1
|
Flor GZ, Monteiro W, da Silva RCF, de Oliveira BRR, Marquez G, Lattari E. Acute effects of anodal transcranial direct current stimulation on endurance and maximal voluntary contraction in lower limbs: a systematic review and meta-analysis. Exp Brain Res 2025; 243:57. [PMID: 39907829 DOI: 10.1007/s00221-025-07008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
PURPOSE To examine the effects of single-dose anodal tDCS on isometric maximal voluntary contraction (MVC) and isometric endurance performance in lower limb exercises with healthy adults. METHODS For this systematic review and meta-analysis, we searched PubMed, ISI Web of Science, Scopus, and CINAHL for studies published between database inception and June 11, 2024. All randomized controlled trials on anodal tDCS interventions for MVC and isometric endurance in lower limb exercises were included, with no date restrictions. The quality of the evidence was assessed using the Jadad Scale, and the certainty of evidence was assessed using the Grading of Recommendations Assessment, Development, and Evaluation approach. The Open Science Framework registered the protocol in June 2024 (DOI https://doi.org/10.17605/OSF.IO/AG93M ). RESULTS 20 interventions were included, comprising 15 for MVC and 5 for 'Time to Task Failure' (TTF), which refers to isometric endurance performance measured in seconds. The findings showed no difference in the MVC (SMD = 0.06; 95% CI = - 0.14, 0.25; P = 0.57) and TTF performance (WMD = 0.07; 95% CI = - 0.26, 0.40; P = 0.68). CONCLUSION The current meta-analysis indicated that anodal tDCS did not increase isometric MVC and isometric endurance performance in lower limb exercises in healthy adults.
Collapse
Affiliation(s)
- Geanny Zanirate Flor
- Physical Activity Sciences Graduate Program, Salgado de Oliveira University (UNIVERSO), Niterói, 24030-060, Brazil
| | - Walace Monteiro
- Physical Activity Sciences Graduate Program, Salgado de Oliveira University (UNIVERSO), Niterói, 24030-060, Brazil
| | | | - Bruno Ribeiro Ramalho de Oliveira
- Physical Activity Sciences Graduate Program, Salgado de Oliveira University (UNIVERSO), Niterói, 24030-060, Brazil
- Physical Education and Sports Department, Seropédica, Federal Rural University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gonzalo Marquez
- Department of Physical Education and Sport, Faculty of Sport Sciences and Physical Education, University of A Coruña, A Coruña, Spain
| | - Eduardo Lattari
- Physical Activity Sciences Graduate Program, Salgado de Oliveira University (UNIVERSO), Niterói, 24030-060, Brazil.
| |
Collapse
|
2
|
Ramos L, Ramos TAM, Almeida RFD, da Silva-Rocha JV, Zimerer C, Arêas FZ. Acute anodal transcranial direct current stimulation improves the performance of professional rowers. Front Sports Act Living 2024; 6:1310856. [PMID: 38699626 PMCID: PMC11063233 DOI: 10.3389/fspor.2024.1310856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/13/2024] [Indexed: 05/05/2024] Open
Abstract
Introduction The aim of the present study was to evaluate the influence of acute transcranial direct current stimulation (tDCS) on physical and subjective responses in professional rowing during the 2,000-m time trial test. Methods Seven rowers (age 20.86 ± 4.49 years; weight 71.66 ± 7.97 kg) participated in this randomized triple-blind trial with a crossover experimental design. The protocol consists of 2 days with different conditions (anodal and sham). The tDCS anodic stimulation conducted was 2 mA for 20 min in the left temporal cortex (2.5 cm from the F7 zone and 2.5 cm from the T3 zone), targeting the left insular cortex. In the sham moment, the participants experienced 30 s of stimulation. Afterward, they performed a standardized progressive warm-up for 15 min, following the Brazilian Rowing Confederation's assessment protocols, and rested for 3 min before the test started. All procedures were made on an indoor rowing machine, which allowed the capture of performance variables such as time performed, power in watts (W), pace (m/min), and stroke rate (strokes/min). The ratings of perceived exertion [Borg scale (CR-20)] were recorded in each 2-min during the test. Results The results presented differences in power [Z: -2.371; p = 0.018; effect size (ES) = -0.896 (large)] and pace [Z: -2.371; p = 0.018; ES = -0.896 (large)] and time performance [Z: -1.612; p = 0.107; ES = -0.609 (large)] throughout the protocol for the anodal moment. Discussion However, no differences for the other variables were found. According to the results, the current tDCS with the present protocol improved the physical performance at the 2,000-m time trial Test providing ergogenic aid.
Collapse
Affiliation(s)
- Luciano Ramos
- Physiotherapy Course at the FAVI—Victorian Higher Education Association, Vitória, Brazil
- Neuromodulation Institute, Vitória, Brazil
| | - Tatiana Aparecida Magacho Ramos
- Physiotherapy Course at the FAVI—Victorian Higher Education Association, Vitória, Brazil
- Neuromodulation Institute, Vitória, Brazil
| | - Rodrigo Freire De Almeida
- Group of Study and Research in Neurorehabilitation and Neuromodulation, Federal University of Espirito Santo, Vitória, Brazil
- Postgraduate Program Physiological Sciences, Center of Health Science, Federal University of Espirito Santo, Vitória, Brazil
| | - Jader Vinicius da Silva-Rocha
- Group of Study and Research in Neurorehabilitation and Neuromodulation, Federal University of Espirito Santo, Vitória, Brazil
- Postgraduate Program Physiological Sciences, Center of Health Science, Federal University of Espirito Santo, Vitória, Brazil
| | - Carla Zimerer
- Postgraduate Program in Electrical Engineering, Federal University of Espírito Santo, Vitória, Brazil
- Telecommunications Laboratory, Federal University of Espírito Santo, Vitória, Brazil
| | - Fernando Zanela Arêas
- Group of Study and Research in Neurorehabilitation and Neuromodulation, Federal University of Espirito Santo, Vitória, Brazil
- Postgraduate Program Physiological Sciences, Center of Health Science, Federal University of Espirito Santo, Vitória, Brazil
- Physiotherapy Course at the Federal University of Espirito Santo, Vitória, Brazil
| |
Collapse
|
3
|
Teymoori H, Amiri E, Tahmasebi W, Hoseini R, Grospretre S, Machado DGDS. Effect of tDCS targeting the M1 or left DLPFC on physical performance, psychophysiological responses, and cognitive function in repeated all-out cycling: a randomized controlled trial. J Neuroeng Rehabil 2023; 20:97. [PMID: 37496055 PMCID: PMC10373277 DOI: 10.1186/s12984-023-01221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Despite reporting the positive effects of transcranial direct current stimulation (tDCS) on endurance performance, very few studies have investigated its efficacy in anaerobic short all-out activities. Moreover, there is still no consensus on which brain areas could provide the most favorable effects on different performance modalities. Accordingly, this study aimed to investigate the effects of anodal tDCS (a-tDCS) targeting the primary motor cortex (M1) or left dorsolateral prefrontal cortex (DLPFC) on physical performance, psychophysiological responses, and cognitive function in repeated all-out cycling. METHODS In this randomized, crossover, and double-blind study, 15 healthy physically active men underwent a-tDCS targeting M1 or the left DLPFC or sham tDCS in separate days before performing three bouts of all-out 30s cycling anaerobic test. a-tDCS was applied using 2 mA for 20 min. Peak power, mean power, fatigue index, and EMG of the quadriceps muscles were measured during each bout. Heart rate, perceived exertion, affective valence, and arousal were recorded two minutes after each bout. Color-word Stroop test and choice reaction time were measured at baseline and after the whole anaerobic test. RESULTS Neither tDCS montage significantly changed peak power, mean power, fatigue index, heart rate, affective valence, arousal, and choice reaction time (p> 0.05). a-tDCS over DLPFC significantly lowered RPE of the first bout (compared to sham; p=0.048, Δ=-12.5%) and third bout compared to the M1 (p=0.047, Δ=-12.38%) and sham (p=0.003, Δ=-10.5%), increased EMG of the Vastus Lateralis muscle during the second (p=0.016, Δ= +40.3%) and third bout (p=0.016, Δ= +42.1%) compared to sham, and improved the score of color-word Stroop test after the repeated all-out task (p=0.04, Δ= +147%). The qualitative affective response (valence and arousal) was also higher under the M1 and DLPFC compared to the sham. CONCLUSION We concluded that tDCS targeting M1 or DLPFC does not improve repeated anaerobic performance. However, the positive effect of DLPFC montage on RPE, EMG, qualitative affective responses, and cognitive function is promising and paves the path for future research using different tDCS montages to see any possible effects on anaerobic performance. TRIAL REGISTRATION This study was approved by the Ethics Committee of Razi University (IR.RAZI.REC.1400.023) and registered in the Iranian Registry of Clinical Trials (IRCT id: IRCT20210617051606N5; Registration Date: 04/02/2022).
Collapse
Affiliation(s)
- Hafez Teymoori
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Ehsan Amiri
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran.
| | - Worya Tahmasebi
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Rastegar Hoseini
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Sidney Grospretre
- EA4660-C3S Laboratory - Culture, Sports, Health and Society, University Bourgogne France- Comte, Besancon, France
| | - Daniel Gomes da Silva Machado
- Research Group in Neuroscience of the Human Movement (NeuroMove), Department of Physical Education, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
4
|
Etemadi M, Amiri E, Tadibi V, Grospretre S, Valipour Dehnou V, Machado DGDS. Anodal tDCS over the left DLPFC but not M1 increases muscle activity and improves psychophysiological responses, cognitive function, and endurance performance in normobaric hypoxia: a randomized controlled trial. BMC Neurosci 2023; 24:25. [PMID: 37020275 PMCID: PMC10077713 DOI: 10.1186/s12868-023-00794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has been shown to have positive effects on exercise performance and cognitive function in the normal ambient condition. Hypoxia is deemed a stressful situation with detrimental effects on physiological, psychological, cognitive, and perceptual responses of the body. Nevertheless, no study has evaluated the efficacy of tDCS for counteracting the negative effects of hypoxic conditions on exercise performance and cognition so far. Hence, in the present study, we investigated the effects of anodal tDCS on endurance performance, cognitive function, and perceptual responses in hypoxia. PARTICIPANTS AND METHODS Fourteen endurance-trained males participated in five experimental sessions. After familiarization and measuring peak power output in hypoxia, in the first and second sessions, through the 3rd to 5th sessions, participants performed a cycling endurance task until exhaustion after 30 min hypoxic exposure at resting position followed by 20 min of anodal stimulation of the motor cortex (M1), left dorsolateral prefrontal cortex (DLPFC), or sham-tDCS. Color-word Stroop test and choice reaction time were measured at baseline and after exhaustion. Time to exhaustion, heart rate, saturated O2, EMG amplitude of the vastus lateralis, vastus medialis, and rectus femoris muscles, RPE, affective response, and felt arousal were also measured during the task under hypoxia. RESULTS The results showed a longer time to exhaustion (+ 30.96%, p=0.036), lower RPE (- 10.23%, p = 0.045) and higher EMG amplitude of the vastus medialis muscle (+ 37.24%, p=0.003), affective response (+ 260%, p=0.035) and felt arousal (+ 28.9%, p=0.029) in the DLPFC tDCS compared to sham. The choice reaction time was shorter in DLPFC tDCS compared to sham (- 17.55%, p=0.029), and no differences were seen in the color-word Stroop test among the conditions under hypoxia. M1 tDCS resulted in no significant effect for any outcome measure. CONCLUSIONS We concluded that, as a novel finding, anodal stimulation of the left DLPFC might provide an ergogenic aid for endurance performance and cognitive function under the hypoxic condition probably via increasing neural drive to the working muscles, lowering RPE, and increasing perceptual responses.
Collapse
Affiliation(s)
- Matin Etemadi
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Ehsan Amiri
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran.
- Room. 73, Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, University Avenue, Taq-E Bostan, Kermanshah, 674441497, Iran.
| | - Vahid Tadibi
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Sidney Grospretre
- EA4660-C3S Laboratory-Culture, Sports, Health and Society, University Bourgogne France-Comte, Besancon, France
| | - Vahid Valipour Dehnou
- Department of Sports Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khorramabad, Iran
| | - Daniel Gomes da Silva Machado
- Research Group in Neuroscience of Human Movement (NeuroMove), Department of Physical Education, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| |
Collapse
|
5
|
Marinus N, Van Hoornweder S, Aarts M, Vanbilsen J, Hansen D, Meesen R. The influence of a single transcranial direct current stimulation session on physical fitness in healthy subjects: a systematic review. Exp Brain Res 2023; 241:31-47. [PMID: 36357590 PMCID: PMC9648891 DOI: 10.1007/s00221-022-06494-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/20/2022] [Indexed: 11/12/2022]
Abstract
Physical fitness is of indisputable importance for both health, and sports. Currently, the brain is being increasingly recognized as a contributor to physical fitness. Hereby, transcranial direct current stimulation (tDCS), as an ergogenic aid, has gained scientific interest. The current PRISMA-adherent review aimed to examine the effect of tDCS on the three core components of physical fitness: muscle strength, -endurance and cardiopulmonary endurance. Randomized controlled- or cross-over trials evaluating the effect of a single tDCS session (vs. sham) in healthy individuals were included. Hereby, a wide array of tDCS-related factors (e.g., tDCS montage and dose) was taken into account. Thirty-five studies (540 participants) were included. Between-study heterogeneity in factors such as age, activity level, tDCS protocol, and outcome measures was large. The capacity of tDCS to improve physical fitness varied substantially across studies. Nevertheless, muscle endurance was most susceptible to improvements following anodal tDCS (AtDCS), with 69% of studies (n = 11) investigating this core component of physical fitness reporting positive effects. The primary motor cortex and dorsolateral prefrontal cortex were targeted the most, with positive results being reported on muscle and cardiopulmonary endurance. Finally, online tDCS seemed most beneficial, and no clear relationship between tDCS and dose-related parameters seemed present. These findings can contribute to optimizing tDCS interventions during the rehabilitation of patients with a variety of (chronic) diseases such as cardiovascular disease. Therefore, future studies should focus on further unraveling the potential of AtDCS on physical fitness and, more specifically, muscle endurance in both healthy subjects and patients suffering from (chronic) diseases. This study was registered in Prospero with the registration number CRD42021258529. "To enable PROSPERO to focus on COVID-19 registrations during the 2020 pandemic, this registration record was automatically published exactly as submitted. The PROSPERO team has not checked eligibility".
Collapse
Affiliation(s)
- Nastasia Marinus
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A 3590, Diepenbeek, Belgium. .,Biomedical Research Center, Hasselt University, Diepenbeek, Belgium.
| | - Sybren Van Hoornweder
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A 3590, Diepenbeek, Belgium
| | - Marthe Aarts
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A 3590, Diepenbeek, Belgium
| | - Jessie Vanbilsen
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A 3590, Diepenbeek, Belgium
| | - Dominique Hansen
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A 3590, Diepenbeek, Belgium.,Biomedical Research Center, Hasselt University, Diepenbeek, Belgium.,Heart Centre Hasselt, Jessa Hospital, Hasselt, Belgium
| | - Raf Meesen
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A 3590, Diepenbeek, Belgium.,Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Louvain, Belgium
| |
Collapse
|
6
|
Garcia-Sillero M, Chulvi-Medrano I, Maroto-Izquierdo S, Bonilla DA, Vargas-Molina S, Benítez-Porres J. Effects of Preceding Transcranial Direct Current Stimulation on Movement Velocity and EMG Signal during the Back Squat Exercise. J Clin Med 2022; 11:5220. [PMID: 36079150 PMCID: PMC9457333 DOI: 10.3390/jcm11175220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to evaluate the effects of preceding anodal transcranial direct stimulation (a-tDCS) over the dorsolateral prefrontal cortex (DLPFC) during the back squat exercise on movement velocity and surface electromyographic (sEMG) activity. Thirteen healthy, well-trained, male firefighters (34.72 ± 3.33 years; 178 ± 7.61 cm; 76.85 ± 11.21 kg; 26.8 ± 4.2 kg·m−2; back squat 1-repetition maximum 141.5 ± 16.3 kg) completed this randomised double-blinded sham-controlled crossover study. After familiarisation and basal measurements, participants attended the laboratory on two occasions separated by 72 h to receive either Sham or a-tDCS (current intensity of 2 mA for 20 min). Immediately after stimulation, participants completed three sets of 12 repetitions (70% of 1-RM) with three minutes of recovery between sets monitored with a linear position transducer. The sEMG of the rectus femoris (RF) and vastus lateralis (VL) of both legs were recorded. No significant differences were observed between a-tDCS and Sham interventions on mean concentric velocity at any set (p > 0.05). Velocity loss and effort index were significantly higher (p < 0.05) in set 3 compared to set 1 only in the a-tDCS group. The right-leg RM and right-leg VL elicited the greatest muscle activation during set 1 after a-tDCS and Sham, respectively (p < 0.05). Our results revealed that a-tDCS over the DLPFC might impact movement velocity or fatigue tolerance in well-trained individuals. Notwithstanding, significant differences in dominant-leg muscle activity were found both in a-tDCS and Sham.
Collapse
Affiliation(s)
- Manuel Garcia-Sillero
- Faculty of Sport Sciences, EADE-University of Wales Trinity Saint David, 29018 Málaga, Spain
| | - Iván Chulvi-Medrano
- Sport Performance and Physical Fitness Research Group (UIRFIDE), Department of Physical and Sports Education, University of Valencia, 46010 Valencia, Spain
| | - Sergio Maroto-Izquierdo
- Department of Health Sciences, European University Miguel de Cervantes (UEMC), 47012 Valladolid, Spain
| | - Diego A. Bonilla
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110311, Colombia
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
- Sport Genomics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Salvador Vargas-Molina
- Faculty of Sport Sciences, EADE-University of Wales Trinity Saint David, 29018 Málaga, Spain
- Physical Education and Sport, Faculty of Medicine, University of Málaga, 29016 Málaga, Spain
| | - Javier Benítez-Porres
- Physical Education and Sport, Faculty of Medicine, University of Málaga, 29016 Málaga, Spain
| |
Collapse
|
7
|
Pino-Esteban A, Megía-García Á, Martín-Caro Álvarez D, Beltran-Alacreu H, Avendaño-Coy J, Gómez-Soriano J, Serrano-Muñoz D. Can Transcranial Direct Current Stimulation Enhance Functionality in Older Adults? A Systematic Review. J Clin Med 2021; 10:jcm10132981. [PMID: 34279465 PMCID: PMC8268136 DOI: 10.3390/jcm10132981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive, easy to administer, well-tolerated, and safe technique capable of affecting brain excitability, both at the cortical and cerebellum levels. However, its effectiveness has not been sufficiently assessed in all population segments or clinical applications. This systematic review aimed at compiling and summarizing the currently available scientific evidence about the effect of tDCS on functionality in older adults over 60 years of age. A search of databases was conducted to find randomized clinical trials that applied tDCS versus sham stimulation in the above-mentioned population. No limits were established in terms of date of publication. A total of 237 trials were found, of which 24 met the inclusion criteria. Finally, nine studies were analyzed, including 260 healthy subjects with average age between 61.0 and 85.8 years. Seven of the nine included studies reported superior improvements in functionality variables following the application of tDCS compared to sham stimulation. Anodal tDCS applied over the motor cortex may be an effective technique for improving balance and posture control in healthy older adults. However, further high-quality randomized controlled trials are required to determine the most effective protocols and to clarify potential benefits for older adults.
Collapse
Affiliation(s)
- Andrés Pino-Esteban
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing, Castilla La Mancha University, 13001 Toledo, Spain; (A.P.-E.); (D.M.-C.Á.); (H.B.-A.); (J.A.-C.); (J.G.-S.); (D.S.-M.)
| | - Álvaro Megía-García
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing, Castilla La Mancha University, 13001 Toledo, Spain; (A.P.-E.); (D.M.-C.Á.); (H.B.-A.); (J.A.-C.); (J.G.-S.); (D.S.-M.)
- Biomechanical and Technical Aids Unit, National Hospital for Paraplegia, SESCAM, 45071 Toledo, Spain
- Correspondence: ; Tel.: +34-925-274-700
| | - David Martín-Caro Álvarez
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing, Castilla La Mancha University, 13001 Toledo, Spain; (A.P.-E.); (D.M.-C.Á.); (H.B.-A.); (J.A.-C.); (J.G.-S.); (D.S.-M.)
| | - Hector Beltran-Alacreu
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing, Castilla La Mancha University, 13001 Toledo, Spain; (A.P.-E.); (D.M.-C.Á.); (H.B.-A.); (J.A.-C.); (J.G.-S.); (D.S.-M.)
| | - Juan Avendaño-Coy
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing, Castilla La Mancha University, 13001 Toledo, Spain; (A.P.-E.); (D.M.-C.Á.); (H.B.-A.); (J.A.-C.); (J.G.-S.); (D.S.-M.)
| | - Julio Gómez-Soriano
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing, Castilla La Mancha University, 13001 Toledo, Spain; (A.P.-E.); (D.M.-C.Á.); (H.B.-A.); (J.A.-C.); (J.G.-S.); (D.S.-M.)
| | - Diego Serrano-Muñoz
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing, Castilla La Mancha University, 13001 Toledo, Spain; (A.P.-E.); (D.M.-C.Á.); (H.B.-A.); (J.A.-C.); (J.G.-S.); (D.S.-M.)
| |
Collapse
|
8
|
Workman CD, Fietsam AC, Rudroff T. Different Effects of 2 mA and 4 mA Transcranial Direct Current Stimulation on Muscle Activity and Torque in a Maximal Isokinetic Fatigue Task. Front Hum Neurosci 2020; 14:240. [PMID: 32714170 PMCID: PMC7344304 DOI: 10.3389/fnhum.2020.00240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Studies investigating the effects of transcranial direct current stimulation (tDCS) on fatigue and muscle activity have elicited measurable improvements using stimulation intensities ≤2 mA and submaximal effort tasks. The purpose of this study was to determine the effects of 2 mA and 4 mA anodal tDCS over the primary motor cortex (M1) on performance fatigability and electromyographic (EMG) activity of the leg muscles during a maximal isokinetic task in healthy young adults. A double-blind, randomized, sham-controlled crossover study design was applied. Twenty-seven active young adults completed four sessions, each spaced by 5-8 days. During session 1, dominance was verified with isokinetic strength testing, and subjects were familiarized with the fatigue task (FT). The FT protocol included 40 continuous maximum isokinetic contractions of the knee extensors and flexors (120°/s, concentric/concentric). During Sessions 2-4, tDCS was applied for 20 min with one of three randomly assigned intensities (sham, 2 mA or 4 mA) and the FT was repeated. The anode and cathode of the tDCS device were placed over C3 and the contralateral supraorbital area, respectively. A wireless EMG system collected muscle activity during the FT. The 2 mA tDCS condition had significantly less torque (65.9 ± 32.7 Nm) during the FT than both the sham (68.4 ± 33.9 Nm, p < 0.001) and 4 mA conditions (68.4 ± 33.9 Nm, p = 0.001). Furthermore, the 2 mA condition (33.8 ± 11.7%) had significantly less EMG activity during the FT than both the sham (39.7 ± 10.6%, p < 0.001) and 4 mA conditions (40.5 ± 13.4%, p = 0.001). Contrary to previous submaximal isometric fatigue investigations, the 2 mA tDCS condition significantly reduced torque production and EMG activity of the leg extensors during a maximal isokinetic FT compared with the sham and 4 mA conditions. Also, torque production and EMG activity in the 4 mA condition were not significantly different from sham. Thus, the effects of tDCS, and the underlying mechanisms, might not be the same for different tasks and warrants more investigation.
Collapse
Affiliation(s)
- Craig David Workman
- Department of Health and Human Physiology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, United States
| | - Alexandra C Fietsam
- Department of Health and Human Physiology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, United States
| | - Thorsten Rudroff
- Department of Health and Human Physiology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, United States.,Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| |
Collapse
|
9
|
Swafford AP, Kwon DP, MacLennan RJ, Fukuda DH, Stout JR, Stock MS. No acute effects of placebo or open-label placebo treatments on strength, voluntary activation, and neuromuscular fatigue. Eur J Appl Physiol 2019; 119:2327-2338. [PMID: 31468171 DOI: 10.1007/s00421-019-04219-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/25/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE Recent evidence suggests that deception may not be necessary for placebos to improve clinical outcomes. We tested the hypothesis that placebo and open-label placebo (OLP) treatments would acutely improve strength and voluntary activation, as well as minimize neuromuscular fatigue, in untrained participants. METHODS Twenty-one males (n = 11) and females (n = 10) visited the laboratory on three occasions (placebo, OLP, control) to receive each treatment in a randomized, counter-balanced manner. Trials involved a pretest, a 15-min intervention, and posttests. For the placebo trial, participants were informed that they would be ingesting a capsule that would improve their performance and make them feel more energetic. For the OLP intervention, participants were told that the capsules would have no effects. In "Experiment #1", knee extensor maximal voluntary contraction (MVC) peak torque and percent voluntary activation were evaluated. In "Experiment #2", participants performed 20 consecutive MVCs while surface electromyographic signals were detected from the vastus lateralis. Subjective assessments of energy and perceived exertion were examined. RESULTS The interventions had no effect on strength or voluntary activation, but energy levels increased following treatments (p = 0.016, η2 = 0.257). Neither treatment influenced neuromuscular fatigue. Though some variables showed moderate-to-large effect sizes, these results were consistent for individuals with lower voluntary activation. CONCLUSION Placebo and OLP treatments had minimal influence on strength, voluntary activation, and fatigue resistance. As these findings differ from recent reports, we speculate that placebos and OLPs are more likely to enhance muscle function in patient populations seeking medical care.
Collapse
Affiliation(s)
- Alina P Swafford
- School of Kinesiology and Physical Therapy, College of Health Professions and Sciences, University of Central Florida, 12805 Pegasus Drive, HPA 1, Room 258, Orlando, FL, 32816-2205, USA
| | - Dennis P Kwon
- School of Kinesiology and Physical Therapy, College of Health Professions and Sciences, University of Central Florida, 12805 Pegasus Drive, HPA 1, Room 258, Orlando, FL, 32816-2205, USA
| | - Rob J MacLennan
- School of Kinesiology and Physical Therapy, College of Health Professions and Sciences, University of Central Florida, 12805 Pegasus Drive, HPA 1, Room 258, Orlando, FL, 32816-2205, USA
| | - David H Fukuda
- School of Kinesiology and Physical Therapy, College of Health Professions and Sciences, University of Central Florida, 12805 Pegasus Drive, HPA 1, Room 258, Orlando, FL, 32816-2205, USA
| | - Jeffrey R Stout
- School of Kinesiology and Physical Therapy, College of Health Professions and Sciences, University of Central Florida, 12805 Pegasus Drive, HPA 1, Room 258, Orlando, FL, 32816-2205, USA
| | - Matt S Stock
- School of Kinesiology and Physical Therapy, College of Health Professions and Sciences, University of Central Florida, 12805 Pegasus Drive, HPA 1, Room 258, Orlando, FL, 32816-2205, USA.
| |
Collapse
|
10
|
Kamali AM, Saadi ZK, Yahyavi SS, Zarifkar A, Aligholi H, Nami M. Transcranial direct current stimulation to enhance athletic performance outcome in experienced bodybuilders. PLoS One 2019; 14:e0220363. [PMID: 31369607 PMCID: PMC6675286 DOI: 10.1371/journal.pone.0220363] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/15/2019] [Indexed: 12/30/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is currently under investigation as a promising technique for enhancement of athletic performance through modulating cortical excitability. Through consecutive randomization, 12 experienced bodybuilders were randomly assigned to two arms receiving either sham or real tDCS over the primary motor cortex (leg area) and left temporal cortex (T3) for 13 minutes in the first session. After 72 hours, both groups received the inverse stimulation. After the brain stimulation, cerebral hemodynamic response (using frontopolar hemoencephalography) was examined upon taking three computer-based cognitive tasks i.e. reasoning, memory and verbal ability using the Cambridge Brain Science-Cognitive Platform. Subsequently, the bodybuilders performed knee extension exercise while performance indicators including one-repetition maximum (1RM), muscular endurance (SEI), heart rate (ECG), motivation (VAS), surface electromyography over quadriceps femoris muscle (sEMG) and perceived exertion (RPE) were evaluated. The real tDCS vs. sham group showed decreased RPE and HR mean scores by 14.2% and 4.9%, respectively. Regarding muscular strength, endurance, and electrical activity, the 1RM, SEI, and sEMG factors improved by 4.4%, 16.9%, and % 5.8, respectively. Meanwhile, compared to sham, real tDCS did not affect the athletes’ motivation. Incidentally, it turned out that subjects who underwent T3 anodal stimulation outperformed in memory (p = 0.02) and verbal functions (0.02) as well as their corresponding frontopolar hemodynamic response [(memory HEG (p = 0.001) and verbal HEG (p = 0.003)]. Our findings suggest that simultaneous tDCS-induced excitation over the M1 leg area and left temporal area may potentially improve the overall athletic performance in experienced bodybuilders (Trial registration: IRCT20181104041543N1, Registered on 4 Nov. 2018, retrospectively registered).
Collapse
Affiliation(s)
- Ali-Mohammad Kamali
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- DANA Brain Health Institute, Iranian Neuroscience Society-Fars Branch, Shiraz, Iran
- Neuroscience Laboratory, NSL (Brain, Cognition and Behavior), Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Kheradmand Saadi
- DANA Brain Health Institute, Iranian Neuroscience Society-Fars Branch, Shiraz, Iran
- Neuroscience Laboratory, NSL (Brain, Cognition and Behavior), Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Foreign Languages and Literature, Shiraz University, Shiraz, Iran
| | - Seyedeh-Saeedeh Yahyavi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- DANA Brain Health Institute, Iranian Neuroscience Society-Fars Branch, Shiraz, Iran
- Neuroscience Laboratory, NSL (Brain, Cognition and Behavior), Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asadollah Zarifkar
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Physiology, School of Medicine Shiraz University of Medical Sciences Shiraz Iran
| | - Hadi Aligholi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- DANA Brain Health Institute, Iranian Neuroscience Society-Fars Branch, Shiraz, Iran
| | - Mohammad Nami
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- DANA Brain Health Institute, Iranian Neuroscience Society-Fars Branch, Shiraz, Iran
- Neuroscience Laboratory, NSL (Brain, Cognition and Behavior), Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Academy of Health, Senses Cultural Foundation, Sacramento, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Short-Term Effects of Anodal Transcranial Direct Current Stimulation on Endurance and Maximal Force Production. A Systematic Review and Meta-Analysis. J Clin Med 2019; 8:jcm8040536. [PMID: 31003550 PMCID: PMC6518246 DOI: 10.3390/jcm8040536] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 12/15/2022] Open
Abstract
The purpose of the present systematic review and meta-analysis was to explore the effects of transcranial direct current stimulation (tDCS) on endurance (i.e., time to task failure (TTF)) and maximal voluntary contraction (MVC). Furthermore, we aimed to analyze whether the duration of stimulation, the brain region targeted for stimulation, and the task performed could also influence motor performance. We performed a systematic literature review in the databases MEDLINE and Web of Science. The short-term effects of anodal tDCS and sham stimulation (placebo) were considered as experimental and control conditions, respectively. A total of 31 interventions were included (MVC = 13; TTF = 18). Analysis of the strength-related tDCS studies showed small improvements in the MVC (SMD = 0.19; 95% CI = −0.02, 0.41; p = 0.08). However, the results of the endurance-related interventions indicated a moderate effect on TTF performance (SMD = 0.26; 95% CI = 0.07, 0.45; p = 0.008). Furthermore, the sub-analysis showed that anodal tDCS over M1 and stimulation durations longer than 10 min produced the best results in terms of TTF performance enhancement. Additionally, the effects of anodal tDCS were larger during full body exercises (i.e., cycling) when compared to uniarticular tasks. In conclusion, the current meta-analysis indicated that anodal tDCS leads to small and moderate effects on MVC and TTF, respectively.
Collapse
|
12
|
Lattari E, Oliveira BRR, Monteiro Júnior RS, Marques Neto SR, Oliveira AJ, Maranhão Neto GA, Machado S, Budde H. Acute effects of single dose transcranial direct current stimulation on muscle strength: A systematic review and meta-analysis. PLoS One 2018; 13:e0209513. [PMID: 30586389 PMCID: PMC6306262 DOI: 10.1371/journal.pone.0209513] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/06/2018] [Indexed: 11/19/2022] Open
Abstract
Previous studies investigating the effects of transcranial direct current stimulation (tDCS) on muscle strength showed no consensus. Therefore, the purpose of this article was to systematically review the literature on the effects of single dose tDCS to improve muscle strength. A systematic literature search was conducted on PubMeb, ISI Web of Science, SciELO, and Scopus using search terms regarding tDCS and muscle strength. Studies were included in accordance with Population, Intervention, Comparison, Outcomes, and Setting (PICOS) including criteria. Healthy men and women, strength training practitioners or sedentary were selected. The acute effects of single dose anode stimulus of tDCS (a-tDCS) and the placebo stimulus of tDCS (sham) or no interventions were considered as an intervention and comparators, respectively. Measures related to muscle strength were analyzed. To conduct the analyses a weighted mean difference (WMD) and the standardized mean difference (SMD) were applied as appropriate. A total of 15 studies were included in this systematic review and 14 in meta-analysis. Regarding the maximal isometric voluntary contraction (MIVC), a small effect was seen between tDCS and Sham with significant difference between the conditions (SMD = 0.29; CI95% = 0.05 to 0.54; Z = 2.36; p = 0.02). The muscular endurance measured by the seconds sustaining a percentage of MIVC demonstrated a large effect between tDCS and Sham (WMD = 43.66; CI95% = 29.76 to 57.55; Z = 6.16; p < 0.001), showing an improvement in muscular endurance after exposure to tDCS. However, muscular endurance based on total work showed a trivial effect between tDCS and Sham with no significant difference (SMD = 0.22; CI95% = -0.11 to 0.54; Z = 1.32, p = 0.19). This study suggests that the use of tDCS may promote increase in maximal voluntary contraction and muscular endurance through isometric contractions.
Collapse
Affiliation(s)
- Eduardo Lattari
- Physical Activity Sciences Post-Graduate Program (PGCAF), Salgado de Oliveira University (UNIVERSO), Niterói, RJ, Brazil
| | | | - Renato Sobral Monteiro Júnior
- Physical Education and Sport Department, State University of Montes Claros, Montes Claros, Minas Gerais, Brazil
- Post-graduation Program of Health Sciences, State University of Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - Silvio Rodrigues Marques Neto
- Physical Activity Sciences Post-Graduate Program (PGCAF), Salgado de Oliveira University (UNIVERSO), Niterói, RJ, Brazil
| | - Aldair J. Oliveira
- School of Physical Activity, Rural Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Geraldo A. Maranhão Neto
- Physical Activity Sciences Post-Graduate Program (PGCAF), Salgado de Oliveira University (UNIVERSO), Niterói, RJ, Brazil
| | - Sergio Machado
- Physical Activity Sciences Post-Graduate Program (PGCAF), Salgado de Oliveira University (UNIVERSO), Niterói, RJ, Brazil
- * E-mail:
| | - Henning Budde
- Faculty of Human Sciences, Medical School Hamburg, Hamburg, Germany
- Lithuanian Sports University, Kaunas, Lithuania
- Physical Activity, Physical Education, Health and Sport Research Centre (PAPESH), Sports Science Department, School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| |
Collapse
|
13
|
Angius L, Pascual-Leone A, Santarnecchi E. Brain stimulation and physical performance. PROGRESS IN BRAIN RESEARCH 2018; 240:317-339. [PMID: 30390837 DOI: 10.1016/bs.pbr.2018.07.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Non-invasive brain stimulation techniques have been used for decades to study brain function and for the treatment of various neurological disease. These techniques involve the passage of electrical current or magnetic field in a controlled manner to a targeted brain area. Recently, experimental studies explored the application of transcranial direct current stimulation (tDCS) for the improvement of physical performance in healthy individuals. In this chapter we reviewed and analyzed the current scientific literature, highlighted methodological limitations and also suggested possible neurophysiological mechanisms. The chapter also provides some technical and theoretical research-based principles for future research, to promote a better understanding of potential and caveats of this emerging field. Finally, ethical and regulatory issues related to performance enhancement via non-invasive brain stimulation are also discussed.
Collapse
Affiliation(s)
- Luca Angius
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Chatham Maritime, United Kingdom.
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Institut Universitari de Neurorehabilitacio Guttmann, Badalona, Barcelona, Spain
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|