1
|
Parsons IT, Snape D, Stacey MJ, Barlow M, O'Hara J, Gall N, Chowienczyk P, Wainwright B, Woods DR. Improvements in Orthostatic Tolerance with Exercise Are Augmented by Heat Acclimation: A Randomized Controlled Trial. Med Sci Sports Exerc 2024; 56:644-654. [PMID: 38079307 DOI: 10.1249/mss.0000000000003355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2024]
Abstract
INTRODUCTION Heat adaptation is protective against heat illness; however, its role in heat syncope, due to reflex mechanisms, has not been conclusively established. The aim of this study was to evaluate if heat acclimation (HA) was protective against heat syncope and to ascertain underlying physiological mechanisms. METHODS Twenty (15 males, 5 females) endurance-trained athletes were randomized to either 8 d of mixed active and passive HA (HEAT) or climatically temperate exercise (CONTROL). Before, and after, the interventions participants underwent a head up tilt (HUT) with graded lower body negative pressure (LBNP), in a thermal chamber (32.0 ± 0.3°C), continued until presyncope with measurement of cardiovascular parameters. Heat stress tests (HST) were performed to determine physiological and perceptual measures of HA. RESULTS There was a significant increase in orthostatic tolerance (OT), as measured by HUT/LBNP, in the HEAT group (preintervention; 28 ± 9 min, postintervention; 40 ± 7 min) compared with CONTROL (preintervention; 30 ± 8 mins, postintervention; 33 ± 5 min) ( P = 0.01). Heat acclimation resulted in a significantly reduced peak and mean rectal and skin temperature ( P < 0.01), peak heat rate ( P < 0.003), thermal comfort ( P < 0.04), and rating of perceived exertion ( P < 0.02) during HST. There was a significantly increased plasma volume (PV) in the HEAT group in comparison to CONTROL ( P = 0.03). CONCLUSIONS Heat acclimation causes improvements in OT and is likely to be beneficial in patients with heat exacerbated reflex syncope. Heat acclimation-mediated PV expansion is a potential physiological mechanism underlying improved OT.
Collapse
Affiliation(s)
| | - Daniel Snape
- Carnegie School of Sport, Leeds Beckett University, Leeds, UNITED KINGDOM
| | - Michael J Stacey
- Research and Clinical Innovation, Royal Centre for Defence Medicine, Birmingham, UNITED KINGDOM
| | - Matthew Barlow
- Carnegie School of Sport, Leeds Beckett University, Leeds, UNITED KINGDOM
| | - John O'Hara
- Carnegie School of Sport, Leeds Beckett University, Leeds, UNITED KINGDOM
| | - Nick Gall
- School of Cardiovascular Medicine and Sciences, King's College London, London, UNITED KINGDOM
| | - Phil Chowienczyk
- School of Cardiovascular Medicine and Sciences, King's College London, London, UNITED KINGDOM
| | - Barney Wainwright
- Carnegie School of Sport, Leeds Beckett University, Leeds, UNITED KINGDOM
| | | |
Collapse
|
2
|
TAN SHAWNCHEECHONG, ANG WEEHON, LIM LOUISASIXIAN, LOW IVANCHERHCHIET, LEE JASONKAIWEI. Efficacy of Isothermic Conditioning over Military-Based Heat Acclimatization and Interval Training in Tropical Native Males. Med Sci Sports Exerc 2022; 54:1925-1935. [PMID: 35787594 PMCID: PMC9632943 DOI: 10.1249/mss.0000000000002991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE We compared the effectiveness of three field-based training programs, namely military-based heat acclimatization (MHA), isothermic conditioning (IC) and interval training (IT), in inducing physiological adaptations in tropical natives. METHODS Fifty-one untrained tropical native males (mean ± standard deviation: age, 25 ± 2 yr; body mass index, 23.6 ± 3.2 kg·m -2 ; body fat, 19% ± 5%; 2.4-km run time, 13.2 ± 0.9 min) donned the Full Battle Order attire (22 kg) and performed a treadmill route march heat stress test in an environmental chamber (dry bulb temperature, 29.9°C ± 0.5°C; relative humidity, 70% ± 3%). Heat stress tests were conducted before (PRE) and after (POST) a 2-wk training intervention consisting of either a MHA ( n = 17, 10 sessions of military-based heat acclimatization), IC ( n = 17, 10 sessions with target gastrointestinal temperature ( Tgi ) ≥ 38.5°C) or IT ( n = 17, six sessions of high-intensity interval training) program. Tgi , HR, mean weighted skin temperature ( Tsk ), physiological strain index (PSI) and thigh-predicted sweat sodium concentration ([Na + ]) were measured and analyzed by one-factor and two-factor mixed design ANOVA with a 0.05 level of significance. RESULTS Field-based IC induced a greater thermal stimulus than MHA ( P = 0.029) and IT ( P < 0.001) during training. Reductions in mean exercise Tgi (-0.2°C [-0.3°C, 0.0°C]; P = 0.009) , PSI (-0.4 [-0.7, -0.1]; P = 0.015) and thigh-predicted sweat [Na + ] (-9 [-13, -5 mmol·L -1 ]; P < 0.001) were observed in IC but not MHA and IT (all P > 0.05). Resting HR (MHA, -4 bpm [-7, 0 bpm]; P = 0.025; IC, -7 bpm [-10, -4 bpm]; P < 0.001; IT, -4 bpm [-8, -1 bpm]; P = 0.008) and mean exercise HR (MHA, -4 [-8, 0 bpm]; P = 0.034; IC, -11 bpm [-15, -8 bpm]; P < 0.001, IT = -5 bpm [-9, -1 bpm]; P = 0.012) were lowered in all groups after training. Isothermic conditioning elicited a greater attenuation in mean exercise HR and thigh-predicted sweat [Na + ] relative to MHA (both P < 0.05). No between-group differences were observed when comparing MHA and IT (all P > 0.05). CONCLUSIONS Isothermic conditioning induced a more complete heat-adapted phenotype relative to MHA and IT. Interval training may serve as a time efficient alternative to MHA.
Collapse
Affiliation(s)
- SHAWN CHEE CHONG TAN
- Human Potential Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, SINGAPORE
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, SINGAPORE
| | - WEE HON ANG
- Combat Protection and Performance Program, Defence Medical and Environmental Research Institute, DSO National Laboratories, SINGAPORE
| | - LOUISA SI XIAN LIM
- Human Potential Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, SINGAPORE
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, SINGAPORE
| | - IVAN CHERH CHIET LOW
- Human Potential Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, SINGAPORE
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, SINGAPORE
| | - JASON KAI WEI LEE
- Human Potential Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, SINGAPORE
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, SINGAPORE
- Global Asia Institute, National University of Singapore, SINGAPORE
- N.1 Institute for Health, National University of Singapore, SINGAPORE
- Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, SINGAPORE
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), SINGAPORE
| |
Collapse
|
3
|
James CA, Willmott AG, Dhawan A, Stewart C, Gibson OR. Increased air temperature decreases high-speed, but not total distance, in international field hockey. Temperature (Austin) 2021; 9:357-372. [PMCID: PMC9629124 DOI: 10.1080/23328940.2021.1997535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study investigated the effect of heat stress on locomotor activity within international field hockey at team, positional and playing-quarter levels. Analysis was conducted on 71 matches played by the Malaysia national men’s team against 24 opponents. Fixtures were assigned to match conditions, based on air temperature [COOL (14 ± 3°C), WARM (24 ± 1°C), HOT (27 ± 1°C), or VHOT (32 ± 2°C), p < 0.001]. Relationships between locomotor metrics and air temperature (AIR), absolute and relative humidity, and wet bulb globe temperature (WBGT) were investigated further using correlation and regression analyses. Increased AIR and WBGT revealed similar correlations (p < 0.01) with intensity metrics; high-speed running (AIR r = −0.51, WBGT r = −0.45), average speed (AIR r = −0.48, WBGT r = −0.46), decelerations (AIR r = −0.41, WBGT r = −0.41), sprinting efforts (AIR r = −0.40, WBGT r = −0.36), and sprinting distance (AIR r = −0.37, WBGT r = −0.29). In comparison to COOL, HOT, and VHOT matches demonstrated reduced high-speed running intensity (−14–17%; p < 0.001), average speed (−5-6%; p < 0.001), sprinting efforts (−17%; p = 0.010) and decelerations per min (−12%; p = 0.008). Interactions were found between match conditions and playing quarter for average speed (+4-7%; p = 0.002) and sprinting distance (+16-36%; p < 0.001), both of which were higher in the fourth quarter in COOL versus WARM, HOT and VHOT. There was an interaction for “low-speed” (p < 0.001), but not for “high-speed” running (p = 0.076) demonstrating the modulating effect of air temperature (particularly >25°C) on pacing within international hockey. These are the first data demonstrating the effect of air temperature on locomotor activity within international men’s hockey, notably that increased air temperature impairs high-intensity activities by 5–15%. Higher air temperatures compromise high-speed running distances between matches in hockey.
Collapse
Affiliation(s)
- Carl A James
- Institut Sukan Negara (National Sports Institute), National Sports Complex, Kuala Lumpur, Malaysia
- Environmental Extremes Laboratory, University of Brighton, Eastbourne, UK
| | - Ashley G.B. Willmott
- Environmental Extremes Laboratory, University of Brighton, Eastbourne, UK
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, UK
| | | | - Craig Stewart
- CS Performance, Clontarf Hockey Club, Dublin, Ireland
| | - Oliver R Gibson
- Centre for Human Performance, Exercise and Rehabilitation (CHPER), Division of Sport, Health and Exercise Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
4
|
Fenemor SP, Gill ND, Driller MW, Mills B, Casadio JR, Beaven CM. The relationship between physiological and performance variables during a hot/humid international rugby sevens tournament. Eur J Sport Sci 2021; 22:1499-1507. [PMID: 34429018 DOI: 10.1080/17461391.2021.1973111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
To characterise physiological responses to competing in an international rugby sevens tournament played in hot/humid conditions, core temperature (Tc) and Tc predictors were collected from 11 elite men's rugby sevens athletes competing in the Oceania sevens tournament in Suva, Fiji. Tc, body mass change, sweat electrolytes, playing minutes, total running distance, high speed running distance (HSD), psychrometric wet bulb temperature and exertional heat illness symptoms were collected pre, during and post games. Linear mixed-models were used to assess the effect of Tc predictors on post-game Tc, along with differences in Tc across measurement periods. Compared to baseline on both tournament days, mean Tc was higher during all between game (recovery) measures (all d >1.30, p <0.01). On both tournament days, eight athletes reached a post-game Tc >39.0°C, with several athletes reaching >39.0°C during warm-ups. Mean post-game Tc was related to playing minutes, total running distance, HSD, and post warm-up Tc (all p < 0.01). The Tc during warm-ups and games regularly exceeded those demonstrated to be detrimental to repeated sprint performance (> 39°C). Warm-up Tc represents the easiest predictor of post-game Tc to control via time/intensity modulation and the use of appropriate pre- and per-cooling strategies. Practitioners should be prepared to modulate warm-ups and other heat preparation strategies based on likely environmental conditions during hot/humid tournaments.
Collapse
Affiliation(s)
- Stephen P Fenemor
- Te Huataki Waiora School of Health, University of Waikato Adams Centre for High Performance, Mt Maunganui, New Zealand.,High Performance Sport New Zealand, Auckland, New Zealand
| | - N D Gill
- Te Huataki Waiora School of Health, University of Waikato Adams Centre for High Performance, Mt Maunganui, New Zealand.,New Zealand Rugby Union, Wellington, New Zealand
| | - M W Driller
- Sport and Exercise Science, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Australia
| | - B Mills
- New Zealand Rugby Union, Wellington, New Zealand
| | - J R Casadio
- High Performance Sport New Zealand, Auckland, New Zealand
| | - C M Beaven
- Te Huataki Waiora School of Health, University of Waikato Adams Centre for High Performance, Mt Maunganui, New Zealand
| |
Collapse
|
5
|
Sotiridis A, Debevec T, Ciuha U, McDonnell AC, Mlinar T, Royal JT, Mekjavic IB. Aerobic but not thermoregulatory gains following a 10-day moderate-intensity training protocol are fitness level dependent: A cross-adaptation perspective. Physiol Rep 2021; 8:e14355. [PMID: 32061183 PMCID: PMC7023889 DOI: 10.14814/phy2.14355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 11/24/2022] Open
Abstract
Moderate‐intensity exercise sessions are incorporated into heat‐acclimation and hypoxic‐training protocols to improve performance in hot and hypoxic environments, respectively. Consequently, a training effect might contribute to aerobic performance gains, at least in less fit participants. To explore the interaction between fitness level and a training stimulus commonly applied during acclimation protocols, we recruited 10 young males of a higher (more fit‐MF, peak aerobic power [VO2peak]: 57.9 [6.2] ml·kg−1·min−1) and 10 of a lower (less fit‐LF, VO2peak: 41.7 [5.0] ml·kg−1·min−1) fitness level. They underwent 10 daily exercise sessions (60 min@50% peak power output [Wpeak]) in thermoneutral conditions. The participants performed exercise testing on a cycle ergometer before and after the training period in normoxic (NOR), hypoxic (13.5% FiO2; HYP), and hot (35°C, 50% RH; HE) conditions in a randomized and counterbalanced order. Each test consisted of two stages; a steady‐state exercise (30 min@40% NOR Wpeak to evaluate thermoregulatory function) followed by incremental exercise to exhaustion. VO2peak increased by 9.2 (8.5)% (p = .024) and 10.2 (15.4)% (p = .037) only in the LF group in NOR and HE, respectively. Wpeak increases were correlated with baseline values in NOR (r = −.58, p = .010) and HYP (r = −.52, p = .018). MF individuals improved gross mechanical efficiency in HYP. Peak sweat rate increased in both groups in HE, whereas MF participants activated the forehead sweating response at lower rectal temperatures post‐training. In conclusion, an increase in VO2peak but not mechanical efficiency seems probable in LF males after a 10‐day moderate‐exercise training protocol.
Collapse
Affiliation(s)
- Alexandros Sotiridis
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Tadej Debevec
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia.,Faculty of Sports, University of Ljubljana, Ljubljana, Slovenia
| | - Urša Ciuha
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Adam C McDonnell
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Tinkara Mlinar
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Joshua T Royal
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Igor B Mekjavic
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
6
|
Sex differences in the physiological adaptations to heat acclimation: a state-of-the-art review. Eur J Appl Physiol 2020; 121:353-367. [PMID: 33205218 DOI: 10.1007/s00421-020-04550-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Over the last few decades, females have significantly increased their participation in athletic competitions and occupations (e.g. military, firefighters) in hot and thermally challenging environments. Heat acclimation, which involves repeated passive or active heat exposures that lead to physiological adaptations, is a tool commonly used to optimize performance in the heat. However, the scientific community's understanding of adaptations to heat acclimation are largely based on male data, complicating the generalizability to female populations. Though limited, current evidence suggests that females may require a greater number of heat acclimation sessions or greater thermal stress to achieve the same magnitude of physiological adaptations as males. The underlying mechanisms explaining the temporal sex differences in the physiological adaptations to heat acclimation are currently unclear. Therefore, the aims of this state-of-the-art review are to: (i) present a brief yet comprehensive synthesis of the current female and sex difference literature, (ii) highlight sex-dependent (e.g. anthropometric, menstrual cycle) and sex-independent factors (e.g. environmental conditions, fitness) influencing the physiological and performance adaptations to heat acclimation, and (iii) address key avenues for future research.
Collapse
|
7
|
Heat acclimation does not modify autonomic responses to core cooling and the skin thermal comfort zone. J Therm Biol 2020; 91:102602. [PMID: 32716857 DOI: 10.1016/j.jtherbio.2020.102602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 11/23/2022]
Abstract
Exercise heat acclimation (HA) is known to magnify the sweating response by virtue of a lower threshold as well as increased gain and maximal capacity of sweating. However, HA has been shown to potentiate the shivering response in a cold-air environment. We investigated whether HA would alter heat loss and heat production responses during water immersion. Twelve healthy male participants underwent a 10-day HA protocol comprising daily 90-min controlled-hyperthermia (target rectal temperature, Tre 38.5 °C) exercise sessions. Preceding and following HA, the participants performed a maximal exercise test in thermoneutral conditions (ambient temperature 23 °C, relative humidity 50%) and were, following exercise, immersed in 28 °C water for 60 min. Thermal comfort zone (TCZ) was also assessed with participants regulating the temperature of a water-perfused suit during heating and cooling. Baseline pre-immersion Tre was similar pre- and post-HA (pre: 38.33 ± 0.33 °C vs post: 38.12 ± 0.36 °C, p = 0.092). The Tre cooling rate was identical pre-to post-HA (-0.03 ± 0.01 °C·min-1, p = 0.31), as was the vasomotor response reflected in the forearm-fingertip temperature difference. Shivering thresholds (p = 0.43) and gains (p = 0.61) were not affected by HA. TCZ was established at similar temperatures, with the magnitude in regulated water temperature being 7.6 (16.3) °C pre-HA and 5.1 (24.7) °C post-HA (p = 0.65). The present findings suggest that heat production and heat loss responses during whole body cooling as well as the skin thermal comfort zone remained unaltered by a controlled-hyperthermia HA protocol.
Collapse
|
8
|
Bittencourt MA, Wanner SP, Kunstetter AC, Barbosa NHS, Walker PCL, Andrade PVR, Turnes T, Guglielmo LGA. Comparative effects of two heat acclimation protocols consisting of high-intensity interval training in the heat on aerobic performance and thermoregulatory responses in exercising rats. PLoS One 2020; 15:e0229335. [PMID: 32084208 PMCID: PMC7034902 DOI: 10.1371/journal.pone.0229335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 02/04/2020] [Indexed: 01/15/2023] Open
Abstract
Acclimation resulting from low- to moderate-intensity physical exertion in the heat induces several thermoregulatory adaptations, including slower exercise-induced increases in core body temperature. However, few studies have investigated the thermoregulatory adaptations induced by high-intensity interval training (HIIT) protocols. Thus, the present study aimed to compare the adaptations in rats’ thermoregulatory parameters and aerobic performance observed after two different heat acclimation regimens consisting of HIIT protocols performed in a hot environment. Twenty-three adult male Wistar rats were initially subjected to an incremental-speed exercise at 32°C until they were fatigued and then randomly assigned to one of the following three heat acclimation strategies: passive heat exposure without any exercise (untrained controls–UN; n = 7), HIIT performed at the maximal aerobic speed (HIIT100%; n = 8) and HIIT performed at a high but submaximal speed (HIIT85%; n = 8). Following the two weeks of interventions, the rats were again subjected to a fatiguing incremental exercise at 32°C, while their colonic temperature (TCOL) was recorded. The workload performed by the rats and their thermoregulatory efficiency were calculated. After the intervention period, rats subjected to both HIIT protocols attained greater workloads (HIIT100%: 313.7 ± 21.9 J vs. HIIT85%: 318.1 ± 32.6 J vs. UN: 250.8 ± 32.4 J; p < 0.01) and presented a lower ratio between the change in TCOL and the distance travelled (HIIT100%: 4.95 ± 0.42°C/km vs. HIIT85%: 4.33 ± 0.59°C/km vs. UN: 6.14 ± 1.03°C/km; p < 0.001) when compared to UN rats. The latter finding indicates better thermoregulatory efficiency in trained animals. No differences were observed between rats subjected to the two HIIT regimens. In conclusion, the two HIIT protocols induce greater thermoregulatory adaptations and performance improvements than passive heat exposure. These adaptations do not differ between the two training protocols investigated in the present study.
Collapse
Affiliation(s)
- Myla Aguiar Bittencourt
- Physical Effort Laboratory, Graduate Program in Physical Education, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Exercise Physiology Laboratory, Graduate Program in Sport Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Samuel Penna Wanner
- Exercise Physiology Laboratory, Graduate Program in Sport Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| | - Ana Cançado Kunstetter
- Exercise Physiology Laboratory, Graduate Program in Sport Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nicolas Henrique Santos Barbosa
- Exercise Physiology Laboratory, Graduate Program in Sport Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula Carolina Leite Walker
- Exercise Physiology Laboratory, Graduate Program in Sport Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro Victor Ribeiro Andrade
- Exercise Physiology Laboratory, Graduate Program in Sport Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tiago Turnes
- Physical Effort Laboratory, Graduate Program in Physical Education, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Luiz Guilherme Antonacci Guglielmo
- Physical Effort Laboratory, Graduate Program in Physical Education, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
9
|
Gibson OR, James CA, Mee JA, Willmott AG, Turner G, Hayes M, Maxwell NS. Heat alleviation strategies for athletic performance: A review and practitioner guidelines. Temperature (Austin) 2019; 7:3-36. [PMID: 32166103 PMCID: PMC7053966 DOI: 10.1080/23328940.2019.1666624] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 12/19/2022] Open
Abstract
International competition inevitably presents logistical challenges for athletes. Events such as the Tokyo 2020 Olympic Games require further consideration given historical climate data suggest athletes will experience significant heat stress. Given the expected climate, athletes face major challenges to health and performance. With this in mind, heat alleviation strategies should be a fundamental consideration. This review provides a focused perspective of the relevant literature describing how practitioners can structure male and female athlete preparations for performance in hot, humid conditions. Whilst scientific literature commonly describes experimental work, with a primary focus on maximizing magnitudes of adaptive responses, this may sacrifice ecological validity, particularly for athletes whom must balance logistical considerations aligned with integrating environmental preparation around training, tapering and travel plans. Additionally, opportunities for sophisticated interventions may not be possible in the constrained environment of the athlete village or event arenas. This review therefore takes knowledge gained from robust experimental work, interprets it and provides direction on how practitioners/coaches can optimize their athletes' heat alleviation strategies. This review identifies two distinct heat alleviation themes that should be considered to form an individualized strategy for the athlete to enhance thermoregulatory/performance physiology. First, chronic heat alleviation techniques are outlined, these describe interventions such as heat acclimation, which are implemented pre, during and post-training to prepare for the increased heat stress. Second, acute heat alleviation techniques that are implemented immediately prior to, and sometimes during the event are discussed. Abbreviations: CWI: Cold water immersion; HA: Heat acclimation; HR: Heart rate; HSP: Heat shock protein; HWI: Hot water immersion; LTHA: Long-term heat acclimation; MTHA: Medium-term heat acclimation; ODHA: Once-daily heat acclimation; RH: Relative humidity; RPE: Rating of perceived exertion; STHA: Short-term heat acclimation; TCORE: Core temperature; TDHA: Twice-daily heat acclimation; TS: Thermal sensation; TSKIN: Skin temperature; V̇O2max: Maximal oxygen uptake; WGBT: Wet bulb globe temperature.
Collapse
Affiliation(s)
- Oliver R. Gibson
- Centre for Human Performance, Exercise and Rehabilitation (CHPER), Division of Sport, Health and Exercise Sciences, Brunel University London, Uxbridge, UK
| | - Carl A. James
- Institut Sukan Negara (National Sports Institute), Kuala Lumpur, Malaysia
| | - Jessica A. Mee
- School of Sport and Exercise Sciences, University of Worcester, Worcester, UK
| | - Ashley G.B. Willmott
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, UK
| | - Gareth Turner
- Bisham Abbey National High-Performance Centre, English Institute of Sport, EIS Performance Centre, Marlow, UK
| | - Mark Hayes
- Environmental Extremes Laboratory, School of Sport and Service Management, University of Brighton, Eastbourne, UK
| | - Neil S. Maxwell
- Environmental Extremes Laboratory, School of Sport and Service Management, University of Brighton, Eastbourne, UK
| |
Collapse
|
10
|
No ergogenic effects of a 10-day combined heat and hypoxic acclimation on aerobic performance in normoxic thermoneutral or hot conditions. Eur J Appl Physiol 2019; 119:2513-2527. [PMID: 31555926 DOI: 10.1007/s00421-019-04215-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/21/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE Hypoxic acclimation enhances convective oxygen delivery to the muscles. Heat acclimation-elicited thermoregulatory benefits have been suggested not to be negated by adding daily exposure to hypoxia. Whether concomitant acclimation to both heat and hypoxia offers a synergistic enhancement of aerobic performance in thermoneutral or hot conditions remains unresolved. METHODS Eight young males ([Formula: see text]: 51.6 ± 4.6 mL min-1 kg-1) underwent a 10-day normobaric hypoxic confinement (FiO2 = 0.14) interspersed with daily 90-min normoxic controlled hyperthermia (target rectal temperature: 38.5 °C) exercise sessions. Prior to, and following the confinement, the participants conducted a 30-min steady-state exercise followed by incremental exercise to exhaustion on a cycle ergometer in thermoneutral normoxic (NOR), thermoneutral hypoxic (FiO2 = 0.14; HYP) and hot (35 °C, 50% relative humidity; HE) conditions in a randomized and counterbalanced order. The steady-state exercise was performed at 40% NOR peak power output (Wpeak) to evaluate thermoregulatory function. Blood samples were obtained from an antecubital vein before, on days 1 and 10, and the first day post-acclimation. RESULTS [Formula: see text] and ventilatory thresholds were not modified in any environment following acclimation. Wpeak increased by 6.3 ± 3.4% in NOR and 4.0 ± 4.9% in HE, respectively. The magnitude and gain of the forehead sweating response were augmented in HE post-acclimation. EPO increased from baseline (17.8 ± 7.0 mIU mL-1) by 10.7 ± 8.8 mIU mL-1 on day 1 but returned to baseline levels by day 10 (15.7 ± 5.9 mIU mL-1). DISCUSSION A 10-day combined heat and hypoxic acclimation conferred only minor benefits in aerobic performance and thermoregulation in thermoneutral or hot conditions. Thus, adoption of such a protocol does not seem warranted.
Collapse
|
11
|
Willmott AGB, Hayes M, James CA, Gibson OR, Maxwell NS. Heat acclimation attenuates the increased sensations of fatigue reported during acute exercise-heat stress. Temperature (Austin) 2019; 7:178-190. [PMID: 33015245 PMCID: PMC7518764 DOI: 10.1080/23328940.2019.1664370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 12/19/2022] Open
Abstract
Athletes exercising in heat stress experience increased perceived fatigue acutely, however it is unknown whether heat acclimation (HA) reduces the magnitude of this perceptual response and whether different HA protocols influence the response. This study investigated sensations of fatigue following; acute exercise-heat stress; short- (5-sessions) and medium-term (10-sessions) HA; and between once- (ODHA) and twice-daily HA (TDHA) protocols. Twenty male participants (peak oxygen uptake: 3.75 ± 0.47 L·min-1) completed 10 sessions (60-min cycling at ~2 W·kg-1, 45°C/20% relative humidity) of ODHA (n = 10) or non-consecutive TDHA (n = 10). Sensations of fatigue (General, Physical, Emotional, Mental, Vigor and Total Fatigue) were assessed using the multi-dimensional fatigue scale inventory-short form pre and post session 1, 5 and 10. Heat adaptation was induced following ODHA and TDHA, with reductions in resting rectal temperature and heart rate, and increased plasma volume and sweat rate (P < 0.05). General, Physical and Total Fatigue increased from pre-to-post for session 1 within both groups (P < 0.05). Increases in General, Physical and Total Fatigue were attenuated in session 5 and 10 vs. session 1 of ODHA (P < 0.05). This change only occurred at session 10 of TDHA (P < 0.05). Whilst comparative heat adaptations followed ODHA and TDHA, perceived fatigue is prolonged within TDHA. ABBREVIATIONS ∆: Change; ANOVA: Analysis of variance; HA: Heat acclimation; HR: Heart rate; IL-6: Interleukin-6; MFS-SF: Multi-dimensional fatigue symptom inventory-short form (MFSI-SF); MTHA: Medium-term heat acclimation; Na+: Sodium; ODHA: Once daily heat acclimation; PV: Plasma volume; RH: Relative humidity; RPE: Rating of perceived exertion; SD: Standard deviation; SE: Standard error of the slope coefficient or intercept; SEE : Standard error of the estimate for the regression equation; STHA: Short-term heat acclimation; TDHA: Twice daily heat acclimation; TC: Thermal Comfort; Tre: Rectal temperature; TSS: Thermal sensation; V̇O2peak: Peak oxygen uptake; WBSL: whole-body sweat loss.
Collapse
Affiliation(s)
- Ashley G B Willmott
- Centre for Sport and Exercise Science, Anglia Ruskin University, Cambridge, UK
- Environmental Extremes Laboratory, University of Brighton, Eastbourne, UK
| | - Mark Hayes
- Environmental Extremes Laboratory, University of Brighton, Eastbourne, UK
| | - Carl A. James
- Environmental Extremes Laboratory, University of Brighton, Eastbourne, UK
- Physiology Department, Institut Sukan Negara (National Sports Institute), Kuala Lumpur, Malaysia
| | - Oliver R. Gibson
- Centre for Human Performance, Exercise and Rehabilitation (CHPER), Brunel University London, London, UK
| | - Neil S. Maxwell
- Environmental Extremes Laboratory, University of Brighton, Eastbourne, UK
| |
Collapse
|
12
|
Willmott AGB, Hayes M, James CA, Dekerle J, Gibson OR, Maxwell NS. Once- and twice-daily heat acclimation confer similar heat adaptations, inflammatory responses and exercise tolerance improvements. Physiol Rep 2018; 6:e13936. [PMID: 30575321 PMCID: PMC6302546 DOI: 10.14814/phy2.13936] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 11/29/2022] Open
Abstract
This experiment aimed to investigate the efficacy of twice-daily, nonconsecutive heat acclimation (TDHA) in comparison to once-daily heat acclimation (ODHA) and work matched once- or twice-daily temperate exercise (ODTEMP, TDTEMP) for inducing heat adaptations, improved exercise tolerance, and cytokine (immune) responses. Forty males, matched biophysically and for aerobic capacity, were assigned to ODHA, TDHA, ODTEMP, or TDTEMP. Participants completed a cycling-graded exercise test, heat acclimation state test, and a time to task failure (TTTF) at 80% peak power output in temperate (TTTFTEMP : 22°C/40% RH) and hot conditions (TTTFHOT : 38°C/20% RH), before and after 10-sessions (60 min of cycling at ~2 W·kg-1 ) in 45°C/20% RH (ODHA and TDHA) or 22°C/40% RH (ODTEMP or TDTEMP). Plasma IL-6, TNF-α, and cortisol were measured pre- and postsessions 1, 5, and 10. ODHA and TDHA induced equivalent heat adaptations (P < 0.05) (resting rectal temperature [-0.28 ± 0.22, -0.28 ± 0.19°C], heart rate [-10 ± 3, -10 ± 4 b·min-1 ], and plasma volume expansion [+10.1 ± 5.6, +8.5 ± 3.1%]) and improved heat acclimation state (sweat set point [-0.22 ± 0.18, -0.22 ± 0.14°C] and gain [+0.14 ± 0.10, +0.15 ± 0.07 g·sec-1 ·°C-1 ]). TTTFHOT increased (P < 0.001) following ODHA (+25 ± 4%) and TDHA (+24 ± 10%), but not ODTEMP (+5 ± 14%) or TDTEMP (+5 ± 17%). TTTFTEMP did not improve (P > 0.05) following ODHA (+14 ± 4%), TDHA (14 ± 8%), ODTEMP (9 ± 10%) or TDTEMP (8 ± 13%). Acute (P < 0.05) but no chronic (P > 0.05) increases were observed in IL-6, TNF-α, or cortisol during ODHA and TDHA, or ODTEMP and TDTEMP. Once- and twice-daily heat acclimation conferred similar magnitudes of heat adaptation and exercise tolerance improvements, without differentially altering immune function, thus nonconsecutive TDHA provides an effective, logistically flexible method of HA, benefitting individuals preparing for exercise-heat stress.
Collapse
Affiliation(s)
- Ashley G. B. Willmott
- Environmental Extremes LaboratoryUniversity of BrightonBrightonEastbourneUnited Kingdom
| | - Mark Hayes
- Environmental Extremes LaboratoryUniversity of BrightonBrightonEastbourneUnited Kingdom
| | - Carl A. James
- Environmental Extremes LaboratoryUniversity of BrightonBrightonEastbourneUnited Kingdom
- Institut Sukan Negara (National Sports Institute)National Sports ComplexKuala LumpurMalaysia
| | - Jeanne Dekerle
- Environmental Extremes LaboratoryUniversity of BrightonBrightonEastbourneUnited Kingdom
| | - Oliver R. Gibson
- Centre for Human Performance, Exercise and Rehabilitation (CHPER)Brunel University LondonUxbridgeUnited Kingdom
| | - Neil S. Maxwell
- Environmental Extremes LaboratoryUniversity of BrightonBrightonEastbourneUnited Kingdom
| |
Collapse
|
13
|
Pryor JL, Johnson EC, Roberts WO, Pryor RR. Application of evidence-based recommendations for heat acclimation: Individual and team sport perspectives. Temperature (Austin) 2018; 6:37-49. [PMID: 30906810 PMCID: PMC6422510 DOI: 10.1080/23328940.2018.1516537] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 01/18/2023] Open
Abstract
Heat acclimation or acclimatization (HA) occurs with repeated exposure to heat inducing adaptations that enhance thermoregulatory mechanisms and heat tolerance leading to improved exercise performance in warm-to-hot conditions. HA is an essential heat safety and performance enhancement strategy in preparation for competitions in warm-to-hot conditions for both individual and team sports. Yet, some data indicate HA is an underutilized pre-competition intervention in athletes despite the well-known benefits; possibly due to a lack of practical information provided to athletes and coaches. Therefore, the aim of this review is to provide actionable evidence-based implementation strategies and protocols to induce and sustain HA. We propose the following suggestions to circumvent potential implementation barriers: 1) incorporate multiple induction methods during the initial acclimation period, 2) complete HA 1-3 weeks before competition in the heat to avoid training and logistical conflicts during the taper period, and 3) minimize adaptation decay through intermittent exercise-heat exposure or re-acclimating immediately prior to competition with 2-4 consecutive days of exercise-heat training. Use of these strategies may be desirable or necessary to optimize HA induction and retention around existing training or logistical requirements.
Collapse
Affiliation(s)
- J. Luke Pryor
- Department of Kinesiology, California State University, Fresno, CA, USA
| | - Evan C. Johnson
- Division of Kinesiology & Health, University of Wyoming, Laramie, WY, USA
| | - William O. Roberts
- Department of Family Medicine and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Riana R. Pryor
- Department of Kinesiology, California State University, Fresno, CA, USA
| |
Collapse
|
14
|
James CA, Richardson AJ, Watt PW, Willmott AGB, Gibson OR, Maxwell NS. Short-Term Heat Acclimation and Precooling, Independently and Combined, Improve 5-km Time Trial Performance in the Heat. J Strength Cond Res 2018; 32:1366-1375. [PMID: 28486332 DOI: 10.1519/jsc.0000000000001979] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
James, CA, Richardson, AJ, Watt, PW, Willmott, AGB, Gibson, OR, and Maxwell, NS. Short-term heat acclimation and precooling, independently and combined, improve 5-km time trial performance in the heat. J Strength Cond Res 32(5): 1366-1375, 2018-Following heat acclimation (HA), endurance running performance remains impaired in hot vs. temperate conditions. Combining HA with precooling (PC) demonstrates no additive benefit in intermittent sprint, or continuous cycling exercise protocols, during which heat strain may be less severe compared to endurance running. This study investigated the effect of short-term HA (STHA) combined with mixed methods PC, on endurance running performance and directly compared PC and HA. Nine amateur trained runners completed 5-km treadmill time trials (TTs) in the heat (32° C, 60% relative humidity) under 4 conditions; no intervention (CON), PC, short-term HA (5 days-HA) and STHA with PC (HA + PC). Mean (±SD) performance times were; CON 1,476 (173) seconds, PC 1,421 (146) seconds, HA 1,378 (116) seconds and HA + PC 1,373 (121) seconds. This equated to the following improvements versus CON; PC -3.7%, HA -6.6% and HA + PC -7.0%. Statistical differences were only observed between HA and CON (p = 0.004, d = 0.68, 95% CI [-0.27 to 1.63]) however, similar effect sizes were observed for HA + PC vs. CON (d = 0.70, 95% CI [-0.25 to 1.65]), with smaller effects between PC vs. CON (d = 0.34, 95% CI [-0.59 to 1.27]), HA vs. PC (d = 0.33, 95% CI [-0.60 to 1.26]) and HA + PC vs. PC (d = 0.36, 95% CI [-0.57 to 1.29]). Pilot testing revealed a TT typical error of 16 seconds (1.2%). Precooling offered no further benefit to performance in the acclimated individual, despite modest alleviation of physiological strain. Maintenance of running speed in HA + PC, despite reduced physiological strain, may indicate an inappropriate pacing strategy therefore, further familiarization is recommended to optimize a combined strategy. Finally, these data indicate HA, achieved through cycle training, yields a larger ergogenic effect than PC on 5-km running performance in the heat, although PC remains beneficial when HA is not possible.
Collapse
Affiliation(s)
- Carl A James
- Environmental Extremes Laboratory, Center for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Eastbourne, United Kingdom.,National Sports Institute, Kompleks Sukan Negara, Kuala Lumpur, Malaysia
| | - Alan J Richardson
- Environmental Extremes Laboratory, Center for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Eastbourne, United Kingdom
| | - Peter W Watt
- Environmental Extremes Laboratory, Center for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Eastbourne, United Kingdom
| | - Ashley G B Willmott
- Environmental Extremes Laboratory, Center for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Eastbourne, United Kingdom
| | - Oliver R Gibson
- Center for Human Performance, Exercise and Rehabilitation (CHPER), Brunel University London, London, United Kingdom
| | - Neil S Maxwell
- Environmental Extremes Laboratory, Center for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Eastbourne, United Kingdom
| |
Collapse
|
15
|
Willmott AGB, Gibson OR, James CA, Hayes M, Maxwell NS. Physiological and perceptual responses to exercising in restrictive heat loss attire with use of an upper-body sauna suit in temperate and hot conditions. Temperature (Austin) 2018; 5:162-174. [PMID: 30377634 DOI: 10.1080/23328940.2018.1426949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/08/2018] [Indexed: 10/18/2022] Open
Abstract
The aim of this experiment was to quantify physiological and perceptual responses to exercise with and without restrictive heat loss attire in hot and temperate conditions. Ten moderately-trained individuals (mass; 69.44±7.50 kg, body fat; 19.7±7.6%) cycled for 30-mins (15-mins at 2 W.kg-1 then 15-mins at 1 W.kg-1) under four experimental conditions; temperate (TEMP, 22°C/45%), hot (HOT, 45°C/20%) and, temperate (TEMPSUIT, 22°C/45%) and hot (HOTSUIT, 45°C/20%) whilst wearing an upper-body "sauna suit". Core temperature changes were higher (P<0.05) in TEMPSUIT (+1.7±0.4°C.hr-1), HOT (+1.9±0.5°C.hr-1) and HOTSUIT (+2.3±0.5°C.hr-1) than TEMP (+1.3±0.3°C.hr-1). Skin temperature was higher (P<0.05) in HOT (36.53±0.93°C) and HOTSUIT (37.68±0.68°C) than TEMP (33.50±1.77°C) and TEMPSUIT (33.41±0.70°C). Sweat rate was greater (P<0.05) in TEMPSUIT (0.89±0.24 L.hr-1), HOT (1.14±0.48 L.hr-1) and HOTSUIT (1.51±0.52 L.hr-1) than TEMP (0.56±0.27 L.hr-1). Peak heart rate was higher (P<0.05) in TEMPSUIT (155±23 b.min-1), HOT (163±18 b.min-1) and HOTSUIT (171±18 b.min-1) than TEMP (151±20 b.min-1). Thermal sensation and perceived exertion were greater (P<0.05) in TEMPSUIT (5.8±0.5 and 14±1), HOT (6.4±0.5 and 15±1) and HOTSUIT (7.1±0.5 and 16±1) than TEMP (5.3±0.5 and 14±1). Exercising in an upper-body sauna suit within temperate conditions induces a greater physiological strain and evokes larger sweat losses compared to exercising in the same conditions, without restricting heat loss. In hot conditions, wearing a sauna suit increases physiological and perceptual strain further, which may accelerate the stimuli for heat adaptation and improve HA efficiency.
Collapse
Affiliation(s)
| | - Oliver R Gibson
- Environmental Extremes Laboratory, University of Brighton, Eastbourne, UK.,Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, UK
| | - Carl A James
- Environmental Extremes Laboratory, University of Brighton, Eastbourne, UK.,National Sports Institute, Institut Sukan Negara, National Sport Complex, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Mark Hayes
- Environmental Extremes Laboratory, University of Brighton, Eastbourne, UK
| | - Neil S Maxwell
- Environmental Extremes Laboratory, University of Brighton, Eastbourne, UK
| |
Collapse
|
16
|
James CA, Richardson AJ, Watt PW, Willmott AG, Gibson OR, Maxwell NS. Short-term heat acclimation improves the determinants of endurance performance and 5-km running performance in the heat. Appl Physiol Nutr Metab 2017; 42:285-294. [DOI: 10.1139/apnm-2016-0349] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the effect of 5 days of controlled short-term heat acclimation (STHA) on the determinants of endurance performance and 5-km performance in runners, relative to the impairment afforded by moderate heat stress. A control group (CON), matched for total work and power output (2.7 W·kg−1), differentiated thermal and exercise contributions of STHA on exercise performance. Seventeen participants (10 STHA, 7 CON) completed graded exercise tests (GXTs) in cool (13 °C, 50% relative humidity (RH), pre-training) and hot conditions (32 °C, 60% RH, pre- and post-training), as well as 5-km time trials (TTs) in the heat, pre- and post-training. STHA reduced resting (p = 0.01) and exercising (p = 0.04) core temperature alongside a smaller change in thermal sensation (p = 0.04). Both groups improved the lactate threshold (LT, p = 0.021), lactate turnpoint (LTP, p = 0.005) and velocity at maximal oxygen consumption (vV̇O2max; p = 0.031) similarly. Statistical differences between training methods were observed in TT performance (STHA, −6.2(5.5)%; CON, −0.6(1.7)%, p = 0.029) and total running time during the GXT (STHA, +20.8(12.7)%; CON, +9.8(1.2)%, p = 0.006). There were large mean differences in change in maximal oxygen consumption between STHA +4.0(2.2) mL·kg−1·min−1 (7.3(4.0)%) and CON +1.9(3.7) mL·kg−1·min−1 (3.8(7.2)%). Running economy (RE) deteriorated following both training programmes (p = 0.008). Similarly, RE was impaired in the cool GXT, relative to the hot GXT (p = 0.004). STHA improved endurance running performance in comparison with work-matched normothermic training, despite equality of adaptation for typical determinants of performance (LT, LTP, vV̇O2max). Accordingly, these data highlight the ergogenic effect of STHA, potentially via greater improvements in maximal oxygen consumption and specific thermoregulatory and associated thermal perception adaptations absent in normothermic training.
Collapse
Affiliation(s)
- Carl A. James
- Environmental Extremes Laboratory, Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Eastbourne BN20 7UR, UK
- National Sports Institute of Malaysia, Institut Sukan Negara, Bukit Jalil Stadium, Kuala Lumpur 57000, Malaysia
| | - Alan J. Richardson
- Environmental Extremes Laboratory, Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Eastbourne BN20 7UR, UK
| | - Peter W. Watt
- Environmental Extremes Laboratory, Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Eastbourne BN20 7UR, UK
| | - Ashley G.B. Willmott
- Environmental Extremes Laboratory, Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Eastbourne BN20 7UR, UK
| | - Oliver R. Gibson
- Centre for Human Performance, Exercise and Rehabilitation (CHPER), Brunel University London UB8 3PH, UK
| | - Neil S. Maxwell
- Environmental Extremes Laboratory, Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Eastbourne BN20 7UR, UK
| |
Collapse
|
17
|
Willmott AGB, Hayes M, Waldock KAM, Relf RL, Watkins ER, James CA, Gibson OR, Smeeton NJ, Richardson AJ, Watt PW, Maxwell NS. Short-term heat acclimation prior to a multi-day desert ultra-marathon improves physiological and psychological responses without compromising immune status. J Sports Sci 2016; 35:2249-2256. [PMID: 27935427 DOI: 10.1080/02640414.2016.1265142] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Multistage, ultra-endurance events in hot, humid conditions necessitate thermal adaptation, often achieved through short term heat acclimation (STHA), to improve performance by reducing thermoregulatory strain and perceptions of heat stress. This study investigated the physiological, perceptual and immunological responses to STHA prior to the Marathon des Sables. Eight athletes (age 42 ± 4 years and body mass 81.9 ± 15.0 kg) completed 4 days of controlled hyperthermia STHA (60 min·day‒1, 45°C and 30% relative humidity). Pre, during and post sessions, physiological and perceptual measures were recorded. Immunological measures were recorded pre-post sessions 1 and 4. STHA improved thermal comfort (P = 0.02), sensation (P = 0.03) and perceived exertion (P = 0.04). A dissociated relationship between perceptual fatigue and Tre was evident after STHA, with reductions in perceived Physical (P = 0.04) and General (P = 0.04) fatigue. Exercising Tre and HR did not change (P > 0.05) however, sweat rate increased 14% (P = 0.02). No changes were found in white blood cell counts or content (P > 0.05). Four days of STHA facilitates effective perceptual adaptations, without compromising immune status prior to an ultra-endurance race in heat stress. A greater physiological strain is required to confer optimal physiological adaptations.
Collapse
Affiliation(s)
- Ashley G B Willmott
- a Environmental Extremes Laboratory, Centre for Sport and Exercise Science and Medicine (SESAME), Sport and Exercise Science Consultancy Unit (SESCU) , University of Brighton , Eastbourne , UK
| | - Mark Hayes
- a Environmental Extremes Laboratory, Centre for Sport and Exercise Science and Medicine (SESAME), Sport and Exercise Science Consultancy Unit (SESCU) , University of Brighton , Eastbourne , UK
| | - Kirsty A M Waldock
- a Environmental Extremes Laboratory, Centre for Sport and Exercise Science and Medicine (SESAME), Sport and Exercise Science Consultancy Unit (SESCU) , University of Brighton , Eastbourne , UK
| | - Rebecca L Relf
- a Environmental Extremes Laboratory, Centre for Sport and Exercise Science and Medicine (SESAME), Sport and Exercise Science Consultancy Unit (SESCU) , University of Brighton , Eastbourne , UK
| | - Emily R Watkins
- a Environmental Extremes Laboratory, Centre for Sport and Exercise Science and Medicine (SESAME), Sport and Exercise Science Consultancy Unit (SESCU) , University of Brighton , Eastbourne , UK
| | - Carl A James
- b National Sports Institute (Institut Sukan Negara) , National Sport Complex , Kuala Lumpur , Malaysia
| | - Oliver R Gibson
- c Centre for Human Performance, Exercise and Rehabilitation , Brunel University London , London , UK
| | - Nicholas J Smeeton
- a Environmental Extremes Laboratory, Centre for Sport and Exercise Science and Medicine (SESAME), Sport and Exercise Science Consultancy Unit (SESCU) , University of Brighton , Eastbourne , UK
| | - Alan J Richardson
- a Environmental Extremes Laboratory, Centre for Sport and Exercise Science and Medicine (SESAME), Sport and Exercise Science Consultancy Unit (SESCU) , University of Brighton , Eastbourne , UK
| | - Peter W Watt
- a Environmental Extremes Laboratory, Centre for Sport and Exercise Science and Medicine (SESAME), Sport and Exercise Science Consultancy Unit (SESCU) , University of Brighton , Eastbourne , UK
| | - Neil S Maxwell
- a Environmental Extremes Laboratory, Centre for Sport and Exercise Science and Medicine (SESAME), Sport and Exercise Science Consultancy Unit (SESCU) , University of Brighton , Eastbourne , UK
| |
Collapse
|