incurable castration-resistant disease. Candidate inhibitors that target single PI3K pathway members lack efficacy as demonstrated in multiple clinical trials. In this issue, Pearson and colleagues examine the functional importance of co-occurring PIK3CA and PTEN aberrations using a novel mouse model and demonstrate a synergistic acceleration of tumorigenesis that may be responsible for de novo metastatic prostate cancer. Cancer Discov; 8(6); 682-5. ©2018 AACRSee related article by Pearson et al., p. 764.
Collapse
Affiliation(s)
- Joanna Triscott
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Mark A Rubin
- Department of BioMedical Research, University of Bern, Bern, Switzerland. .,Weill Cornell Medical College, New York, New York
| |
Collapse
|
7
|
van der Toom EE, Axelrod HD, de la Rosette JJ, de Reijke TM, Pienta KJ, Valkenburg KC. Prostate-specific markers to identify rare prostate cancer cells in liquid biopsies. Nat Rev Urol 2019; 16:7-22. [PMID: 30479377 DOI: 10.1038/s41585-018-0119-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Despite improvements in early detection and advances in treatment, patients with prostate cancer continue to die from their disease. Minimal residual disease after primary definitive treatment can lead to relapse and distant metastases, and increasing evidence suggests that circulating tumour cells (CTCs) and bone marrow-derived disseminated tumour cells (BM-DTCs) can offer clinically relevant biological insights into prostate cancer dissemination and metastasis. Using epithelial markers to accurately detect CTCs and BM-DTCs is associated with difficulties, and prostate-specific markers are needed for the detection of these cells using rare cell assays. Putative prostate-specific markers have been identified, and an optimized strategy for staining rare cancer cells from liquid biopsies using these markers is required. The ideal prostate-specific marker will be expressed on every CTC or BM-DTC throughout disease progression (giving high sensitivity) and will not be expressed on non-prostate-cancer cells in the sample (giving high specificity). Some markers might not be specific enough to the prostate to be used as individual markers of prostate cancer cells, whereas others could be truly prostate-specific and would make ideal markers for use in rare cell assays. The goal of future studies is to use sensitive and specific prostate markers to consistently and reliably identify rare cancer cells.
Collapse
Affiliation(s)
| | - Haley D Axelrod
- The James Buchanan Brady Urological Institute, Baltimore, MD, USA.,Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Kenneth J Pienta
- The James Buchanan Brady Urological Institute, Baltimore, MD, USA
| | | |
Collapse
|
8
|
van Duijn PW, Marques RB, Ziel-van der Made ACJ, van Zoggel HJAA, Aghai A, Berrevoets C, Debets R, Jenster G, Trapman J, van Weerden WM. Tumor heterogeneity, aggressiveness, and immune cell composition in a novel syngeneic PSA-targeted Pten knockout mouse prostate cancer (MuCaP) model. Prostate 2018; 78:1013-1023. [PMID: 30133757 DOI: 10.1002/pros.23659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/09/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Prostate cancer is recognized as a heterogeneous disease demanding appropriate preclinical models that reflect tumor complexity. Previously, we established the PSA-Cre;PtenLoxP/LoxP genetic engineered mouse model (GEMM) for prostate cancer reflecting the various stages of tumor development. Prostate tumors in this Pten KO model slowly develop, requiring more than 10 months. In order to enhance its practical utility, we established a syngeneic panel of cell lines derived from PSA-Cre targeted Pten KO tumors, designated the mouse prostate cancer (MuCap) model. METHODS Four different MuCaP epithelial cell lines were established from three independent primary Pten KO mouse prostate tumors. Tumorigenic capacity of the MuCaP cell lines was determined by subcutaneous inoculation of these cell lines in immunocompetent mice. Response to PI3K-targeted therapy was validated in ex vivo tissue slices of the established MuCaP tumors. RESULTS The MuCaP cell lines were all tumorigenic in immunocompetent mice after subcutaneous inoculation. Interestingly, these syngrafted tumors represented different tumor growth rates and morphologies. Treatment with the specific PI3K inhibitor GDC0941 resulted in responses very similar between syngeneic MuCaP and primary Pten KO prostate tumors. Finally, immunoprofiling of the different syngeneic MuCaP tumors demonstrated differential numbers of tumor infiltrating lymphocytes and distinct immune gene profiles with expression of CD8, INFy, and PD1 being inversely related to tumor aggressiveness. CONCLUSIONS Collectively, we present here a well-defined MuCaP platform of in vitro and in vivo mouse prostate cancer models that may support preclinical assessment of (immune)-therapies for prostate cancer.
Collapse
Affiliation(s)
- Petra W van Duijn
- Department of Pathology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Urology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rute B Marques
- Department of Urology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | - Ashraf Aghai
- Department of Urology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Cor Berrevoets
- Department of Medical Oncology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Reno Debets
- Department of Medical Oncology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Guido Jenster
- Department of Urology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jan Trapman
- Department of Pathology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Wytske M van Weerden
- Department of Urology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
9
|
Valkenburg KC, Amend SR, Verdone JE, van der Toom EE, Hernandez JR, Gorin MA, Pienta KJ. A simple selection-free method for detecting disseminated tumor cells (DTCs) in murine bone marrow. Oncotarget 2018; 7:69794-69803. [PMID: 27634877 PMCID: PMC5342516 DOI: 10.18632/oncotarget.12000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/01/2016] [Indexed: 12/14/2022] Open
Abstract
Bone metastasis is a lethal and incurable disease. It is the result of the dissemination of cancer cells to the bone marrow. Due to the difficulty in sampling and detection, few techniques exist to efficiently and consistently detect and quantify disseminated tumor cells (DTCs) in the bone marrow of cancer patients. Because mouse models represent a crucial tool with which to study cancer metastasis, we developed a novel method for the simple selection-free detection and quantification of bone marrow DTCs in mice. We have used this protocol to detect human and murine DTCs in xenograft, syngeneic, and genetically engineered mouse models. We are able to detect and quantify bone marrow DTCs in mice that do not have overt bone metastasis. This protocol is amenable not only for detection and quantification purposes but also to study the expression of markers of numerous biological processes or tissue-specificity.
Collapse
Affiliation(s)
- Kenneth C Valkenburg
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sarah R Amend
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - James E Verdone
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Emma E van der Toom
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - James R Hernandez
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michael A Gorin
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kenneth J Pienta
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
10
|
Valkenburg KC, De Marzo AM, Williams BO. Deletion of tumor suppressors adenomatous polyposis coli and Smad4 in murine luminal epithelial cells causes invasive prostate cancer and loss of androgen receptor expression. Oncotarget 2017; 8:80265-80277. [PMID: 29113300 PMCID: PMC5655195 DOI: 10.18632/oncotarget.17919] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 05/03/2017] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer is the most diagnosed non-skin cancer in the US and kills approximately 27,000 men per year in the US. Additional genetic mouse models are needed that recapitulate the heterogeneous nature of human prostate cancer. The Wnt/beta-catenin signaling pathway is important for human prostate tumorigenesis and metastasis, and also drives tumorigenesis in mouse models. Loss of Smad4 has also been found in human prostate cancer and drives tumorigenesis and metastasis when coupled with other genetic aberrations in mouse models. In this work, we concurrently deleted Smad4 and the tumor suppressor and endogenous Wnt/beta-catenin inhibitor adenomatous polyposis coli (Apc) in luminal prostate cells in mice. This double conditional knockout model produced invasive castration-resistant prostate carcinoma with no evidence of metastasis. We observed mixed differentiation phenotypes, including basaloid and squamous differentiation. Interestingly, tumor cells in this model commonly lose androgen receptor expression. In addition, tumors disappear in these mice during androgen cycling (castration followed by testosterone reintroduction). These mice model non-metastatic castration resistant prostate cancer and should provide novel information for tumors that have genetic aberrations in the Wnt pathway or Smad4.
Collapse
Affiliation(s)
- Kenneth C. Valkenburg
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Angelo M. De Marzo
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Bart O. Williams
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
11
|
Liu D, Zhao L, Chen Y, Wang Z, Xu J, Li Y, Lei C, Hu S, Niu M, Jiang Y. Comparison of the general co-expression landscapes between human and mouse. Brief Bioinform 2017; 19:811-820. [DOI: 10.1093/bib/bbx024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Indexed: 12/21/2022] Open
Affiliation(s)
- Di Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Linna Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yang Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zhaoyang Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jing Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Ying Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Changgui Lei
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Simeng Hu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Miaomiao Niu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yongshuai Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
12
|
Valkenburg KC, Amend SR, Pienta KJ. Murine Prostate Micro-dissection and Surgical Castration. J Vis Exp 2016. [PMID: 27213557 DOI: 10.3791/53984] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Mouse models are used extensively to study prostate cancer and other diseases. The mouse is an excellent model with which to study the prostate and has been used as a surrogate for discoveries in human prostate development and disease. Prostate micro-dissection allows consistent study of lobe-specific prostate anatomy, histology, and cellular characteristics in the absence of contamination of other tissues. Testosterone affects prostate development and disease. Androgen deprivation therapy is a common treatment for prostate cancer patients, but many prostate tumors become castration-resistant. Surgical castration of mouse models allows for the study of castration resistance and other facets of hormonal biology on the prostate. This procedure can be coupled with testosterone reintroduction, or hormonal regeneration of the prostate, a powerful method to study stem cell lineages in the prostate. Together, prostate micro-dissection and surgical castration opens up a multitude of opportunities for robust and consistent research of prostate development and disease. This manuscript describes the protocols for prostate micro-dissection and surgical castration in the laboratory mouse.
Collapse
|
13
|
Castanares MA, Copeland BT, Chowdhury WH, Liu MM, Rodriguez R, Pomper MG, Lupold SE, Foss CA. Characterization of a novel metastatic prostate cancer cell line of LNCaP origin. Prostate 2016; 76:215-25. [PMID: 26499105 PMCID: PMC4729204 DOI: 10.1002/pros.23115] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/02/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND The LNCaP cell line was originally isolated from the lymph node of a patient with metastatic prostate cancer. Many cell lines have been derived from LNCaP by selective pressures to study different aspects of prostate cancer progression. When injected subcutaneously into male athymic nude mice, LNCaP and its derivatives rarely metastasize. METHODS Here, we describe the characteristics of a new LNCaP derivative, JHU-LNCaP-SM, which was generated by long term passage in normal cell culture conditions. RESULTS Short tandem repeat (STR) analysis and genomic sequencing verified JHU-LNCaP-SM derivation from parental LNCaP cells. JHU-LNCaP-SM cells express the same mutated androgen receptor (AR) but unlike LNCaP, are no longer androgen dependent for growth. The cells demonstrate an attenuated androgen responsiveness in transcriptional assays and retain androgen sensitive expression of PSA, AR, and PSMA. Unlike parental LNCaP, JHU-LNCaP-SM cells quickly form subcutaneous tumors in male athymic nude mice, reliably metastasize to the lymph nodes and display a striking intra-tumoral and spreading hemorrhagic phenotype as tumor xenografts. CONCLUSIONS The JHU-LNCaP-SM cell line is a new isolate of LNCaP, which facilitates practical, preclinical studies of spontaneous metastasis of prostate cancer through lymphatic tissues.
Collapse
Affiliation(s)
- Mark A. Castanares
- Department of Pharmacology and Molecular Sciences, Lilly Corporate Center, Indianapolis, Indiana
| | - Ben T. Copeland
- Russell H Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wasim H. Chowdhury
- The James Buchanan Brady Urologic Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Minzhi M. Liu
- The James Buchanan Brady Urologic Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Ronald Rodriguez
- The James Buchanan Brady Urologic Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Martin G. Pomper
- Russell H Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shawn E. Lupold
- The James Buchanan Brady Urologic Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Catherine A. Foss
- Russell H Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Correspondence to: Catherine A. Foss, Russell H Morgan Department of Radiology and Radiological Sciences, CRB2 493, Johns Hopkins University School of Medicine, Baltimore, MD, 21228.
| |
Collapse
|