1
|
Yan J, Li Z, Shu Y, Chen H, Wang T, Li X, Zhang Y, Li L, Zhang Y. The Unveiled Novel regulator of Adeno-associated virus production in HEK293 cells. Gene 2025; 938:149122. [PMID: 39581356 DOI: 10.1016/j.gene.2024.149122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
The field of gene therapy using Adeno-associated viral (AAV) vector delivery is rapidly advancing in the biotherapeutics industry. Despite its successes, AAV manufacturing remains a challenge due to limited production yields. The triple plasmid transfection of HEK293 cells represents the most extensively utilized system for AAV production. The regulatory factors and mechanisms underlying viral production in HEK293 cells are largely unknown. In this study, we isolated high-titer AAV production clones from a parental HEK293 population using a single limiting dilution step, and subsequently elucidating their underlying molecular mechanisms through whole transcriptome analysis. LncRNA TCONS_00160397 was upregulated in clones and shown to promoted HEK293 cells proliferation and improved the titer of AAV production. Mechanistically, results from proteomics and metabolomics indicated that TCONS_00160397 regulated the ABC transporters pathway. These findings furnish a rich repository of knowledge and actionable targets for the rational optimization of HEK293-based producer lines, thereby paving the way for tangible improvements in AAV vector output and expediting the broad implementation of gene therapies.
Collapse
Affiliation(s)
- Junyu Yan
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Ziqian Li
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Yue Shu
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Hui Chen
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Tianxingzi Wang
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Xin Li
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Yuhang Zhang
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - LiLi Li
- Beijing Institute of Biological Products Company Limited, Beijing, China.
| | - Yuntao Zhang
- Beijing Institute of Biological Products Company Limited, Beijing, China; China National Biotec Group Company Limited, Beijing, China.
| |
Collapse
|
2
|
Szwec S, Kapłucha Z, Chamberlain JS, Konieczny P. Dystrophin- and Utrophin-Based Therapeutic Approaches for Treatment of Duchenne Muscular Dystrophy: A Comparative Review. BioDrugs 2024; 38:95-119. [PMID: 37917377 PMCID: PMC10789850 DOI: 10.1007/s40259-023-00632-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 11/04/2023]
Abstract
Duchenne muscular dystrophy is a devastating disease that leads to progressive muscle loss and premature death. While medical management focuses mostly on symptomatic treatment, decades of research have resulted in first therapeutics able to restore the affected reading frame of dystrophin transcripts or induce synthesis of a truncated dystrophin protein from a vector, with other strategies based on gene therapy and cell signaling in preclinical or clinical development. Nevertheless, recent reports show that potentially therapeutic dystrophins can be immunogenic in patients. This raises the question of whether a dystrophin paralog, utrophin, could be a more suitable therapeutic protein. Here, we compare dystrophin and utrophin amino acid sequences and structures, combining published data with our extended in silico analyses. We then discuss these results in the context of therapeutic approaches for Duchenne muscular dystrophy. Specifically, we focus on strategies based on delivery of micro-dystrophin and micro-utrophin genes with recombinant adeno-associated viral vectors, exon skipping of the mutated dystrophin pre-mRNAs, reading through termination codons with small molecules that mask premature stop codons, dystrophin gene repair by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated genetic engineering, and increasing utrophin levels. Our analyses highlight the importance of various dystrophin and utrophin domains in Duchenne muscular dystrophy treatment, providing insights into designing novel therapeutic compounds with improved efficacy and decreased immunoreactivity. While the necessary actin and β-dystroglycan binding sites are present in both proteins, important functional distinctions can be identified in these domains and some other parts of truncated dystrophins might need redesigning due to their potentially immunogenic qualities. Alternatively, therapies based on utrophins might provide a safer and more effective approach.
Collapse
Affiliation(s)
- Sylwia Szwec
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Zuzanna Kapłucha
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Jeffrey S Chamberlain
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, 98109-8055, USA
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA, 98109-8055, USA
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, 98109-8055, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98109-8055, USA
| | - Patryk Konieczny
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
3
|
Franco-Obregón A, Tai YK, Wu KY, Iversen JN, Wong CJK. The Developmental Implications of Muscle-Targeted Magnetic Mitohormesis: A Human Health and Longevity Perspective. Bioengineering (Basel) 2023; 10:956. [PMID: 37627841 PMCID: PMC10451851 DOI: 10.3390/bioengineering10080956] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Muscle function reflects muscular mitochondrial status, which, in turn, is an adaptive response to physical activity, representing improvements in energy production for de novo biosynthesis or metabolic efficiency. Differences in muscle performance are manifestations of the expression of distinct contractile-protein isoforms and of mitochondrial-energy substrate utilization. Powerful contractures require immediate energy production from carbohydrates outside the mitochondria that exhaust rapidly. Sustained muscle contractions require aerobic energy production from fatty acids by the mitochondria that is slower and produces less force. These two patterns of muscle force generation are broadly classified as glycolytic or oxidative, respectively, and require disparate levels of increased contractile or mitochondrial protein production, respectively, to be effectively executed. Glycolytic muscle, hence, tends towards fibre hypertrophy, whereas oxidative fibres are more disposed towards increased mitochondrial content and efficiency, rather than hypertrophy. Although developmentally predetermined muscle classes exist, a degree of functional plasticity persists across all muscles post-birth that can be modulated by exercise and generally results in an increase in the oxidative character of muscle. Oxidative muscle is most strongly correlated with organismal metabolic balance and longevity because of the propensity of oxidative muscle for fatty-acid oxidation and associated anti-inflammatory ramifications which occur at the expense of glycolytic-muscle development and hypertrophy. This muscle-class size disparity is often at odds with common expectations that muscle mass should scale positively with improved health and longevity. Brief magnetic-field activation of the muscle mitochondrial pool has been shown to recapitulate key aspects of the oxidative-muscle phenotype with similar metabolic hallmarks. This review discusses the common genetic cascades invoked by endurance exercise and magnetic-field therapy and the potential physiological differences with regards to human health and longevity. Future human studies examining the physiological consequences of magnetic-field therapy are warranted.
Collapse
Affiliation(s)
- Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (K.Y.W.); (J.N.I.); (C.J.K.W.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117544, Singapore
| | - Yee Kit Tai
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (K.Y.W.); (J.N.I.); (C.J.K.W.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Kwan Yu Wu
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (K.Y.W.); (J.N.I.); (C.J.K.W.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
- Faculty of Medicine, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Jan Nikolas Iversen
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (K.Y.W.); (J.N.I.); (C.J.K.W.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Craig Jun Kit Wong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (K.Y.W.); (J.N.I.); (C.J.K.W.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
4
|
Hiramuki Y, Abe S, Uno N, Kazuki K, Takata S, Miyamoto H, Takayama H, Morimoto K, Takehara S, Osaki M, Tanihata J, Takeda S, Tomizuka K, Oshimura M, Kazuki Y. Full-length human dystrophin on human artificial chromosome compensates for mouse dystrophin deficiency in a Duchenne muscular dystrophy mouse model. Sci Rep 2023; 13:4360. [PMID: 36928364 PMCID: PMC10020543 DOI: 10.1038/s41598-023-31481-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Dystrophin maintains membrane integrity as a sarcolemmal protein. Dystrophin mutations lead to Duchenne muscular dystrophy, an X-linked recessive disorder. Since dystrophin is one of the largest genes consisting of 79 exons in the human genome, delivering a full-length dystrophin using virus vectors is challenging for gene therapy. Human artificial chromosome is a vector that can load megabase-sized genome without any interference from the host chromosome. Chimeric mice carrying a 2.4-Mb human dystrophin gene-loaded human artificial chromosome (DYS-HAC) was previously generated, and dystrophin expression from DYS-HAC was confirmed in skeletal muscles. Here we investigated whether human dystrophin expression from DYS-HAC rescues the muscle phenotypes seen in dystrophin-deficient mice. Human dystrophin was normally expressed in the sarcolemma of skeletal muscle and heart at expected molecular weights, and it ameliorated histological and functional alterations in dystrophin-deficient mice. These results indicate that the 2.4-Mb gene is enough for dystrophin to be correctly transcribed and translated, improving muscular dystrophy. Therefore, this technique using HAC gives insight into developing new treatments and novel humanized Duchenne muscular dystrophy mouse models with human dystrophin gene mutations.
Collapse
Affiliation(s)
- Yosuke Hiramuki
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Satoshi Abe
- Trans Chromosomics Inc., 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Narumi Uno
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
- Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
- Laboratory of Bioengineering, Faculty of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Kanako Kazuki
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Shuta Takata
- Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Hitomaru Miyamoto
- Department of Chromosome Biomedical Engineering, Integrated Medical Sciences, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Haruka Takayama
- Trans Chromosomics Inc., 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Kayoko Morimoto
- Trans Chromosomics Inc., 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Shoko Takehara
- Trans Chromosomics Inc., 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Mitsuhiko Osaki
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
- Division of Experimental Pathology, Department of Functional Morphology, Faculty of Medicine, Tottori University, Yonago, Tottori, 683‑8503, Japan
| | - Jun Tanihata
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan
- Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8, Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan
| | - Kazuma Tomizuka
- Laboratory of Bioengineering, Faculty of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Mitsuo Oshimura
- Trans Chromosomics Inc., 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
- Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
- Department of Chromosome Biomedical Engineering, Integrated Medical Sciences, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
- Department of Chromosome Biomedical Engineering, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
- Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
5
|
Péladeau C, Jasmin BJ. Identifying FDA-Approved Drugs that Upregulate Utrophin A as a Therapeutic Strategy for Duchenne Muscular Dystrophy. Methods Mol Biol 2023; 2587:495-510. [PMID: 36401046 DOI: 10.1007/978-1-0716-2772-3_26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a neuromuscular disease caused by mutations and deletions within the DMD gene, which result in a lack of dystrophin protein at the sarcolemma of skeletal muscle fibers. The absence of dystrophin fragilizes the sarcolemma and compromises its integrity during cycles of muscle contraction, which, progressively, leads to reductions in muscle mass and function. DMD is thus a progressive muscle-wasting disease that results in a loss of ambulation, cardiomyopathy , respiratory impairment, and death. Although there is presently no cure for DMD, recent advances have led to many promising treatments. One such approach entails increasing expression of a homologous protein to dystrophin, named utrophin A, which is endogenously expressed in both healthy and DMD muscle fibers. Upregulation of utrophin A all along the sarcolemma of DMD muscle fibers can, in part, compensate for the absence of dystrophin. Over the years, our laboratory has focused a significant portion of our efforts in identifying and characterizing drugs and small molecules for their ability to target utrophin A and cause its overexpression. As part of these efforts, we have recently developed a novel ELISA-based high-throughput drug screen, to identify FDA-approved drugs that increase the expression of utrophin A in muscle cells in culture as well as in dystrophic mice. Here, we describe our overall strategy to identify and characterize several FDA-approved drugs that upregulate utrophin A expression and provide details on all experimental approaches. Such strategy has the potential to lead to the rapid development of novel therapeutics for DMD.
Collapse
Affiliation(s)
- Christine Péladeau
- Department of Cellular and Molecular Medicine, and the Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, and the Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
6
|
Groh WJ, Bhakta D, Tomaselli GF, Aleong RG, Teixeira RA, Amato A, Asirvatham SJ, Cha YM, Corrado D, Duboc D, Goldberger ZD, Horie M, Hornyak JE, Jefferies JL, Kääb S, Kalman JM, Kertesz NJ, Lakdawala NK, Lambiase PD, Lubitz SA, McMillan HJ, McNally EM, Milone M, Namboodiri N, Nazarian S, Patton KK, Russo V, Sacher F, Santangeli P, Shen WK, Sobral Filho DC, Stambler BS, Stöllberger C, Wahbi K, Wehrens XHT, Weiner MM, Wheeler MT, Zeppenfeld K. 2022 HRS expert consensus statement on evaluation and management of arrhythmic risk in neuromuscular disorders. Heart Rhythm 2022; 19:e61-e120. [PMID: 35500790 DOI: 10.1016/j.hrthm.2022.04.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 11/04/2022]
Abstract
This international multidisciplinary document is intended to guide electrophysiologists, cardiologists, other clinicians, and health care professionals in caring for patients with arrhythmic complications of neuromuscular disorders (NMDs). The document presents an overview of arrhythmias in NMDs followed by detailed sections on specific disorders: Duchenne muscular dystrophy, Becker muscular dystrophy, and limb-girdle muscular dystrophy type 2; myotonic dystrophy type 1 and type 2; Emery-Dreifuss muscular dystrophy and limb-girdle muscular dystrophy type 1B; facioscapulohumeral muscular dystrophy; and mitochondrial myopathies, including Friedreich ataxia and Kearns-Sayre syndrome, with an emphasis on managing arrhythmic cardiac manifestations. End-of-life management of arrhythmias in patients with NMDs is also covered. The document sections were drafted by the writing committee members according to their area of expertise. The recommendations represent the consensus opinion of the expert writing group, graded by class of recommendation and level of evidence utilizing defined criteria. The recommendations were made available for public comment; the document underwent review by the Heart Rhythm Society Scientific and Clinical Documents Committee and external review and endorsement by the partner and collaborating societies. Changes were incorporated based on these reviews. By using a breadth of accumulated available evidence, the document is designed to provide practical and actionable clinical information and recommendations for the diagnosis and management of arrhythmias and thus improve the care of patients with NMDs.
Collapse
Affiliation(s)
- William J Groh
- Ralph H. Johnson VA Medical Center and Medical University of South Carolina, Charleston, South Carolina
| | - Deepak Bhakta
- Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | | | - Anthony Amato
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | - Domenico Corrado
- Department of Cardiac, Thoracic, and Vascular Sciences, University of Padova, Padova, Italy
| | - Denis Duboc
- Cardiology Department, Hôpital Cochin, AP-HP, Université de Paris, Paris, France
| | - Zachary D Goldberger
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Minoru Horie
- Shiga University of Medical Sciences, Otsu, Japan
| | | | | | - Stefan Kääb
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Jonathan M Kalman
- Royal Melbourne Hospital and University of Melbourne, Melbourne, Victoria, Australia
| | | | - Neal K Lakdawala
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Pier D Lambiase
- Barts Heart Centre, St Bartholomew's Hospital, University College London, and St Bartholomew's Hospital London, London, United Kingdom
| | | | - Hugh J McMillan
- Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | - Narayanan Namboodiri
- Sree Chitra Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | | | | | | | - Frederic Sacher
- Bordeaux University Hospital, LIRYC Institute, Bordeaux, France
| | | | | | | | | | - Claudia Stöllberger
- Second Medical Department with Cardiology and Intensive Care Medicine, Klinik Landstraße, Vienna, Austria
| | - Karim Wahbi
- Cardiology Department, Hôpital Cochin, AP-HP, Université de Paris, Paris, France
| | | | | | | | | |
Collapse
|
7
|
Schultz TI, Raucci FJ, Salloum FN. Cardiovascular Disease in Duchenne Muscular Dystrophy. JACC Basic Transl Sci 2022; 7:608-625. [PMID: 35818510 PMCID: PMC9270569 DOI: 10.1016/j.jacbts.2021.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/11/2022]
Abstract
Cardiomyopathy is the leading cause of death in patients with DMD. DMD has no cure, and there is no current consensus for treatment of DMD cardiomyopathy. This review discusses therapeutic strategies to potentially reduce or prevent cardiac dysfunction in DMD patients. Additional studies are needed to firmly establish optimal treatment modalities for DMD cardiomyopathy.
Duchenne muscular dystrophy (DMD) is a devastating disease affecting approximately 1 in every 3,500 male births worldwide. Multiple mutations in the dystrophin gene have been implicated as underlying causes of DMD. However, there remains no cure for patients with DMD, and cardiomyopathy has become the most common cause of death in the affected population. Extensive research is under way investigating molecular mechanisms that highlight potential therapeutic targets for the development of pharmacotherapy for DMD cardiomyopathy. In this paper, the authors perform a literature review reporting on recent ongoing efforts to identify novel therapeutic strategies to reduce, prevent, or reverse progression of cardiac dysfunction in DMD.
Collapse
|
8
|
McMillan HJ, Proud CM, Farrar MA, Alexander IE, Muntoni F, Servais L. Onasemnogene abeparvovec for the treatment of spinal muscular atrophy. Expert Opin Biol Ther 2022; 22:1075-1090. [PMID: 35437095 DOI: 10.1080/14712598.2022.2066471] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Gene therapy for spinal muscular atrophy (SMA) represents a significant milestone in the treatment of neurologic diseases. SMA is a neurodegenerative disease that results in motor neuron loss because of mutations of the survival motor neuron 1 gene, which directs survival motor neuron (SMN) protein production. Onasemnogene abeparvovec, a one-time gene replacement therapy, delivers a functional transgene to restore SMN protein expression. Onasemnogene abeparvovec has demonstrated improved survival and motor milestone achievements for presymptomatic infants and patients with SMA type 1. AREAS COVERED This expert review describes the current state of gene therapy for SMA, reviews the mechanism of and clinical experience with onasemnogene abeparvovec, explains future efforts to expand applications of gene therapy for SMA, and provides context for developing gene therapy for other conditions. EXPERT OPINION Onasemnogene abeparvovec has demonstrated efficacy in clinical trials and, because of this, is a valuable treatment option for patients with symptomatic infantile SMA and those identified by newborn screening. Gene therapy is still in its infancy, and challenges and uncertainties associated with transgene delivery must be addressed. With ongoing development of vector technology, more specific tissue tropism, reduced "off-target" effects, and an enhanced safety profile will continue to evolve.
Collapse
Affiliation(s)
- Hugh J McMillan
- Departments of Pediatrics, Neurology & Neurosurgery, Montreal Children's Hospital, McGill University Health Centre, Montreal, Canada
| | - Crystal M Proud
- Children's Hospital of The King's Daughters, Norfolk, VA, United States
| | - Michelle A Farrar
- School of Women's and Children's Health, UNSW Medicine, UNSW Sydney.,Sydney Children's Hospital Network, Sydney, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW, Australia.,Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, University College London, Great Ormond Street Institute of Child Health London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, London, UK
| | - Laurent Servais
- Department of Pediatrics, Centre Hospitalier Universitaire de Liège & Université de Liège, Liège, Belgium.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Fortunato F, Farnè M, Ferlini A. The DMD gene and therapeutic approaches to restore dystrophin. Neuromuscul Disord 2021; 31:1013-1020. [PMID: 34736624 DOI: 10.1016/j.nmd.2021.08.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 12/23/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a severe X-linked disease characterized by progressive muscle weakness. It is caused by a variety of DMD gene pathogenic variations (large deletions or duplications, and small mutations) which leads to the absence or to a decreased amount of dystrophin protein. The allelic Becker muscular dystrophy is characterized by later onset and milder muscle involvement, and other rarer phenotypes might also be associated, such as dilated cardiomyopathy, cognitive impairment, and other neurological signs. Following the identification of the genetic cause and the disease pathophysiology, innovative personalized therapies emerged. These can be categorized into two main groups: (1) therapies aiming at the restoration of dystrophin at the sarcolemma; (2) therapeutics dealing with secondary consequences of dystrophin deficiency. In this review we provide an overview about DMD genotype-phenotype correlation, and on main approaches to restore dystrophin as stop codon read-through, exon skipping, vector-mediated gene therapy, and genome-editing strategies, some of these are based on approved orphan drugs. Finally, we present the clinical potential of novel strategies combining therapies to correct the genetic defect and other approaches, targeting secondary downstream pathological cascade due to dystrophin deficiency.
Collapse
Affiliation(s)
- Fernanda Fortunato
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Marianna Farnè
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Ferlini
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy; Dubowitz Neuromuscular Unit, Institute of Child Health, University College of London, London, UK.
| |
Collapse
|
10
|
Yao S, Chen Z, Yu Y, Zhang N, Jiang H, Zhang G, Zhang Z, Zhang B. Current Pharmacological Strategies for Duchenne Muscular Dystrophy. Front Cell Dev Biol 2021; 9:689533. [PMID: 34490244 PMCID: PMC8417245 DOI: 10.3389/fcell.2021.689533] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/23/2021] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal, X-linked neuromuscular disorder caused by the absence of dystrophin protein, which is essential for muscle fiber integrity. Loss of dystrophin protein leads to recurrent myofiber damage, chronic inflammation, progressive fibrosis, and dysfunction of muscle stem cells. There is still no cure for DMD so far and the standard of care is principally limited to symptom relief through glucocorticoids treatments. Current therapeutic strategies could be divided into two lines. Dystrophin-targeted therapeutic strategies that aim at restoring the expression and/or function of dystrophin, including gene-based, cell-based and protein replacement therapies. The other line of therapeutic strategies aims to improve muscle function and quality by targeting the downstream pathological changes, including inflammation, fibrosis, and muscle atrophy. This review introduces the important developments in these two lines of strategies, especially those that have entered the clinical phase and/or have great potential for clinical translation. The rationale and efficacy of each agent in pre-clinical or clinical studies are presented. Furthermore, a meta-analysis of gene profiling in DMD patients has been performed to understand the molecular mechanisms of DMD.
Collapse
Affiliation(s)
- Shanshan Yao
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Zihao Chen
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Ning Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hewen Jiang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Zongkang Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Baoting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
11
|
Mercuri E, Bönnemann CG, Muntoni F. Muscular dystrophies. Lancet 2019; 394:2025-2038. [PMID: 31789220 DOI: 10.1016/s0140-6736(19)32910-1] [Citation(s) in RCA: 297] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 09/02/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022]
Abstract
Muscular dystrophies are primary diseases of muscle due to mutations in more than 40 genes, which result in dystrophic changes on muscle biopsy. Now that most of the genes responsible for these conditions have been identified, it is possible to accurately diagnose them and implement subtype-specific anticipatory care, as complications such as cardiac and respiratory muscle involvement vary greatly. This development and advances in the field of supportive medicine have changed the standard of care, with an overall improvement in the clinical course, survival, and quality of life of affected individuals. The improved understanding of the pathogenesis of these diseases is being used for the development of novel therapies. In the most common form, Duchenne muscular dystrophy, a few personalised therapies have recently achieved conditional approval and many more are at advanced stages of clinical development. In this Seminar, we concentrate on clinical manifestations, molecular pathogenesis, diagnostic strategy, and therapeutic developments for this group of conditions.
Collapse
Affiliation(s)
- Eugenio Mercuri
- Pediatric Neurology Unit, Università Cattolica del Sacro Cuore Roma, Rome, Italy; Nemo Clinical Centre, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, University College London, Great Ormond Street Institute of Child Health, London, UK; National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, London, UK.
| |
Collapse
|
12
|
Boehler JF, Ricotti V, Gonzalez JP, Soustek-Kramer M, Such L, Brown KJ, Schneider JS, Morris CA. Membrane recruitment of nNOSµ in microdystrophin gene transfer to enhance durability. Neuromuscul Disord 2019; 29:735-741. [PMID: 31521486 DOI: 10.1016/j.nmd.2019.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/25/2022]
Abstract
Several gene transfer clinical trials are currently ongoing with the common aim of delivering a shortened version of dystrophin, termed a microdystrophin, for the treatment of Duchenne muscular dystrophy (DMD). However, one of the main differences between these trials is the microdystrophin protein produced following treatment. Each gene transfer product is based on different selections of dystrophin domain combinations to assemble microdystrophin transgenes that maintain functional dystrophin domains and fit within the packaging limits of an adeno-associated virus (AAV) vector. While domains involved in mechanical function, such as the actin-binding domain and β-dystroglycan binding domain, have been identified for many years and included in microdystrophin constructs, more recently the neuronal nitric oxide synthase (nNOS) domain has also been identified due to its role in enhancing nNOS membrane localization. As nNOS membrane localization has been established as an important requirement for prevention of functional ischemia in skeletal muscle, inclusion of the nNOS domain into a microdystrophin construct represents an important consideration. The aim of this mini review is to highlight what is currently known about the nNOS domain of dystrophin and to describe potential implications of this domain in a microdystrophin gene transfer clinical trial.
Collapse
Affiliation(s)
- Jessica F Boehler
- Solid Biosciences, 141 Portland Street, Cambridge, MA 02139, United States
| | - Valeria Ricotti
- Solid Biosciences, 141 Portland Street, Cambridge, MA 02139, United States
| | - J Patrick Gonzalez
- Solid Biosciences, 141 Portland Street, Cambridge, MA 02139, United States
| | | | - Lauren Such
- Solid Biosciences, 141 Portland Street, Cambridge, MA 02139, United States
| | - Kristy J Brown
- Solid Biosciences, 141 Portland Street, Cambridge, MA 02139, United States
| | - Joel S Schneider
- Solid Biosciences, 141 Portland Street, Cambridge, MA 02139, United States
| | - Carl A Morris
- Solid Biosciences, 141 Portland Street, Cambridge, MA 02139, United States.
| |
Collapse
|
13
|
Sayed-Zahid AA, Sher RB, Sukoff Rizzo SJ, Anderson LC, Patenaude KE, Cox GA. Functional rescue in a mouse model of congenital muscular dystrophy with megaconial myopathy. Hum Mol Genet 2019; 28:2635-2647. [PMID: 31216357 PMCID: PMC6687948 DOI: 10.1093/hmg/ddz068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/12/2019] [Accepted: 03/21/2019] [Indexed: 01/13/2023] Open
Abstract
Congenital muscular dystrophy with megaconial myopathy (MDCMC) is an autosomal recessive disorder characterized by progressive muscle weakness and wasting. The observation of megamitochondria in skeletal muscle biopsies is exclusive to this type of MD. The disease is caused by loss of function mutations in the choline kinase beta (CHKB) gene which results in dysfunction of the Kennedy pathway for the synthesis of phosphatidylcholine. We have previously reported a rostrocaudal MD (rmd) mouse with a deletion in the Chkb gene resulting in an MDCMC-like phenotype, and we used this mouse to test gene therapy strategies for the rescue and alleviation of the dystrophic phenotype. Introduction of a muscle-specific Chkb transgene completely rescues motor and behavioral function in the rmd mouse model, confirming the cell-autonomous nature of the disease. Intramuscular gene therapy post-disease onset using an adeno-associated viral 6 (AAV6) vector carrying a functional copy of Chkb is also capable of rescuing the dystrophy phenotype. In addition, we examined the ability of choline kinase alpha (Chka), a gene paralog of Chkb, to improve dystrophic phenotypes when upregulated in skeletal muscles of rmd mutant mice using a similar AAV6 vector. The sum of our results in a preclinical model of disease suggest that replacement of the Chkb gene or upregulation of endogenous Chka could serve as potential lines of therapy for MDCMC patients.
Collapse
Affiliation(s)
- Ambreen A Sayed-Zahid
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
- The Jackson Laboratory, Bar Harbor, ME, USA
| | | | - Stacey J Sukoff Rizzo
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Laura C Anderson
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | | | - Gregory A Cox
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| |
Collapse
|
14
|
A transient protective effect of low-level laser irradiation against disuse-induced atrophy of rats. Lasers Med Sci 2019; 34:1829-1839. [PMID: 30949786 DOI: 10.1007/s10103-019-02778-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/18/2019] [Indexed: 12/25/2022]
Abstract
Satellite cells, a population of skeletal muscular stem cells, are generally recognized as the main and, possibly, the sole source of postnatal muscle regeneration. Previous studies have revealed the potential of low-level laser (LLL) irradiation in promoting satellite cell proliferation, which, thereby, boosts the recovery of skeletal muscle from atrophy. The purpose of this study is to investigate the beneficial effect of LLL on disuse-induced atrophy. The optimal irradiation condition of LLL (808 nm) enhancing the proliferation of Pax7+ve cells, isolated from tibialis anterior (TA) muscle, was examined and applied on TA muscle of disuse-induced atrophy model of the rats accordingly. Healthy rats were used as the control. On one hand, transiently, LLL was able to postpone the progression of atrophy for 1 week through a reduction of apoptosis in Pax7-veMyoD+ve (myocyte) population. Simultaneously, a significant enhancement was observed in Pax7+veMyoD+ve population; however, most of the increased cells underwent apoptosis since the second week, which suggested an impaired maturation of the population. On the other hand, in normal control rats with LLL irradiation, a significant increase in Pax7+veMyoD+ve cells and a significant decrease of apoptosis were observed. As a result, a strengthened muscle contraction was observed. Our data showed the capability of LLL in postponing the progression of disuse-induced atrophy for the first time. Furthermore, the result of normal rats with LLL irradiation showed the effectiveness of LLL to strengthen muscle contraction in healthy control.
Collapse
|
15
|
Chiappalupi S, Salvadori L, Luca G, Riuzzi F, Calafiore R, Donato R, Sorci G. Do porcine Sertoli cells represent an opportunity for Duchenne muscular dystrophy? Cell Prolif 2019; 52:e12599. [PMID: 30912260 PMCID: PMC6536415 DOI: 10.1111/cpr.12599] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/24/2019] [Accepted: 02/09/2019] [Indexed: 12/13/2022] Open
Abstract
Sertoli cells (SeC) are responsible for the immunoprivileged status of the testis thanks to which allogeneic or xenogeneic engraftments can survive without pharmacological immune suppression if co‐injected with SeC. This peculiar ability of SeC is dependent on secretion of a plethora of factors including maturation factors, hormones, growth factors, cytokines and immunomodulatory factors. The anti‐inflammatory and trophic properties of SeC have been largely exploited in several experimental models of diseases, diabetes being the most studied. Duchenne muscular dystrophy (DMD) is a lethal X‐linked recessive pathology in which lack of functional dystrophin leads to progressive muscle degeneration culminating in loss of locomotion and premature death. Despite a huge effort to find a cure, DMD patients are currently treated with anti‐inflammatory steroids. Recently, encapsulated porcine SeC (MC‐SeC) have been injected ip in the absence of immunosuppression in an animal model of DMD resulting in reduction of muscle inflammation and amelioration of muscle morphology and functionality, thus opening an additional avenue in the treatment of DMD. The novel protocol is endowed with the advantage of being potentially applicable to all the cohort of DMD patients regardless of the mutation. This mini‐review addresses several issues linked to the possible use of MC‐SeC injected ip in dystrophic people.
Collapse
Affiliation(s)
- Sara Chiappalupi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology (IIM), Perugia, Italy
| | - Laura Salvadori
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology (IIM), Perugia, Italy
| | - Giovanni Luca
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Francesca Riuzzi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology (IIM), Perugia, Italy
| | | | - Rosario Donato
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology (IIM), Perugia, Italy.,Centro Universitario di Ricerca sulla Genomica Funzionale, University of Perugia, Perugia, Italy
| | - Guglielmo Sorci
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology (IIM), Perugia, Italy.,Centro Universitario di Ricerca sulla Genomica Funzionale, University of Perugia, Perugia, Italy
| |
Collapse
|
16
|
Nghiem PP, Kornegay JN. Gene therapies in canine models for Duchenne muscular dystrophy. Hum Genet 2019; 138:483-489. [PMID: 30734120 DOI: 10.1007/s00439-019-01976-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
Abstract
Therapies for Duchenne muscular dystrophy (DMD) must first be tested in animal models to determine proof-of-concept, efficacy, and importantly, safety. The murine and canine models for DMD are genetically homologous and most commonly used in pre-clinical testing. Although the mouse is a strong, proof-of-concept model, affected dogs show more analogous clinical and immunological disease progression compared to boys with DMD. As such, evaluating genetic therapies in the canine models may better predict response at the genetic, phenotypic, and immunological levels. We review the use of canine models for DMD and their benefits as it pertains to genetic therapy studies, including gene replacement, exon skipping, and gene editing.
Collapse
Affiliation(s)
- Peter P Nghiem
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX, 77843-4458, USA.
| | - Joe N Kornegay
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX, 77843-4458, USA
| |
Collapse
|
17
|
Colella P, Sellier P, Costa Verdera H, Puzzo F, van Wittenberghe L, Guerchet N, Daniele N, Gjata B, Marmier S, Charles S, Simon Sola M, Ragone I, Leborgne C, Collaud F, Mingozzi F. AAV Gene Transfer with Tandem Promoter Design Prevents Anti-transgene Immunity and Provides Persistent Efficacy in Neonate Pompe Mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 12:85-101. [PMID: 30581888 PMCID: PMC6299151 DOI: 10.1016/j.omtm.2018.11.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/12/2018] [Indexed: 01/09/2023]
Abstract
Hepatocyte-restricted, AAV-mediated gene transfer is being used to provide sustained, tolerogenic transgene expression in gene therapy. However, given the episomal status of the AAV genome, this approach cannot be applied to pediatric disorders when hepatocyte proliferation may result in significant loss of therapeutic efficacy over time. In addition, many multi-systemic diseases require widespread expression of the therapeutic transgene that, when provided with ubiquitous or tissue-specific non-hepatic promoters, often results in anti-transgene immunity. Here we have developed tandem promoter monocistronic expression cassettes that, packaged in a single AAV, provide combined hepatic and extra-hepatic tissue-specific transgene expression and prevent anti-transgene immunity. We validated our approach in infantile Pompe disease, a prototype disease caused by lack of the ubiquitous enzyme acid-alpha-glucosidase (GAA), presenting multi-systemic manifestations and detrimental anti-GAA immunity. We showed that the use of efficient tandem promoters prevents immune responses to GAA following systemic AAV gene transfer in immunocompetent Gaa−/− mice. Then we demonstrated that neonatal gene therapy with either AAV8 or AAV9 in Gaa−/− mice resulted in persistent therapeutic efficacy when using a tandem liver-muscle promoter (LiMP) that provided high and persistent transgene expression in non-dividing extra-hepatic tissues. In conclusion, the tandem promoter design overcomes important limitations of AAV-mediated gene transfer and can be beneficial when treating pediatric conditions requiring persistent multi-systemic transgene expression and prevention of anti-transgene immunity.
Collapse
Affiliation(s)
- Pasqualina Colella
- Genethon, INSERM U951 Integrare, University of Evry, Université Paris-Saclay, 91002, Evry, France
| | - Pauline Sellier
- Genethon, INSERM U951 Integrare, University of Evry, Université Paris-Saclay, 91002, Evry, France.,University Pierre and Marie Curie Paris 6 and INSERM U974, 75651, Paris, France
| | - Helena Costa Verdera
- Genethon, INSERM U951 Integrare, University of Evry, Université Paris-Saclay, 91002, Evry, France.,University Pierre and Marie Curie Paris 6 and INSERM U974, 75651, Paris, France
| | - Francesco Puzzo
- Genethon, INSERM U951 Integrare, University of Evry, Université Paris-Saclay, 91002, Evry, France
| | | | - Nicolas Guerchet
- Genethon, INSERM U951 Integrare, University of Evry, Université Paris-Saclay, 91002, Evry, France
| | - Nathalie Daniele
- Genethon, INSERM U951 Integrare, University of Evry, Université Paris-Saclay, 91002, Evry, France
| | - Bernard Gjata
- Genethon, INSERM U951 Integrare, University of Evry, Université Paris-Saclay, 91002, Evry, France
| | - Solenne Marmier
- University Pierre and Marie Curie Paris 6 and INSERM U974, 75651, Paris, France
| | - Severine Charles
- Genethon, INSERM U951 Integrare, University of Evry, Université Paris-Saclay, 91002, Evry, France
| | - Marcelo Simon Sola
- Genethon, INSERM U951 Integrare, University of Evry, Université Paris-Saclay, 91002, Evry, France
| | - Isabella Ragone
- Genethon, INSERM U951 Integrare, University of Evry, Université Paris-Saclay, 91002, Evry, France
| | - Christian Leborgne
- Genethon, INSERM U951 Integrare, University of Evry, Université Paris-Saclay, 91002, Evry, France
| | - Fanny Collaud
- Genethon, INSERM U951 Integrare, University of Evry, Université Paris-Saclay, 91002, Evry, France
| | - Federico Mingozzi
- Genethon, INSERM U951 Integrare, University of Evry, Université Paris-Saclay, 91002, Evry, France.,University Pierre and Marie Curie Paris 6 and INSERM U974, 75651, Paris, France.,Spark Therapeutics, Philadelphia, PA 19103, USA
| |
Collapse
|
18
|
Duchêne BL, Cherif K, Iyombe-Engembe JP, Guyon A, Rousseau J, Ouellet DL, Barbeau X, Lague P, Tremblay JP. CRISPR-Induced Deletion with SaCas9 Restores Dystrophin Expression in Dystrophic Models In Vitro and In Vivo. Mol Ther 2018; 26:2604-2616. [PMID: 30195724 PMCID: PMC6224775 DOI: 10.1016/j.ymthe.2018.08.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/03/2018] [Accepted: 08/10/2018] [Indexed: 12/26/2022] Open
Abstract
Duchenne muscular dystrophy (DMD), a severe hereditary disease affecting 1 in 3,500 boys, mainly results from the deletion of exon(s), leading to a reading frameshift of the DMD gene that abrogates dystrophin protein synthesis. Pairs of sgRNAs for the Cas9 of Staphylococcus aureus were meticulously chosen to restore a normal reading frame and also produce a dystrophin protein with normally phased spectrin-like repeats (SLRs), which is not usually obtained by skipping or by deletion of complete exons. This can, however, be obtained in rare instances where the exon and intron borders of the beginning and the end of the complete deletion (patient deletion plus CRISPR-induced deletion) are at similar positions in the SLR. We used pairs of sgRNAs targeting exons 47 and 58, and a normal reading frame was restored in myoblasts derived from muscle biopsies of 4 DMD patients with different exon deletions. Restoration of the DMD reading frame and restoration of dystrophin expression were also obtained in vivo in the heart of the del52hDMD/mdx. Our results provide a proof of principle that SaCas9 could be used to edit the human DMD gene and could be considered for further development of a therapy for DMD.
Collapse
Affiliation(s)
- Benjamin L Duchêne
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Neurosciences Axis, Québec City, QC, Canada; Faculty of Medicine, Department of Molecular Medicine, Université Laval, Quebec City, QC, Canada
| | - Khadija Cherif
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Neurosciences Axis, Québec City, QC, Canada
| | - Jean-Paul Iyombe-Engembe
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Neurosciences Axis, Québec City, QC, Canada; Faculty of Medicine, Department of Molecular Medicine, Université Laval, Quebec City, QC, Canada
| | - Antoine Guyon
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Neurosciences Axis, Québec City, QC, Canada; Faculty of Medicine, Department of Molecular Medicine, Université Laval, Quebec City, QC, Canada
| | - Joel Rousseau
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Neurosciences Axis, Québec City, QC, Canada
| | - Dominique L Ouellet
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Neurosciences Axis, Québec City, QC, Canada
| | - Xavier Barbeau
- Proteo and IBIS, Department of Chemistry, Faculty of Science and Engineering, Laval University, Québec City, QC, Canada
| | - Patrick Lague
- Proteo and IBIS, Department of Chemistry, Faculty of Science and Engineering, Laval University, Québec City, QC, Canada
| | - Jacques P Tremblay
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Neurosciences Axis, Québec City, QC, Canada; Faculty of Medicine, Department of Molecular Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
19
|
Dystrophin Cardiomyopathies: Clinical Management, Molecular Pathogenesis and Evolution towards Precision Medicine. J Clin Med 2018; 7:jcm7090291. [PMID: 30235804 PMCID: PMC6162458 DOI: 10.3390/jcm7090291] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/02/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022] Open
Abstract
Duchenne’s muscular dystrophy is an X-linked neuromuscular disease that manifests as muscle atrophy and cardiomyopathy in young boys. However, a considerable percentage of carrier females are often diagnosed with cardiomyopathy at an advanced stage. Existing therapy is not disease-specific and has limited effect, thus many patients and symptomatic carrier females prematurely die due to heart failure. Early detection is one of the major challenges that muscular dystrophy patients, carrier females, family members and, research and medical teams face in the complex course of dystrophic cardiomyopathy management. Despite the widespread adoption of advanced imaging modalities such as cardiac magnetic resonance, there is much scope for refining the diagnosis and treatment of dystrophic cardiomyopathy. This comprehensive review will focus on the pertinent clinical aspects of cardiac disease in muscular dystrophy while also providing a detailed consideration of the known and developing concepts in the pathophysiology of muscular dystrophy and forthcoming therapeutic options.
Collapse
|
20
|
Engineered DNA plasmid reduces immunity to dystrophin while improving muscle force in a model of gene therapy of Duchenne dystrophy. Proc Natl Acad Sci U S A 2018; 115:E9182-E9191. [PMID: 30181272 DOI: 10.1073/pnas.1808648115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In gene therapy for Duchenne muscular dystrophy there are two potential immunological obstacles. An individual with Duchenne muscular dystrophy has a genetic mutation in dystrophin, and therefore the wild-type protein is "foreign," and thus potentially immunogenic. The adeno-associated virus serotype-6 (AAV6) vector for delivery of dystrophin is a viral-derived vector with its own inherent immunogenicity. We have developed a technology where an engineered plasmid DNA is delivered to reduce autoimmunity. We have taken this approach into humans, tolerizing to myelin proteins in multiple sclerosis and to proinsulin in type 1 diabetes. Here, we extend this technology to a model of gene therapy to reduce the immunogenicity of the AAV vector and of the wild-type protein product that is missing in the genetic disease. Following gene therapy with systemic administration of recombinant AAV6-microdystrophin to mdx/mTRG2 mice, we demonstrated the development of antibodies targeting dystrophin and AAV6 capsid in control mice. Treatment with the engineered DNA construct encoding microdystrophin markedly reduced antibody responses to dystrophin and to AAV6. Muscle force in the treated mice was also improved compared with control mice. These data highlight the potential benefits of administration of an engineered DNA plasmid encoding the delivered protein to overcome critical barriers in gene therapy to achieve optimal functional gene expression.
Collapse
|
21
|
Puzzo F, Colella P, Biferi MG, Bali D, Paulk NK, Vidal P, Collaud F, Simon-Sola M, Charles S, Hardet R, Leborgne C, Meliani A, Cohen-Tannoudji M, Astord S, Gjata B, Sellier P, van Wittenberghe L, Vignaud A, Boisgerault F, Barkats M, Laforet P, Kay MA, Koeberl DD, Ronzitti G, Mingozzi F. Rescue of Pompe disease in mice by AAV-mediated liver delivery of secretable acid α-glucosidase. Sci Transl Med 2018; 9:9/418/eaam6375. [PMID: 29187643 DOI: 10.1126/scitranslmed.aam6375] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 06/13/2017] [Indexed: 12/26/2022]
Abstract
Glycogen storage disease type II or Pompe disease is a severe neuromuscular disorder caused by mutations in the lysosomal enzyme, acid α-glucosidase (GAA), which result in pathological accumulation of glycogen throughout the body. Enzyme replacement therapy is available for Pompe disease; however, it has limited efficacy, has high immunogenicity, and fails to correct pathological glycogen accumulation in nervous tissue and skeletal muscle. Using bioinformatics analysis and protein engineering, we developed transgenes encoding GAA that could be expressed and secreted by hepatocytes. Then, we used adeno-associated virus (AAV) vectors optimized for hepatic expression to deliver the GAA transgenes to Gaa knockout (Gaa-/-) mice, a model of Pompe disease. Therapeutic gene transfer to the liver rescued glycogen accumulation in muscle and the central nervous system, and ameliorated cardiac hypertrophy as well as muscle and respiratory dysfunction in the Gaa-/- mice; mouse survival was also increased. Secretable GAA showed improved therapeutic efficacy and lower immunogenicity compared to nonengineered GAA. Scale-up to nonhuman primates, and modeling of GAA expression in primary human hepatocytes using hepatotropic AAV vectors, demonstrated the therapeutic potential of AAV vector-mediated liver expression of secretable GAA for treating pathological glycogen accumulation in multiple tissues in Pompe disease.
Collapse
Affiliation(s)
- Francesco Puzzo
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Pasqualina Colella
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France
| | - Maria G Biferi
- University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| | - Deeksha Bali
- Biochemical Genetics Laboratory, Duke University Health System, Durham, NC 27710, USA
| | - Nicole K Paulk
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Patrice Vidal
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France.,University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| | - Fanny Collaud
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France
| | - Marcelo Simon-Sola
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France.,University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| | - Severine Charles
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France
| | - Romain Hardet
- University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| | - Christian Leborgne
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France
| | - Amine Meliani
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France.,University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| | | | - Stephanie Astord
- University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| | - Bernard Gjata
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France
| | - Pauline Sellier
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France.,University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| | | | - Alban Vignaud
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France
| | - Florence Boisgerault
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France
| | - Martine Barkats
- University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| | - Pascal Laforet
- Paris-Est Neuromuscular Center, Pitié-Salpêtrière Hospital and Raymond Poincaré Teaching Hospital, Garches, APHP, Paris, France
| | - Mark A Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Dwight D Koeberl
- Division of Medical Genetics, Department of Pediatrics and Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Giuseppe Ronzitti
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France.
| | - Federico Mingozzi
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France. .,University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| |
Collapse
|
22
|
Scoto M, Finkel R, Mercuri E, Muntoni F. Genetic therapies for inherited neuromuscular disorders. THE LANCET CHILD & ADOLESCENT HEALTH 2018; 2:600-609. [PMID: 30119719 DOI: 10.1016/s2352-4642(18)30140-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/15/2023]
Abstract
Inherited neuromuscular disorders encompass a broad group of genetic conditions, and the discovery of these underlying genes has expanded greatly in the past three decades. The discovery of such genes has enabled more precise diagnosis of these disorders and the development of specific therapeutic approaches that target the genetic basis and pathophysiological pathways. Such translational research has led to the approval of two genetic therapies by the US Food and Drug Administration: eteplirsen for Duchenne muscular dystrophy and nusinersen for spinal muscular atrophy, which are both antisense oligonucleotides that modify pre-mRNA splicing. In this Review we aim to discuss new genetic therapies and ongoing clinical trials for Duchenne muscular dystrophy, spinal muscular atrophy, and other less common childhood neuromuscular disorders.
Collapse
Affiliation(s)
- Mariacristina Scoto
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Richard Finkel
- Division of Pediatric Neurology, Nemours Children's Hospital, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Eugenio Mercuri
- Pediatric Neurology and Centro Nemo, IRCSS Fondazione Policlinico Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK; National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, London, UK.
| |
Collapse
|
23
|
Crispi V, Matsakas A. Duchenne muscular dystrophy: genome editing gives new hope for treatment. Postgrad Med J 2018; 94:296-304. [DOI: 10.1136/postgradmedj-2017-135377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/03/2018] [Accepted: 01/13/2018] [Indexed: 12/20/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive wasting disease of skeletal and cardiac muscles, representing one of the most common recessive fatal inherited genetic diseases with 1:3500–1:5000 in yearly incidence. It is caused by mutations in the DMD gene that encodes the membrane-associated dystrophin protein. Over the years, many have been the approaches to management of DMD, but despite all efforts, no effective treatment has yet been discovered. Hope for the development of potential therapeutics has followed the recent advances in genome editing and gene therapy. This review gives an overview to DMD and summarises current lines of evidence with regard to treatment and disease management alongside the appropriate considerations.
Collapse
|
24
|
Utrophin up-regulation by artificial transcription factors induces muscle rescue and impacts the neuromuscular junction in mdx mice. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1172-1182. [PMID: 29408646 PMCID: PMC5851675 DOI: 10.1016/j.bbadis.2018.01.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/16/2018] [Accepted: 01/25/2018] [Indexed: 01/31/2023]
Abstract
Up-regulation of the dystrophin-related gene utrophin represents a promising therapeutic strategy for the treatment of Duchenne Muscular Dystrophy (DMD). In order to re-program the utrophin expression level in muscle, we engineered artificial zinc finger transcription factors (ZF-ATFs) that target the utrophin 'A' promoter. We have previously shown that the ZF-ATF "Jazz", either by transgenic manipulation or by systemic adeno-associated viral delivery, induces significant rescue of muscle function in dystrophic "mdx" mice. We present the full characterization of an upgraded version of Jazz gene named "JZif1" designed to minimize any possible host immune response. JZif1 was engineered on the Zif268 gene-backbone using selective amino acid substitutions to address JZif1 to the utrophin 'A' promoter. Here, we show that JZif1 induces remarkable amelioration of the pathological phenotype in mdx mice. To investigate the molecular mechanisms underlying Jazz and JZif1 induced muscle functional rescue, we focused on utrophin related pathways. Coherently with utrophin subcellular localization and role in neuromuscular junction (NMJ) plasticity, we found that our ZF-ATFs positively impact the NMJ. We report on ZF-ATF effects on post-synaptic membranes in myogenic cell line, as well as in wild type and mdx mice. These results candidate our ZF-ATFs as novel therapeutic molecules for DMD treatment.
Collapse
|
25
|
Amoasii L, Long C, Li H, Mireault AA, Shelton JM, Sanchez-Ortiz E, McAnally JR, Bhattacharyya S, Schmidt F, Grimm D, Hauschka SD, Bassel-Duby R, Olson EN. Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy. Sci Transl Med 2017; 9:eaan8081. [PMID: 29187645 PMCID: PMC5749406 DOI: 10.1126/scitranslmed.aan8081] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/18/2017] [Indexed: 12/13/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a severe, progressive muscle disease caused by mutations in the dystrophin gene. The majority of DMD mutations are deletions that prematurely terminate the dystrophin protein. Deletions of exon 50 of the dystrophin gene are among the most common single exon deletions causing DMD. Such mutations can be corrected by skipping exon 51, thereby restoring the dystrophin reading frame. Using clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9), we generated a DMD mouse model by deleting exon 50. These ΔEx50 mice displayed severe muscle dysfunction, which was corrected by systemic delivery of adeno-associated virus encoding CRISPR/Cas9 genome editing components. We optimized the method for dystrophin reading frame correction using a single guide RNA that created reframing mutations and allowed skipping of exon 51. In conjunction with muscle-specific expression of Cas9, this approach restored up to 90% of dystrophin protein expression throughout skeletal muscles and the heart of ΔEx50 mice. This method of permanently bypassing DMD mutations using a single cut in genomic DNA represents a step toward clinical correction of DMD mutations and potentially those of other neuromuscular disorders.
Collapse
Affiliation(s)
- Leonela Amoasii
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Chengzu Long
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Hui Li
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Alex A Mireault
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - John M Shelton
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Efrain Sanchez-Ortiz
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - John R McAnally
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Samadrita Bhattacharyya
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Florian Schmidt
- Heidelberg University Hospital, Center for Infectious Diseases, Virology, Cluster of Excellence Cell Networks, DZIF partner, BioQuant Center, Heidelberg D-69120, Germany
| | - Dirk Grimm
- Heidelberg University Hospital, Center for Infectious Diseases, Virology, Cluster of Excellence Cell Networks, DZIF partner, BioQuant Center, Heidelberg D-69120, Germany
| | - Stephen D Hauschka
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
26
|
Dalakas MC. Gene therapy for Duchenne muscular dystrophy: balancing good science, marginal efficacy, high emotions and excessive cost. Ther Adv Neurol Disord 2017; 10:293-296. [PMID: 28781610 PMCID: PMC5518962 DOI: 10.1177/1756285617717155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 01/16/2023] Open
Affiliation(s)
- Marinos C. Dalakas
- Chief, Neuromuscular Division, Thomas Jefferson University, Philadelphia PA, and Chief, Neuroimmunology Unit, Dept of Pathophysiology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
27
|
VanBelzen DJ, Malik AS, Henthorn PS, Kornegay JN, Stedman HH. Mechanism of Deletion Removing All Dystrophin Exons in a Canine Model for DMD Implicates Concerted Evolution of X Chromosome Pseudogenes. Mol Ther Methods Clin Dev 2017; 4:62-71. [PMID: 28344992 PMCID: PMC5363321 DOI: 10.1016/j.omtm.2016.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/07/2016] [Indexed: 01/19/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a lethal, X-linked, muscle-wasting disorder caused by mutations in the large, 2.4-Mb dystrophin gene. The majority of DMD-causing mutations are sporadic, multi-exon, frameshifting deletions, with the potential for variable immunological tolerance to the dystrophin protein from patient to patient. While systemic gene therapy holds promise in the treatment of DMD, immune responses to vectors and transgenes must first be rigorously evaluated in informative preclinical models to ensure patient safety. A widely used canine model for DMD, golden retriever muscular dystrophy, expresses detectable amounts of near full-length dystrophin due to alternative splicing around an intronic point mutation, thereby confounding the interpretation of immune responses to dystrophin-derived gene therapies. Here we characterize a naturally occurring deletion in a dystrophin-null canine, the German shorthaired pointer. The deletion spans 5.6 Mb of the X chromosome and encompasses all coding exons of the DMD and TMEM47 genes. The sequences surrounding the deletion breakpoints are virtually identical, suggesting that the deletion occurred through a homologous recombination event. Interestingly, the deletion breakpoints are within loci that are syntenically conserved among mammals, yet the high homology among this subset of ferritin-like loci is unique to the canine genome, suggesting lineage-specific concerted evolution of these atypical sequence elements.
Collapse
Affiliation(s)
- D. Jake VanBelzen
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alock S. Malik
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paula S. Henthorn
- Section of Medical Genetics, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Joe N. Kornegay
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Hansell H. Stedman
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corporal Michael Crescenz Veterans Administration Medical Center, Philadelphia, PA 19104, USA
| |
Collapse
|
28
|
Doetschman T, Georgieva T. Gene Editing With CRISPR/Cas9 RNA-Directed Nuclease. Circ Res 2017; 120:876-894. [DOI: 10.1161/circresaha.116.309727] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 01/30/2017] [Accepted: 02/06/2017] [Indexed: 12/22/2022]
Abstract
Genetic engineering of model organisms and cultured cells has for decades provided important insights into the mechanisms underlying cardiovascular development and disease. In the past few years the development of several nuclease systems has broadened the range of model/cell systems that can be engineered. Of these, the CRISPR (clustered regularly interspersed short palindromic repeats)/Cas9 (CRISPR-associated protein 9) system has become the favorite for its ease of application. Here we will review this RNA-guided nuclease system for gene editing with respect to its usefulness for cardiovascular studies and with an eye toward potential therapy. Studies on its off-target activity, along with approaches to minimize this activity will be given. The advantages of gene editing versus gene targeting in embryonic stem cells, including the breadth of species and cell types to which it is applicable, will be discussed. We will also cover its use in iPSC for research and possible therapeutic purposes; and we will review its use in muscular dystrophy studies where considerable progress has been made toward dystrophin correction in mice. The CRISPR/Ca9s system is also being used for high-throughput screening of genes, gene regulatory regions, and long noncoding RNAs. In addition, the CRISPR system is being used for nongene-editing purposes such as activation and inhibition of gene expression, as well as for fluorescence tagging of chromosomal regions and individual mRNAs to track their cellular location. Finally, an approach to circumvent the inability of post-mitotic cells to support homologous recombination-based gene editing will be presented. In conclusion, applications of the CRISPR/Cas system are expanding at a breath-taking pace and are revolutionizing approaches to gain a better understanding of human diseases.
Collapse
Affiliation(s)
- Thomas Doetschman
- From the BIO5 Institute (T.D., T.G.) and Department of Cellular and Molecular Medicine (T.D.), University of Arizona, Tucson
| | - Teodora Georgieva
- From the BIO5 Institute (T.D., T.G.) and Department of Cellular and Molecular Medicine (T.D.), University of Arizona, Tucson
| |
Collapse
|
29
|
Tabebordbar M, Cheng J, Wagers AJ. Therapeutic Gene Editing in Muscles and Muscle Stem Cells. RESEARCH AND PERSPECTIVES IN NEUROSCIENCES 2017. [DOI: 10.1007/978-3-319-60192-2_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Maruyama N, Asai T, Abe C, Inada A, Kawauchi T, Miyashita K, Maeda M, Matsuo M, Nabeshima YI. Establishment of a highly sensitive sandwich ELISA for the N-terminal fragment of titin in urine. Sci Rep 2016; 6:39375. [PMID: 27991570 PMCID: PMC5171804 DOI: 10.1038/srep39375] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/23/2016] [Indexed: 01/08/2023] Open
Abstract
Muscle damage and loss of muscle mass are triggered by immobilization, loss of appetite, dystrophies and chronic wasting diseases. In addition, physical exercise causes muscle damage. In damaged muscle, the N-terminal and C-terminal regions of titin, a giant sarcomere protein, are cleaved by calpain-3, and the resulting fragments are excreted into the urine via glomerular filtration. Therefore, we considered titin fragments as promising candidates for reliable and non-invasive biomarkers of muscle injury. Here, we established a sandwich ELISA that can measure the titin N-terminal fragment over a biologically relevant range of concentrations, including those in urine samples from older, non-ambulatory Duchenne muscular dystrophy patients and from healthy donors under everyday life conditions and after exercise. Our results indicate that the established ELISA could be a useful tool for the screening of muscular dystrophies and also for monitoring the progression of muscle disease, evaluating the efficacy of therapeutic approaches, and investigating exercise-related sarcomeric disruption and repair processes.
Collapse
Affiliation(s)
- Nobuhiro Maruyama
- Diagnostic &Research Reagents Division, Immuno-biological Laboratories Co., Ltd. 1091-1 Naka, Fujioka-shi, Gunma 375-0005, Japan
| | - Tsuyoshi Asai
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, 1-1-3 Minatojima-Minamimachi Chuo-ku, Kobe 650-0047, Japan
| | - Chiaki Abe
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation Foundation for Biomedical Research and Innovation, 2-2 Minatojima- Minamimachi Chuo-ku, Kobe 650-0047, Japan
| | - Akari Inada
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation Foundation for Biomedical Research and Innovation, 2-2 Minatojima- Minamimachi Chuo-ku, Kobe 650-0047, Japan
| | - Takeshi Kawauchi
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation Foundation for Biomedical Research and Innovation, 2-2 Minatojima- Minamimachi Chuo-ku, Kobe 650-0047, Japan
| | - Kazuya Miyashita
- Diagnostic &Research Reagents Division, Immuno-biological Laboratories Co., Ltd. 1091-1 Naka, Fujioka-shi, Gunma 375-0005, Japan
| | - Masahiro Maeda
- Diagnostic &Research Reagents Division, Immuno-biological Laboratories Co., Ltd. 1091-1 Naka, Fujioka-shi, Gunma 375-0005, Japan
| | - Masafumi Matsuo
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, 1-1-3 Minatojima-Minamimachi Chuo-ku, Kobe 650-0047, Japan
| | - Yo-Ichi Nabeshima
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation Foundation for Biomedical Research and Innovation, 2-2 Minatojima- Minamimachi Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
31
|
Whitehead NP, Bible KL, Kim MJ, Odom GL, Adams ME, Froehner SC. Validation of ultrasonography for non-invasive assessment of diaphragm function in muscular dystrophy. J Physiol 2016; 594:7215-7227. [PMID: 27570057 DOI: 10.1113/jp272707] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/19/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Duchenne muscular dystrophy (DMD) is a severe, degenerative muscle disease that is commonly studied using the mdx mouse. The mdx diaphragm muscle closely mimics the pathophysiological changes in DMD muscles. mdx diaphragm force is commonly assessed ex vivo, precluding time course studies. Here we used ultrasonography to evaluate time-dependent changes in diaphragm function in vivo, by measuring diaphragm movement amplitude. In mdx mice, diaphragm amplitude decreased with age and values were much lower than for wild-type mice. Importantly, diaphragm amplitude strongly correlated with ex vivo specific force values. Micro-dystrophin administration increased mdx diaphragm amplitude by 26% after 4 weeks. Diaphragm amplitude correlated positively with ex vivo force values and negatively with diaphragm fibrosis, a major cause of DMD muscle weakness. These studies validate diaphragm ultrasonography as a reliable technique for assessing time-dependent changes in mdx diaphragm function in vivo. This technique will be valuable for testing potential therapies for DMD. ABSTRACT Duchenne muscular dystrophy (DMD) is a severe, degenerative muscle disease caused by dystrophin mutations. The mdx mouse is a widely used animal model of DMD. The mdx diaphragm muscle most closely recapitulates key features of DMD muscles, including progressive fibrosis and considerable force loss. Diaphragm function in mdx mice is commonly evaluated by specific force measurements ex vivo. While useful, this method only measures force from a small muscle sample at one time point. Therefore, accurate assessment of diaphragm function in vivo would provide an important advance to study the time course of functional decline and treatment benefits. Here, we evaluated an ultrasonography technique for measuring time-dependent changes of diaphragm function in mdx mice. Diaphragm movement amplitude values for mdx mice were considerably lower than those for wild-type, decreased from 8 to 18 months of age, and correlated strongly with ex vivo specific force. We then investigated the time course of diaphragm amplitude changes following administration of an adeno-associated viral vector expressing Flag-micro-dystrophin (AAV-μDys) to young adult mdx mice. Diaphragm amplitude peaked 4 weeks after AAV-μDys administration, and was 26% greater than control mdx mice at this time. This value decreased slightly to 21% above mdx controls after 12 weeks of treatment. Importantly, diaphragm amplitude again correlated strongly with ex vivo specific force. Also, diaphragm amplitude and specific force negatively correlated with fibrosis levels in the muscle. Together, our results validate diaphragm ultrasonography as a reliable technique for assessing time-dependent changes in dystrophic diaphragm function in vivo, and for evaluating potential therapies for DMD.
Collapse
Affiliation(s)
- Nicholas P Whitehead
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Kenneth L Bible
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Min Jeong Kim
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Guy L Odom
- Department of Neurology, University of Washington, Seattle, WA, 98195, USA.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington, Seattle, WA, 98195, USA
| | - Marvin E Adams
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Stanley C Froehner
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
32
|
Robinson-Hamm JN, Gersbach CA. Gene therapies that restore dystrophin expression for the treatment of Duchenne muscular dystrophy. Hum Genet 2016; 135:1029-40. [PMID: 27542949 PMCID: PMC5006996 DOI: 10.1007/s00439-016-1725-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/08/2016] [Indexed: 12/18/2022]
Abstract
Duchenne muscular dystrophy is one of the most common inherited genetic diseases and is caused by mutations to the DMD gene that encodes the dystrophin protein. Recent advances in genome editing and gene therapy offer hope for the development of potential therapeutics. Truncated versions of the DMD gene can be delivered to the affected tissues with viral vectors and show promising results in a variety of animal models. Genome editing with the CRISPR/Cas9 system has recently been used to restore dystrophin expression by deleting one or more exons of the DMD gene in patient cells and in a mouse model that led to functional improvement of muscle strength. Exon skipping with oligonucleotides has been successful in several animal models and evaluated in multiple clinical trials. Next-generation oligonucleotide formulations offer significant promise to build on these results. All these approaches to restoring dystrophin expression are encouraging, but many hurdles remain. This review summarizes the current state of these technologies and summarizes considerations for their future development.
Collapse
Affiliation(s)
- Jacqueline N Robinson-Hamm
- Department of Biomedical Engineering, Duke University, Room 1427, Fitzpatrick CIEMAS, 101 Science Drive, Box 90281, Durham, NC, 27708-0281, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Room 1427, Fitzpatrick CIEMAS, 101 Science Drive, Box 90281, Durham, NC, 27708-0281, USA.
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA.
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
33
|
Abstract
Duchenne muscular dystrophy (DMD) is a recessive lethal inherited muscular dystrophy caused by mutations in the gene encoding dystrophin, a protein required for muscle fibre integrity. So far, many approaches have been tested from the traditional gene addition to newer advanced approaches based on manipulation of the cellular machinery either at the gene transcription, mRNA processing or translation levels. Unfortunately, despite all these efforts, no efficient treatments for DMD are currently available. In this review, we highlight the most advanced therapeutic strategies under investigation as potential DMD treatments.
Collapse
Affiliation(s)
- Hayder Abdul-Razak
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Alberto Malerba
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - George Dickson
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| |
Collapse
|
34
|
Adamson-Small L, Potter M, Falk DJ, Cleaver B, Byrne BJ, Clément N. A scalable method for the production of high-titer and high-quality adeno-associated type 9 vectors using the HSV platform. Mol Ther Methods Clin Dev 2016; 3:16031. [PMID: 27222839 PMCID: PMC4863725 DOI: 10.1038/mtm.2016.31] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 03/28/2016] [Indexed: 01/04/2023]
Abstract
Recombinant adeno-associated vectors based on serotype 9 (rAAV9) have demonstrated highly effective gene transfer in multiple animal models of muscular dystrophies and other neurological indications. Current limitations in vector production and purification have hampered widespread implementation of clinical candidate vectors, particularly when systemic administration is considered. In this study, we describe a complete herpes simplex virus (HSV)-based production and purification process capable of generating greater than 1 × 10(14) rAAV9 vector genomes per 10-layer CellSTACK of HEK 293 producer cells, or greater than 1 × 10(5) vector genome per cell, in a final, fully purified product. This represents a 5- to 10-fold increase over transfection-based methods. In addition, rAAV vectors produced by this method demonstrated improved biological characteristics when compared to transfection-based production, including increased infectivity as shown by higher transducing unit-to-vector genome ratios and decreased total capsid protein amounts, shown by lower empty-to-full ratios. Together, this data establishes a significant improvement in both rAAV9 yields and vector quality. Further, the method can be readily adapted to large-scale good laboratory practice (GLP) and good manufacturing practice (GMP) production of rAAV9 vectors to enable preclinical and clinical studies and provide a platform to build on toward late-phases and commercial production.
Collapse
Affiliation(s)
- Laura Adamson-Small
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, USA
| | - Mark Potter
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, USA
| | - Darin J Falk
- Department of Pediatrics, Child Health Research Institute, University of Florida, Florida, USA
| | - Brian Cleaver
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, USA
| | - Barry J Byrne
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, USA
| | - Nathalie Clément
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
35
|
Hathout Y, Seol H, Han MHJ, Zhang A, Brown KJ, Hoffman EP. Clinical utility of serum biomarkers in Duchenne muscular dystrophy. Clin Proteomics 2016; 13:9. [PMID: 27051355 PMCID: PMC4820909 DOI: 10.1186/s12014-016-9109-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/16/2016] [Indexed: 12/14/2022] Open
Abstract
Assessments of disease progression and response to therapies in Duchenne muscular dystrophy (DMD) patients remain challenging. Current DMD patient assessments include complex physical tests and invasive procedures such as muscle biopsies, which are not suitable for young children. Defining alternative, less invasive and objective outcome measures to assess disease progression and response to therapy will aid drug development and clinical trials in DMD. In this review we highlight advances in development of non-invasive blood circulating biomarkers as a means to assess disease progression and response to therapies in DMD.
Collapse
Affiliation(s)
- Yetrib Hathout
- Center for Genetic Medicine, Children's National Healthy System, Washington, DC USA
| | - Haeri Seol
- Center for Genetic Medicine, Children's National Healthy System, Washington, DC USA
| | - Meng Hsuan J Han
- Center for Genetic Medicine, Children's National Healthy System, Washington, DC USA
| | - Aiping Zhang
- Center for Genetic Medicine, Children's National Healthy System, Washington, DC USA
| | - Kristy J Brown
- Center for Genetic Medicine, Children's National Healthy System, Washington, DC USA
| | - Eric P Hoffman
- Center for Genetic Medicine, Children's National Healthy System, Washington, DC USA
| |
Collapse
|