1
|
Zhang C, Li S, Ren J, Lang R. Physiologically Based Pharmacokinetic Model of Plasma and Intracranial Pharmacokinetics and CDK4/6 Occupancy of Abemaciclib to Optimizing Dosing Regimen for Brain Metastatic Patients. ACS OMEGA 2025; 10:9245-9256. [PMID: 40092791 PMCID: PMC11904693 DOI: 10.1021/acsomega.4c09472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/11/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Objective: The study aimed to develop a physiologically based pharmacokinetic (PBPK) model to predict steady state trough concentrations (C min) and CDK4/6 occupancy in plasma and cerebrospinal fluid (CSF) for abemaciclib (ABE) and its three active metabolites. Additionally, a biomarker model was constructed to simulate changes in pRB and TOPO-IIα expression. Methods: The population PBPK and biomarker models of ABE were developed using physicochemical, pharmacokinetics (PK), CDK4/6 occupancy, biomarker, and physiological properties. These models were then validated using four clinical plasma PK studies, two CSF PK studies, and one clinically observed biomarker expression change in patients. Results: The PBPK model showed good consistency with observed data, with most prediction-to-observation ratios falling within the range of 0.5 to 2.0 for AUC, C max, C min in plasma and CSF. Key factors affecting C min and CDK4/6 occupancy for total analytes (sum of ABE and metabolites) were identified as CYP3A4, ABCB1, ABCG2 expression, and plasma albumin levels. PBPK simulations suggested that the optimal dosing regimen for ABE in brain metastatic breast cancer (MBC) is either 150 or 200 mg twice daily (BID). Conclusions: The PBPK model successfully simulated the PK profiles and CDK4/6 occupancy for ABE and its three metabolites in plasma and CSD, and determined the optimal dosing in brain MBC. Overall,The PBPK model can provide important insights for personalized dosing strategies, contributing to improved treatment efficacy and safety for patients, particularly those with brain MBC.
Collapse
Affiliation(s)
- Chao Zhang
- Beijing
Chaoyang Hospital, Eighth
Gongti South Road, Chaoyang District, Beijing 100020, China
| | - Shan Li
- Beijing
Chaoyang Hospital, Eighth
Gongti South Road, Chaoyang District, Beijing 100020, China
| | - Jiawei Ren
- North
China Electric Power University, No.2, Beinong Road, Huilongguan,
Changping District, Beijing 102206, China
| | - Ren Lang
- Beijing
Chaoyang Hospital, Eighth
Gongti South Road, Chaoyang District, Beijing 100020, China
| |
Collapse
|
2
|
Pinto MF, Sirina J, Holliday ND, McWhirter CL. High-throughput kinetics in drug discovery. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100170. [PMID: 38964171 DOI: 10.1016/j.slasd.2024.100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
The importance of a drug's kinetic profile and interplay of structure-kinetic activity with PK/PD has long been appreciated in drug discovery. However, technical challenges have often limited detailed kinetic characterization of compounds to the latter stages of projects. This review highlights the advances that have been made in recent years in techniques, instrumentation, and data analysis to increase the throughput of detailed kinetic and mechanistic characterization, enabling its application earlier in the drug discovery process.
Collapse
Affiliation(s)
- Maria Filipa Pinto
- Artios Pharma Ltd, B940, Babraham Research Campus, Cambridge CB22 3FH, United Kingdom
| | - Julija Sirina
- Excellerate Bioscience Ltd, 21 The Triangle, NG2 Business Park, Nottingham, NG2 1AE, United Kingdom
| | - Nicholas D Holliday
- Excellerate Bioscience Ltd, 21 The Triangle, NG2 Business Park, Nottingham, NG2 1AE, United Kingdom; School of Life Sciences, The Medical School, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Claire L McWhirter
- Artios Pharma Ltd, B940, Babraham Research Campus, Cambridge CB22 3FH, United Kingdom.
| |
Collapse
|
3
|
Vauquelin G, Maes D. Competition in drug binding and … the race to equilibrium. Fundam Clin Pharmacol 2023; 37:147-157. [PMID: 35981720 DOI: 10.1111/fcp.12824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/30/2022] [Accepted: 08/17/2022] [Indexed: 01/25/2023]
Abstract
Binding kinetics has become a popular topic in pharmacology due to its potential contribution to the selectivity and duration of drug action. Yet, the overall kinetic aspects of complex binding mechanisms are still merely described in terms of elaborate algebraic equations. Interestingly, it has been recommended some 10 years ago to examine such mechanisms in terms of binding fluxes instead of the conventional rate constants. Alike the velocity of product formation in enzymology, those fluxes refer to the velocity by which one target species converts into another one. Novel binding flux-based approaches are utilized to get a better visual insight into the "competition" between two drugs/ligands for a single target as well as between induced fit- and conformational selection pathways for a single ligand within a thermodynamic cycle. The present data were obtained by differential equation-based simulations. Early on, the ligand-binding steps "race" to equilibrium (i.e., when their forward and reverse fluxes are equal) at their individual pace. The overall/global equilibrium is only reached later on. For the competition association assays, this parting might produce a transient "overshoot" of one of the bound target species. A similar overshoot may also show up within a thermodynamic cycle and, at first glance, suggest that the induced fit pathway dominates. Yet, present findings show that under certain circumstances, it could rather be the other way round. Novel binding flux-based approaches offer visually attractive insights into crucial aspects of "complex" binding mechanisms under non-equilibrium conditions.
Collapse
Affiliation(s)
- Georges Vauquelin
- Department of Molecular and Biochemical Pharmacology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Dominique Maes
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
4
|
Ziada S, Diharce J, Raimbaud E, Aci-Sèche S, Ducrot P, Bonnet P. Estimation of Drug-Target Residence Time by Targeted Molecular Dynamics Simulations. J Chem Inf Model 2022; 62:5536-5549. [PMID: 36350238 DOI: 10.1021/acs.jcim.2c00852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Drug-target residence time has emerged as a key selection factor in drug discovery since the binding duration of a drug molecule to its protein target can significantly impact its in vivo efficacy. The challenge in studying the residence time, in early drug discovery stages, lies in how to cost-effectively determine the residence time for the systematic assessment of compounds. Currently, there is still a lack of computational protocols to quickly estimate such a measure, particularly for large and flexible protein targets and drugs. Here, we report an efficient computational protocol, based on targeted molecular dynamics, to rank drug candidates by their residence time and to obtain insights into ligand-target dissociation mechanisms. The method was assessed on a dataset of 10 arylpyrazole inhibitors of CDK8, a large, flexible, and clinically important target, for which the experimental residence time of the inhibitors ranges from minutes to hours. The compounds were correctly ranked according to their estimated residence time scores compared to their experimental values. The analysis of protein-ligand interactions along the dissociation trajectories highlighted the favorable contribution of hydrophobic contacts to residence time and revealed key residues that strongly affect compound residence time.
Collapse
Affiliation(s)
- Sonia Ziada
- Institut de Chimie Organique et Analytique (ICOA), UMR CNRS-Université d'Orléans 7311, Université d'Orléans BP 6759, Orléans Cedex 245067, France
| | - Julien Diharce
- Institut de Chimie Organique et Analytique (ICOA), UMR CNRS-Université d'Orléans 7311, Université d'Orléans BP 6759, Orléans Cedex 245067, France
| | - Eric Raimbaud
- Institut de Recherches Servier, 125 Chemin de Ronde, Croissy-sur-Seine78290, France
| | - Samia Aci-Sèche
- Institut de Chimie Organique et Analytique (ICOA), UMR CNRS-Université d'Orléans 7311, Université d'Orléans BP 6759, Orléans Cedex 245067, France
| | - Pierre Ducrot
- Institut de Recherches Servier, 125 Chemin de Ronde, Croissy-sur-Seine78290, France
| | - Pascal Bonnet
- Institut de Chimie Organique et Analytique (ICOA), UMR CNRS-Université d'Orléans 7311, Université d'Orléans BP 6759, Orléans Cedex 245067, France
| |
Collapse
|
5
|
Wenzel B, Fritzsche SR, Toussaint M, Briel D, Kopka K, Brust P, Scheunemann M, Deuther-Conrad W. Radiosynthesis and Preclinical Evaluation of an 18F-Labeled Triazolopyridopyrazine-Based Inhibitor for Neuroimaging of the Phosphodiesterase 2A (PDE2A). Pharmaceuticals (Basel) 2022; 15:1272. [PMID: 36297384 PMCID: PMC9609767 DOI: 10.3390/ph15101272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/10/2022] Open
Abstract
The cyclic nucleotide phosphodiesterase 2A is an intracellular enzyme which hydrolyzes the secondary messengers cAMP and cGMP and therefore plays an important role in signaling cascades. A high expression in distinct brain areas as well as in cancer cells makes PDE2A an interesting therapeutic and diagnostic target for neurodegenerative and neuropsychiatric diseases as well as for cancer. Aiming at specific imaging of this enzyme in the brain with positron emission tomography (PET), a new triazolopyridopyrazine-based derivative (11) was identified as a potent PDE2A inhibitor (IC50, PDE2A = 1.99 nM; IC50, PDE10A ~2000 nM) and has been radiofluorinated for biological evaluation. In vitro autoradiographic studies revealed that [18F]11 binds with high affinity and excellent specificity towards PDE2A in the rat brain. For the PDE2A-rich region nucleus caudate and putamen an apparent KD value of 0.24 nM and an apparent Bmax value of 16 pmol/mg protein were estimated. In vivo PET-MR studies in rats showed a moderate brain uptake of [18F]11 with a highest standardized uptake value (SUV) of 0.97. However, no considerable enrichment in PDE2A-specific regions in comparison to a reference region was detectable (SUVcaudate putamen = 0.51 vs. SUVcerebellum = 0.40 at 15 min p.i.). Furthermore, metabolism studies revealed a considerable uptake of radiometabolites of [18F]11 in the brain (66% parent fraction at 30 min p.i.). Altogether, despite the low specificity and the blood−brain barrier crossing of radiometabolites observed in vivo, [18F]11 is a valuable imaging probe for the in vitro investigation of PDE2A in the brain and has potential as a lead compound for further development of a PDE2A-specific PET ligand for neuroimaging.
Collapse
Affiliation(s)
- Barbara Wenzel
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany
| | - Stefan R. Fritzsche
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, 04103 Leipzig, Germany
| | - Magali Toussaint
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany
| | - Detlef Briel
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, 04103 Leipzig, Germany
| | - Klaus Kopka
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technical University Dresden, 01069 Dresden, Germany
| | - Peter Brust
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany
| | - Matthias Scheunemann
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany
| | - Winnie Deuther-Conrad
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany
| |
Collapse
|
6
|
Liang J, Tran VNN, Hemez C, Abel Zur Wiesch P. Current Approaches of Building Mechanistic Pharmacodynamic Drug-Target Binding Models. Methods Mol Biol 2022; 2385:1-17. [PMID: 34888713 DOI: 10.1007/978-1-0716-1767-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mechanistic pharmacodynamic models that incorporate the binding kinetics of drug-target interactions have several advantages in understanding target engagement and the efficacy of a drug dose. However, guidelines on how to build and interpret mechanistic pharmacodynamic drug-target binding models considering both biological and computational factors are still missing in the literature. In this chapter, current approaches of building mechanistic PD models and their advantages are discussed. We also present a methodology on how to select a suitable model considering both biological and computational perspectives, as well as summarize the challenges of current mechanistic PD models.
Collapse
Affiliation(s)
- Jingyi Liang
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA, USA
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Vi Ngoc-Nha Tran
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Colin Hemez
- Graduate Program in Biophysics, Harvard University, Boston, MA, USA
| | - Pia Abel Zur Wiesch
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.
- Department of Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA, USA.
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, Blindern, Oslo, Norway.
| |
Collapse
|
7
|
Pho C, Frieler M, Akkaraju GR, Naumov AV, Dobrovolny HM. Using mathematical modeling to estimate time-independent cancer chemotherapy efficacy parameters. In Silico Pharmacol 2021; 10:2. [PMID: 34926126 DOI: 10.1007/s40203-021-00117-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/19/2021] [Indexed: 12/09/2022] Open
Abstract
One of the primary cancer treatment modalities is chemotherapy. Unfortunately, traditional anti-cancer drugs are often not selective and cause damage to healthy cells, leading to serious side effects for patients. For this reason more targeted therapeutics and drug delivery methods are being developed. The effectiveness of new treatments is initially determined via in vitro cell viability assays, which determine the IC 50 of the drug. However, these assays are known to result in estimates of IC 50 that depend on the measurement time, possibly resulting in over- or under-estimation of the IC 50 . Here, we test the possibility of using cell growth curves and fitting of mathematical models to determine the IC 50 as well as the maximum efficacy of a drug ( ε max ). We measured cell growth of MCF-7 and HeLa cells in the presence of different concentrations of doxorubicin and fit the data with a logistic growth model that incorporates the effect of the drug. This method leads to measurement time-independent estimates of IC 50 and ε max , but we find that ε max is not identifiable. Further refinement of this methodology is needed to produce uniquely identifiable parameter estimates.
Collapse
Affiliation(s)
- Christine Pho
- Department of Physics and Astronomy, Texas Christian University, 2800 S. University Drive, Fort Worth, 76129 TX USA
| | - Madison Frieler
- Department of Biology, Texas Christian University, 2800 S. University Drive, Fort Worth, 76129 TX USA
| | - Giri R Akkaraju
- Department of Biology, Texas Christian University, 2800 S. University Drive, Fort Worth, 76129 TX USA
| | - Anton V Naumov
- Department of Physics and Astronomy, Texas Christian University, 2800 S. University Drive, Fort Worth, 76129 TX USA
| | - Hana M Dobrovolny
- Department of Physics and Astronomy, Texas Christian University, 2800 S. University Drive, Fort Worth, 76129 TX USA
| |
Collapse
|
8
|
Lai TH, Toussaint M, Teodoro R, Dukić-Stefanović S, Kranz M, Deuther-Conrad W, Moldovan RP, Brust P. Synthesis and Biological Evaluation of a Novel 18F-Labeled Radiotracer for PET Imaging of the Adenosine A 2A Receptor. Int J Mol Sci 2021; 22:ijms22031182. [PMID: 33504051 PMCID: PMC7865263 DOI: 10.3390/ijms22031182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
The adenosine A2A receptor (A2AR) has emerged as a potential non-dopaminergic target for the treatment of Parkinson’s disease and, thus, the non-invasive imaging with positron emission tomography (PET) is of utmost importance to monitor the receptor expression and occupancy during an A2AR-tailored therapy. Aiming at the development of a PET radiotracer, we herein report the design of a series of novel fluorinated analogs (TOZ1-TOZ7) based on the structure of the A2AR antagonist tozadenant, and the preclinical evaluation of [18F]TOZ1. Autoradiography proved A2AR-specific in vitro binding of [18F]TOZ1 to striatum of mouse and pig brain. Investigations of the metabolic stability in mice revealed parent fractions of more than 76% and 92% of total activity in plasma and brain samples, respectively. Dynamic PET/magnetic resonance imaging (MRI) studies in mice revealed a brain uptake but no A2AR-specific in vivo binding.
Collapse
Affiliation(s)
- Thu Hang Lai
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, 04318 Leipzig, Germany; (R.T.); (S.D.-S.); (M.K.); (W.D.-C.); (R.-P.M.); (P.B.)
- Department of Research and Development, ROTOP Pharmaka Ltd., 01328 Dresden, Germany
- Correspondence: (T.H.L.); (M.T.); Tel.: +49-341-234-179-4635 (T.H.L.); +49-341-234-179-4616 (M.T.)
| | - Magali Toussaint
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, 04318 Leipzig, Germany; (R.T.); (S.D.-S.); (M.K.); (W.D.-C.); (R.-P.M.); (P.B.)
- Correspondence: (T.H.L.); (M.T.); Tel.: +49-341-234-179-4635 (T.H.L.); +49-341-234-179-4616 (M.T.)
| | - Rodrigo Teodoro
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, 04318 Leipzig, Germany; (R.T.); (S.D.-S.); (M.K.); (W.D.-C.); (R.-P.M.); (P.B.)
| | - Sladjana Dukić-Stefanović
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, 04318 Leipzig, Germany; (R.T.); (S.D.-S.); (M.K.); (W.D.-C.); (R.-P.M.); (P.B.)
| | - Mathias Kranz
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, 04318 Leipzig, Germany; (R.T.); (S.D.-S.); (M.K.); (W.D.-C.); (R.-P.M.); (P.B.)
- PET Imaging Center, University Hospital of North Norway (UNN), 9009 Tromsø, Norway
- Nuclear Medicine and Radiation Biology Research Group, The Arctic University of Norway, 9009 Tromsø, Norway
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, 04318 Leipzig, Germany; (R.T.); (S.D.-S.); (M.K.); (W.D.-C.); (R.-P.M.); (P.B.)
| | - Rareş-Petru Moldovan
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, 04318 Leipzig, Germany; (R.T.); (S.D.-S.); (M.K.); (W.D.-C.); (R.-P.M.); (P.B.)
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, 04318 Leipzig, Germany; (R.T.); (S.D.-S.); (M.K.); (W.D.-C.); (R.-P.M.); (P.B.)
| |
Collapse
|
9
|
Joshi A, Wang DH, Watterson S, McClean PL, Behera CK, Sharp T, Wong-Lin K. Opportunities for multiscale computational modelling of serotonergic drug effects in Alzheimer's disease. Neuropharmacology 2020; 174:108118. [PMID: 32380022 PMCID: PMC7322519 DOI: 10.1016/j.neuropharm.2020.108118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/13/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is an age-specific neurodegenerative disease that compromises cognitive functioning and impacts the quality of life of an individual. Pathologically, AD is characterised by abnormal accumulation of beta-amyloid (Aβ) and hyperphosphorylated tau protein. Despite research advances over the last few decades, there is currently still no cure for AD. Although, medications are available to control some behavioural symptoms and slow the disease's progression, most prescribed medications are based on cholinesterase inhibitors. Over the last decade, there has been increased attention towards novel drugs, targeting alternative neurotransmitter pathways, particularly those targeting serotonergic (5-HT) system. In this review, we focused on 5-HT receptor (5-HTR) mediated signalling and drugs that target these receptors. These pathways regulate key proteins and kinases such as GSK-3 that are associated with abnormal levels of Aβ and tau in AD. We then review computational studies related to 5-HT signalling pathways with the potential for providing deeper understanding of AD pathologies. In particular, we suggest that multiscale and multilevel modelling approaches could potentially provide new insights into AD mechanisms, and towards discovering novel 5-HTR based therapeutic targets.
Collapse
Affiliation(s)
- Alok Joshi
- Intelligent Systems Research Centre, Ulster University, Derry~Londonderry, Northern Ireland, UK.
| | - Da-Hui Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; School of System Science, Beijing Normal University, Beijing, China
| | - Steven Watterson
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, Derry~Londonderry, Northern Ireland, UK
| | - Paula L McClean
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, Derry~Londonderry, Northern Ireland, UK
| | - Chandan K Behera
- Intelligent Systems Research Centre, Ulster University, Derry~Londonderry, Northern Ireland, UK
| | - Trevor Sharp
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - KongFatt Wong-Lin
- Intelligent Systems Research Centre, Ulster University, Derry~Londonderry, Northern Ireland, UK.
| |
Collapse
|
10
|
Jansson-Löfmark R, Hjorth S, Gabrielsson J. Does In Vitro Potency Predict Clinically Efficacious Concentrations? Clin Pharmacol Ther 2020; 108:298-305. [PMID: 32275768 PMCID: PMC7484912 DOI: 10.1002/cpt.1846] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/02/2020] [Indexed: 12/16/2022]
Abstract
The in vitro affinity of a compound for its target is an important feature in drug discovery, but what remains is how predictive in vitro properties are of in vivo therapeutic drug exposure. We assessed the relationship between in vitro potency and clinically efficacious concentrations for marketed small molecule drugs (n = 164) and how they may differ depending on therapeutic indication, mode of action, receptor type, target localization, and function. Approximately 70% of compounds had a therapeutic unbound plasma exposure lower than in vitro potency; the median ratio of exposure in relation to in vitro potency was 0.32, and 80% had ratios within the range of 0.007 to 8.7. We identified differences in the in vivo–to–in vitro potency ratio between indications, mode of action, target type, and matrix localization, and whether or not the drugs had active metabolites. The in vitro–assay variability contributions appeared to be the smallest; within the same drug target and mode of action the within‐variability was slightly broader; but both were substantially less compared with the overall distribution of ratios. These data suggest that in vitro potency conditions, estimated in vivo potency, required level of receptor occupancy, and target turnover are key components for further understanding the link between clinical drug exposure and in vitro potency.
Collapse
Affiliation(s)
- Rasmus Jansson-Löfmark
- DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Stephan Hjorth
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden.,Pharmacilitator AB (Inc.), Vallda, Sweden
| | - Johan Gabrielsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
11
|
Long residence time adenosine A1 receptor agonists produce sustained wash-resistant antilipolytic effect in rat adipocytes. Biochem Pharmacol 2019; 164:45-52. [DOI: 10.1016/j.bcp.2019.03.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023]
|
12
|
IJzerman AP, Guo D. Drug-Target Association Kinetics in Drug Discovery. Trends Biochem Sci 2019; 44:861-871. [PMID: 31101454 DOI: 10.1016/j.tibs.2019.04.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/28/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023]
Abstract
The important role of ligand-receptor binding kinetics in drug design and discovery is increasingly recognized by the drug research community. Over the past decade, accumulating evidence has shown that optimizing the ligand's dissociation rate constant can lead to desirable duration of in vivo target occupancy and, hence, improved pharmacodynamic properties. However, the association rate constant as a pharmacological principle remains less investigated, whereas it can play an equally important role in the selection of drug candidates. This review provides a compilation and discussion of otherwise scarce and dispersed information on this topic, bringing to light the importance of drug-target association in kinetics-directed drug design and discovery.
Collapse
Affiliation(s)
- Adriaan P IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300, RA, Leiden, The Netherlands
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
13
|
Sykes DA, Stoddart LA, Kilpatrick LE, Hill SJ. Binding kinetics of ligands acting at GPCRs. Mol Cell Endocrinol 2019; 485:9-19. [PMID: 30738950 PMCID: PMC6406023 DOI: 10.1016/j.mce.2019.01.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/19/2019] [Accepted: 01/19/2019] [Indexed: 12/31/2022]
Abstract
The influence of drug-receptor binding kinetics has often been overlooked during the development of new therapeutics that target G protein-coupled receptors (GPCRs). Over the last decade there has been a growing understanding that an in-depth knowledge of binding kinetics at GPCRs is required to successfully target this class of proteins. Ligand binding to a GPCR is often not a simple single step process with ligand freely diffusing in solution. This review will discuss the experiments and equations that are commonly used to measure binding kinetics and how factors such as allosteric regulation, rebinding and ligand interaction with the plasma membrane may influence these measurements. We will then consider the molecular characteristics of a ligand and if these can be linked to association and dissociation rates.
Collapse
Affiliation(s)
- David A Sykes
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Leigh A Stoddart
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Laura E Kilpatrick
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Stephen J Hill
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.
| |
Collapse
|
14
|
de Witte WEA, Versfelt JW, Kuzikov M, Rolland S, Georgi V, Gribbon P, Gul S, Huntjens D, van der Graaf PH, Danhof M, Fernández-Montalván A, Witt G, de Lange ECM. In vitro and in silico analysis of the effects of D 2 receptor antagonist target binding kinetics on the cellular response to fluctuating dopamine concentrations. Br J Pharmacol 2018; 175:4121-4136. [PMID: 30051456 PMCID: PMC6177617 DOI: 10.1111/bph.14456] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 06/17/2018] [Accepted: 06/25/2018] [Indexed: 12/27/2022] Open
Abstract
Background and Purpose Target binding kinetics influence the time course of the drug effect (pharmacodynamics) both (i) directly, by affecting the time course of target occupancy, driven by the pharmacokinetics of the drug, competition with endogenous ligands and target turnover, and (ii) indirectly, by affecting signal transduction and homeostatic feedback. For dopamine D2 receptor antagonists, it has been hypothesized that fast receptor binding kinetics cause fewer side effects, because part of the dynamics of the dopaminergic system is preserved by displacement of these antagonists. Experimental Approach Target binding kinetics of D2 receptor antagonists and signal transduction after dopamine and D2 receptor antagonist exposure were measured in vitro. These data were integrated by mechanistic modelling, taking into account competitive binding of endogenous dopamine and the antagonist, the turnover of the second messenger cAMP and negative feedback by PDE turnover. Key Results The proposed signal transduction model successfully described the cellular cAMP response for 17 D2 receptor antagonists with widely different binding kinetics. Simulation of the response to fluctuating dopamine concentrations revealed that a significant effect of the target binding kinetics on the dynamics of the signalling only occurs at endogenous dopamine concentration fluctuations with frequencies below 1 min−1. Conclusions and Implications Signal transduction and feedback are important determinants of the time course of drug effects. The effect of the D2 receptor antagonist dissociation rate constant (koff) is limited to the maximal rate of fluctuations in dopamine signalling as determined by the dopamine koff and the cAMP turnover.
Collapse
Affiliation(s)
- Wilhelmus E A de Witte
- Department of Pharmacology, Leiden Academic Centre for Drug Research, Leiden, Netherlands
| | - Joost W Versfelt
- Department of Pharmacology, Leiden Academic Centre for Drug Research, Leiden, Netherlands
| | - Maria Kuzikov
- ScreeningPort, Fraunhofer Institute for Molecular Biology and Applied Ecology, Hamburg, Germany
| | - Solene Rolland
- Global Drug Discovery, Bayer Healthcare Pharmaceuticals, Berlin, Germany
| | - Victoria Georgi
- Global Drug Discovery, Bayer Healthcare Pharmaceuticals, Berlin, Germany
| | - Philip Gribbon
- ScreeningPort, Fraunhofer Institute for Molecular Biology and Applied Ecology, Hamburg, Germany
| | - Sheraz Gul
- ScreeningPort, Fraunhofer Institute for Molecular Biology and Applied Ecology, Hamburg, Germany
| | | | - Piet Hein van der Graaf
- Department of Pharmacology, Leiden Academic Centre for Drug Research, Leiden, Netherlands.,QSP, Certara, Canterbury, UK
| | - Meindert Danhof
- Department of Pharmacology, Leiden Academic Centre for Drug Research, Leiden, Netherlands
| | - Amaury Fernández-Montalván
- Global Drug Discovery, Bayer Healthcare Pharmaceuticals, Berlin, Germany.,Servier Research Institute, Croissy-sur-Seine, France
| | - Gesa Witt
- ScreeningPort, Fraunhofer Institute for Molecular Biology and Applied Ecology, Hamburg, Germany
| | - Elizabeth C M de Lange
- Department of Pharmacology, Leiden Academic Centre for Drug Research, Leiden, Netherlands
| |
Collapse
|
15
|
Vauquelin G. Link between a high k on for drug binding and a fast clinical action: to be or not to be? MEDCHEMCOMM 2018; 9:1426-1438. [PMID: 30288218 PMCID: PMC6151451 DOI: 10.1039/c8md00296g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/15/2018] [Indexed: 01/21/2023]
Abstract
Review articles on binding kinetics essentially focus on drugs that dissociate slowly from their target since this is required for the successful treatment of many pathophysiological conditions. Recently, the therapeutic benefit of a high k on (i.e. the second order association rate constant) has also been linked to fast association and to a fast clinical action. Other studies, however, called this assertion into question since additional factors, like the dosing paradigm and the binding mechanism, are important as well. The still ongoing reticence about integrating binding kinetics in lead optimization programs motivated us to critically review the link between the drug's kinetic rate constants and their in vitro and in vivo target occupancy profile, with special focus on k on. The presented simulations tally with a positive link between a drug's effective/observed association rate (which is quite easy to determine in vitro) and the swiftness of its clinical action. On the other hand, the simulations show that the k on-concept should not be confounded with the effective association process since increasing this parameter only enhances the drug's in vitro and in vivo association under certain conditions: the binding mechanism should be suitable, rebinding (and thus the factors within the target's micro-environment that favour this mechanism) should not be too prominent and the dosage should not be kept in par with the drug's affinity. Otherwise, increasing k on could be ineffective or even be counter-productive.
Collapse
Affiliation(s)
- Georges Vauquelin
- Department of Molecular and Biochemical Pharmacology , Vrije Universiteit Brussel , Pleinlaan 2 , B-1050 Brussels , Belgium .
| |
Collapse
|
16
|
de Witte WEA, Rottschäfer V, Danhof M, van der Graaf PH, Peletier LA, de Lange ECM. Modelling the delay between pharmacokinetics and EEG effects of morphine in rats: binding kinetic versus effect compartment models. J Pharmacokinet Pharmacodyn 2018; 45:621-635. [PMID: 29777407 PMCID: PMC6061075 DOI: 10.1007/s10928-018-9593-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 05/02/2018] [Indexed: 01/10/2023]
Abstract
Drug–target binding kinetics (as determined by association and dissociation rate constants, kon and koff) can be an important determinant of the kinetics of drug action. However, the effect compartment model is used most frequently instead of a target binding model to describe hysteresis. Here we investigate when the drug–target binding model should be used in lieu of the effect compartment model. The utility of the effect compartment (EC), the target binding kinetics (TB) and the combined effect compartment–target binding kinetics (EC–TB) model were tested on either plasma (ECPL, TBPL and EC–TBPL) or brain extracellular fluid (ECF) (ECECF, TBECF and EC–TBECF) morphine concentrations and EEG amplitude in rats. It was also analyzed when a significant shift in the time to maximal target occupancy (TmaxTO) with increasing dose, the discriminating feature between the TB and EC model, occurs in the TB model. All TB models assumed a linear relationship between target occupancy and drug effect on the EEG amplitude. All three model types performed similarly in describing the morphine pharmacodynamics data, although the EC model provided the best statistical result. The analysis of the shift in TmaxTO (∆TmaxTO) as a result of increasing dose revealed that ∆TmaxTO is decreasing towards zero if the koff is much smaller than the elimination rate constant or if the target concentration is larger than the initial morphine concentration. The results for the morphine PKPD modelling and the analysis of ∆TmaxTO indicate that the EC and TB models do not necessarily lead to different drug effect versus time curves for different doses if a delay between drug concentrations and drug effect (hysteresis) is described. Drawing mechanistic conclusions from successfully fitting one of these two models should therefore be avoided. Since the TB model can be informed by in vitro measurements of kon and koff, a target binding model should be considered more often for mechanistic modelling purposes.
Collapse
Affiliation(s)
- Wilhelmus E A de Witte
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC, Leiden, The Netherlands
| | - Vivi Rottschäfer
- Mathematical Institute, Leiden University, 2333 CA, Leiden, The Netherlands
| | - Meindert Danhof
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC, Leiden, The Netherlands
| | - Piet H van der Graaf
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC, Leiden, The Netherlands
- Certara Quantitative Systems Pharmacology, Canterbury Innovation Centre, Canterbury, CT2 7FG, UK
| | | | - Elizabeth C M de Lange
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
17
|
Abstract
The development of therapies for the treatment of neurological cancer faces a number of major challenges including the synthesis of small molecule agents that can penetrate the blood-brain barrier (BBB). Given the likelihood that in many cases drug exposure will be lower in the CNS than in systemic circulation, it follows that strategies should be employed that can sustain target engagement at low drug concentration. Time dependent target occupancy is a function of both the drug and target concentration as well as the thermodynamic and kinetic parameters that describe the binding reaction coordinate, and sustained target occupancy can be achieved through structural modifications that increase target (re)binding and/or that decrease the rate of drug dissociation. The discovery and deployment of compounds with optimized kinetic effects requires information on the structure-kinetic relationships that modulate the kinetics of binding, and the molecular factors that control the translation of drug-target kinetics to time-dependent drug activity in the disease state. This Review first introduces the potential benefits of drug-target kinetics, such as the ability to delineate both thermodynamic and kinetic selectivity, and then describes factors, such as target vulnerability, that impact the utility of kinetic selectivity. The Review concludes with a description of a mechanistic PK/PD model that integrates drug-target kinetics into predictions of drug activity.
Collapse
Affiliation(s)
- Peter J. Tonge
- Institute for Chemical Biology & Drug Discovery, Departments of Chemistry and Radiology, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
18
|
Vauquelin G. Distinct in vivo target occupancy by bivalent- and induced-fit-like binding drugs. Br J Pharmacol 2017; 174:4233-4246. [PMID: 28838028 PMCID: PMC5715606 DOI: 10.1111/bph.13989] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/20/2017] [Accepted: 07/27/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Optimal drug therapy often requires long-lasting target occupancy While this attribute was usually linked to the drug's pharmacokinetic properties, the dissociation rate is now increasingly recognized to contribute as well. Nearly all the earlier pharmacokinetic-pharmacodynamic (PK-PD) simulations encompassed single-step binding drugs and focused on koff . However, 'micro'-PK mechanisms and more complex binding mechanisms like bivalent- and induced-fit binding may contribute as well. Corresponding binding models are presently explored. EXPERIMENTAL APPROACH We compared the 24 h in vivo occupancy over time profiles of prototype bivalent- and induced-fit-like binding drugs (A and B) after one or repeated daily dosings, both without and with rebinding. Special attention was focused on the effect of each of the microscopic rate constants on the occupancy profiles and on the metrics to represent those profiles. KEY RESULTS Although both models can be represented by the same mathematical formulation, drugs A and B display quite different occupancy profiles, even though they have the same potency. These differences can be attributed to the different effects of their microscopic rate constants on their composite koff and also on their susceptibility to experience rebinding. This also affects how the occupancy profiles of bivalent- and induced-fit-like binders progress when repeating the dosings and by changing the dosage. CONCLUSIONS AND IMPLICATIONS Closer attention should be paid to more complex binding models in PK-PD simulations. This may help pharmacologists and medicinal chemists to improve the translation of in vitro kinetic measurements from preclinical screening programmes into clinical efficiency.
Collapse
Affiliation(s)
- Georges Vauquelin
- Department of Molecular and Biochemical PharmacologyVrije Universiteit BrusselBrusselsBelgium
| |
Collapse
|
19
|
van Dijkman SC, Voskuyl RA, de Lange EC. Biomarkers in epilepsy-A modelling perspective. Eur J Pharm Sci 2017; 109S:S47-S52. [PMID: 28528284 DOI: 10.1016/j.ejps.2017.05.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 05/15/2017] [Indexed: 10/19/2022]
Abstract
Biomarkers can be categorised from type 0 (genotype or phenotype), through 6 (clinical scales), each level representing a part of the processes involved in the biological system and drug treatment. This classification facilitates the identification and connection of information required to fully (mathematically) model a disease and its treatment using integrated information from biomarkers. Two recent reviews thoroughly discussed the current status and development of biomarkers for epilepsy, but a path towards the integration of such biomarkers for the personalisation of anti-epileptic drug treatment is lacking. Here we aim to 1) briefly categorise the available epilepsy biomarkers and identify gaps, and 2) provide a modelling perspective on approaches to fill such gaps. There is mainly a lack of biomarker types 2 (target occupancy) and 3 (target activation). Current literature typically focuses on qualitative biomarkers for diagnosis and prediction of treatment response or failure, leaving a need for biomarkers that help to quantitatively understand the overall system to explain and predict differences in disease and treatment outcome. Due to the complexity of epilepsy, filling the biomarker gaps will require collaboration and expertise from the fields of systems biology and systems pharmacology.
Collapse
Affiliation(s)
- Sven C van Dijkman
- Division of Pharmacology, Leiden Academic Centre for Drug Research, The Netherlands.
| | - Rob A Voskuyl
- Division of Pharmacology, Leiden Academic Centre for Drug Research, The Netherlands
| | - Elizabeth C de Lange
- Division of Pharmacology, Leiden Academic Centre for Drug Research, The Netherlands
| |
Collapse
|
20
|
Wong YC, Ilkova T, van Wijk RC, Hartman R, de Lange ECM. Development of a population pharmacokinetic model to predict brain distribution and dopamine D2 receptor occupancy of raclopride in non-anesthetized rat. Eur J Pharm Sci 2017; 111:514-525. [PMID: 29106979 DOI: 10.1016/j.ejps.2017.10.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/13/2017] [Accepted: 10/22/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Raclopride is a selective antagonist of the dopamine D2 receptor. It is one of the most frequently used in vivo D2 tracers (at low doses) for assessing drug-induced receptor occupancy (RO) in animals and humans. It is also commonly used as a pharmacological blocker (at high doses) to occupy the available D2 receptors and antagonize the action of dopamine or drugs on D2 in preclinical studies. The aims of this study were to comprehensively evaluate its pharmacokinetic (PK) profiles in different brain compartments and to establish a PK-RO model that could predict the brain distribution and RO of raclopride in the freely moving rat using a LC-MS based approach. METHODS Rats (n=24) received a 10-min IV infusion of non-radiolabeled raclopride (1.61μmol/kg, i.e. 0.56mg/kg). Plasma and the brain tissues of striatum (with high density of D2 receptors) and cerebellum (with negligible amount of D2 receptors) were collected. Additional microdialysis experiments were performed in some rats (n=7) to measure the free drug concentration in the extracellular fluid of the striatum and cerebellum. Raclopride concentrations in all samples were analyzed by LC-MS. A population PK-RO model was constructed in NONMEM to describe the concentration-time profiles in the unbound plasma, brain extracellular fluid and brain tissue compartments and to estimate the RO based on raclopride-D2 receptor binding kinetics. RESULTS In plasma raclopride showed a rapid distribution phase followed by a slower elimination phase. The striatum tissue concentrations were consistently higher than that of cerebellum tissue throughout the whole experimental period (10-h) due to higher non-specific tissue binding and D2 receptor binding in the striatum. Model-based simulations accurately predicted the literature data on rat plasma PK, brain tissue PK and D2 RO at different time points after intravenous or subcutaneous administration of raclopride at tracer dose (RO <10%), sub-pharmacological dose (RO 10%-30%) and pharmacological dose (RO >30%). CONCLUSION For the first time a predictive model that could describe the quantitative in vivo relationship between dose, PK and D2 RO of raclopride in non-anesthetized rat was established. The PK-RO model could facilitate the selection of optimal dose and dosing time when raclopride is used as tracer or as pharmacological blocker in various rat studies. The LC-MS based approach, which doses and quantifies a non-radiolabeled tracer, could be useful in evaluating the systemic disposition and brain kinetics of tracers.
Collapse
Affiliation(s)
- Yin Cheong Wong
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Trayana Ilkova
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Rob C van Wijk
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Robin Hartman
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Elizabeth C M de Lange
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
21
|
de Lange ECM, van den Brink W, Yamamoto Y, de Witte WEA, Wong YC. Novel CNS drug discovery and development approach: model-based integration to predict neuro-pharmacokinetics and pharmacodynamics. Expert Opin Drug Discov 2017; 12:1207-1218. [PMID: 28933618 DOI: 10.1080/17460441.2017.1380623] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION CNS drug development has been hampered by inadequate consideration of CNS pharmacokinetic (PK), pharmacodynamics (PD) and disease complexity (reductionist approach). Improvement is required via integrative model-based approaches. Areas covered: The authors summarize factors that have played a role in the high attrition rate of CNS compounds. Recent advances in CNS research and drug discovery are presented, especially with regard to assessment of relevant neuro-PK parameters. Suggestions for further improvements are also discussed. Expert opinion: Understanding time- and condition dependent interrelationships between neuro-PK and neuro-PD processes is key to predictions in different conditions. As a first screen, it is suggested to use in silico/in vitro derived molecular properties of candidate compounds and predict concentration-time profiles of compounds in multiple compartments of the human CNS, using time-course based physiology-based (PB) PK models. Then, for selected compounds, one can include in vitro drug-target binding kinetics to predict target occupancy (TO)-time profiles in humans. This will improve neuro-PD prediction. Furthermore, a pharmaco-omics approach is suggested, providing multilevel and paralleled data on systems processes from individuals in a systems-wide manner. Thus, clinical trials will be better informed, using fewer animals, while also, needing fewer individuals and samples per individual for proof of concept in humans.
Collapse
Affiliation(s)
- Elizabeth C M de Lange
- a Leiden Academic Center of Drug Research, Translational Pharmacology , Leiden University , Leiden , The Netherlands
| | - Willem van den Brink
- a Leiden Academic Center of Drug Research, Translational Pharmacology , Leiden University , Leiden , The Netherlands
| | - Yumi Yamamoto
- a Leiden Academic Center of Drug Research, Translational Pharmacology , Leiden University , Leiden , The Netherlands
| | - Wilhelmus E A de Witte
- a Leiden Academic Center of Drug Research, Translational Pharmacology , Leiden University , Leiden , The Netherlands
| | - Yin Cheong Wong
- a Leiden Academic Center of Drug Research, Translational Pharmacology , Leiden University , Leiden , The Netherlands
| |
Collapse
|
22
|
Schuetz DA, de Witte WEA, Wong YC, Knasmueller B, Richter L, Kokh DB, Sadiq SK, Bosma R, Nederpelt I, Heitman LH, Segala E, Amaral M, Guo D, Andres D, Georgi V, Stoddart LA, Hill S, Cooke RM, De Graaf C, Leurs R, Frech M, Wade RC, de Lange ECM, IJzerman AP, Müller-Fahrnow A, Ecker GF. Kinetics for Drug Discovery: an industry-driven effort to target drug residence time. Drug Discov Today 2017; 22:896-911. [PMID: 28412474 DOI: 10.1016/j.drudis.2017.02.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/24/2017] [Accepted: 02/17/2017] [Indexed: 01/05/2023]
Abstract
A considerable number of approved drugs show non-equilibrium binding characteristics, emphasizing the potential role of drug residence times for in vivo efficacy. Therefore, a detailed understanding of the kinetics of association and dissociation of a target-ligand complex might provide crucial insight into the molecular mechanism-of-action of a compound. This deeper understanding will help to improve decision making in drug discovery, thus leading to a better selection of interesting compounds to be profiled further. In this review, we highlight the contributions of the Kinetics for Drug Discovery (K4DD) Consortium, which targets major open questions related to binding kinetics in an industry-driven public-private partnership.
Collapse
Affiliation(s)
- Doris A Schuetz
- Department of Pharmaceutical Chemistry, University of Vienna, UZA 2, Althanstrasse 14, 1090 Vienna, Austria
| | | | - Yin Cheong Wong
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Bernhard Knasmueller
- Department of Pharmaceutical Chemistry, University of Vienna, UZA 2, Althanstrasse 14, 1090 Vienna, Austria
| | - Lars Richter
- Department of Pharmaceutical Chemistry, University of Vienna, UZA 2, Althanstrasse 14, 1090 Vienna, Austria
| | - Daria B Kokh
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - S Kashif Sadiq
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Reggie Bosma
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, P.O. Box 7161, 1007 MC Amsterdam, The Netherlands
| | - Indira Nederpelt
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, Leiden, Einsteinweg 55, Leiden, 2300RA, The Netherlands
| | - Laura H Heitman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, Leiden, Einsteinweg 55, Leiden, 2300RA, The Netherlands
| | - Elena Segala
- Heptares Therapeutics,Biopark, Broadwater Road, Welwyn Garden City, Hertfordshire, AL7 3AX, UK
| | - Marta Amaral
- Discovery Technologies, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany; Instituto de Biologia Experimental e Tecnológica, Avenida da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal
| | - Dong Guo
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, Leiden, Einsteinweg 55, Leiden, 2300RA, The Netherlands
| | - Dorothee Andres
- Bayer AG, Drug Discovery, Pharmaceuticals, Lead Discovery Berlin, Müllerstr. 178, 13353 Berlin, Germany
| | - Victoria Georgi
- Bayer AG, Drug Discovery, Pharmaceuticals, Lead Discovery Berlin, Müllerstr. 178, 13353 Berlin, Germany
| | - Leigh A Stoddart
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Steve Hill
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Robert M Cooke
- Heptares Therapeutics,Biopark, Broadwater Road, Welwyn Garden City, Hertfordshire, AL7 3AX, UK
| | - Chris De Graaf
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, P.O. Box 7161, 1007 MC Amsterdam, The Netherlands
| | - Rob Leurs
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, P.O. Box 7161, 1007 MC Amsterdam, The Netherlands
| | - Matthias Frech
- Discovery Technologies, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany; Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Elizabeth Cunera Maria de Lange
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Adriaan P IJzerman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, Leiden, Einsteinweg 55, Leiden, 2300RA, The Netherlands
| | - Anke Müller-Fahrnow
- Bayer AG, Drug Discovery, Pharmaceuticals, Lead Discovery Berlin, Müllerstr. 178, 13353 Berlin, Germany
| | - Gerhard F Ecker
- Department of Pharmaceutical Chemistry, University of Vienna, UZA 2, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
23
|
Yamamoto Y, Danhof M, de Lange ECM. Microdialysis: the Key to Physiologically Based Model Prediction of Human CNS Target Site Concentrations. AAPS JOURNAL 2017; 19:891-909. [DOI: 10.1208/s12248-017-0050-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/25/2017] [Indexed: 01/03/2023]
|
24
|
Nederpelt I, Bunnik J, IJzerman AP, Heitman LH. Kinetic Profile of Neuropeptide–Receptor Interactions. Trends Neurosci 2016; 39:830-839. [DOI: 10.1016/j.tins.2016.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 01/18/2023]
|
25
|
Dahl G, Steigele S, Hillertz P, Tigerström A, Egnéus A, Mehrle A, Ginkel M, Edfeldt F, Holdgate G, O'Connell N, Kappler B, Brodte A, Rawlins PB, Davies G, Westberg EL, Folmer RHA, Heyse S. Unified Software Solution for Efficient SPR Data Analysis in Drug Research. SLAS DISCOVERY 2016; 22:203-209. [PMID: 27789754 PMCID: PMC5302086 DOI: 10.1177/1087057116675316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Surface plasmon resonance (SPR) is a powerful method for obtaining detailed molecular interaction parameters. Modern instrumentation with its increased throughput has enabled routine screening by SPR in hit-to-lead and lead optimization programs, and SPR has become a mainstream drug discovery technology. However, the processing and reporting of SPR data in drug discovery are typically performed manually, which is both time-consuming and tedious. Here, we present the workflow concept, design and experiences with a software module relying on a single, browser-based software platform for the processing, analysis, and reporting of SPR data. The efficiency of this concept lies in the immediate availability of end results: data are processed and analyzed upon loading the raw data file, allowing the user to immediately quality control the results. Once completed, the user can automatically report those results to data repositories for corporate access and quickly generate printed reports or documents. The software module has resulted in a very efficient and effective workflow through saved time and improved quality control. We discuss these benefits and show how this process defines a new benchmark in the drug discovery industry for the handling, interpretation, visualization, and sharing of SPR data.
Collapse
Affiliation(s)
- Göran Dahl
- 1 Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| | | | - Per Hillertz
- 3 R&D Information, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| | - Anna Tigerström
- 1 Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| | - Anders Egnéus
- 3 R&D Information, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| | | | | | - Fredrik Edfeldt
- 1 Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| | - Geoff Holdgate
- 4 Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Cambridge, UK
| | - Nichole O'Connell
- 5 Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, Waltham, MA, USA
| | | | | | - Philip B Rawlins
- 4 Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Cambridge, UK
| | - Gareth Davies
- 6 Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, Macclesfield, Cheshire, UK
| | - Eva-Lotta Westberg
- 3 R&D Information, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| | - Rutger H A Folmer
- 1 Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| | | |
Collapse
|
26
|
de Witte WE, Danhof M, van der Graaf PH, de Lange EC. In vivo Target Residence Time and Kinetic Selectivity: The Association Rate Constant as Determinant. Trends Pharmacol Sci 2016; 37:831-842. [DOI: 10.1016/j.tips.2016.06.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/13/2016] [Accepted: 06/15/2016] [Indexed: 12/16/2022]
|
27
|
Guo D, Heitman LH, IJzerman AP. The Added Value of Assessing Ligand-Receptor Binding Kinetics in Drug Discovery. ACS Med Chem Lett 2016; 7:819-21. [PMID: 27660682 DOI: 10.1021/acsmedchemlett.6b00273] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In the past decade drug research community has started to appreciate the indispensable role of ligand-receptor binding kinetics (BK) in drug discovery. Next to the classical equilibrium-based drug evaluation process with affinity and potency values as outcomes, kinetic investigation of the ligand-receptor interaction can aid compound triage in the hit-to-lead campaign and provide additional information to understand the molecular mechanism of drug action. Translational models incorporating BK are emerging as well, which represent powerful tools for the prediction of in vivo effects. In this viewpoint we will summarize some recent findings and discuss and emphasize the added value of ligand-receptor binding kinetics in drug research.
Collapse
Affiliation(s)
- Dong Guo
- Jiangsu
Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Laura H. Heitman
- Division
of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O.
Box 9502, 2300 RA Leiden, The Netherlands
| | - Adriaan P. IJzerman
- Division
of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O.
Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
28
|
Gottwald M, Becker A, Bahr I, Mueller-Fahrnow A. Public-Private Partnerships in Lead Discovery: Overview and Case Studies. Arch Pharm (Weinheim) 2016; 349:692-7. [PMID: 27335205 DOI: 10.1002/ardp.201600078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/27/2016] [Accepted: 05/27/2016] [Indexed: 11/12/2022]
Abstract
The pharmaceutical industry is faced with significant challenges in its efforts to discover new drugs that address unmet medical needs. Safety concerns and lack of efficacy are the two main technical reasons for attrition. Improved early research tools including predictive in silico, in vitro, and in vivo models, as well as a deeper understanding of the disease biology, therefore have the potential to improve success rates. The combination of internal activities with external collaborations in line with the interests and needs of all partners is a successful approach to foster innovation and to meet the challenges. Collaboration can take place in different ways, depending on the requirements of the participants. In this review, the value of public-private partnership approaches will be discussed, using examples from the Innovative Medicines Initiative (IMI). These examples describe consortia approaches to develop tools and processes for improving target identification and validation, as well as lead identification and optimization. The project "Kinetics for Drug Discovery" (K4DD), focusing on the adoption of drug-target binding kinetics analysis in the drug discovery decision-making process, is described in more detail.
Collapse
|