1
|
Techmanski BS, Kissick CR, Loturco I, Suchomel TJ. Using Barbell Acceleration to Determine the 1 Repetition Maximum of the Jump Shrug. J Strength Cond Res 2024; 38:1486-1493. [PMID: 39072659 DOI: 10.1519/jsc.0000000000004872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
ABSTRACT Techmanski, BS, Kissick, CR, Loturco, I, and Suchomel, TJ. Using barbell acceleration to determine the 1 repetition maximum of the jump shrug. J Strength Cond Res 38(8): 1486-1493, 2024-The purpose of this study was to determine the 1 repetition maximum (1RM) of the jump shrug (JS) using the barbell acceleration characteristics of repetitions performed with relative percentages of the hang power clean (HPC). Fifteen resistance-trained men (age = 25.5 ± 4.5 years, body mass = 88.5 ± 15.7 kg, height = 176.1 ± 8.5 cm, relative 1RM HPC = 1.3 ± 0.2 kg·kg-1) completed 2 testing sessions that included performing a 1RM HPC and JS repetitions with 20, 40, 60, 80, and 100% of their 1RM HPC. A linear position transducer was used to determine concentric duration and the percentage of the propulsive phase (P%) where barbell acceleration was greater than gravitational acceleration (i.e., a>-9.81 m·s-2). Two 1 way repeated measures ANOVA were used to compare each variable across loads, whereas Hedge's g effect sizes were used to examine the magnitude of the differences. Concentric duration ranged from 449.7 to 469.8 milliseconds and did not vary significantly between loads (p = 0.253; g = 0.20-0.39). The P% was 57.4 ± 7.2%, 64.8 ± 5.9%, 73.2 ± 4.3%, 78.7 ± 4.0%, and 80.3 ± 3.5% when using 20, 40, 60, 80, and 100% 1RM HPC, respectively. P% produced during the 80 and 100% 1RM loads were significantly greater than those at 20, 40, and 60% 1RM (p < 0.01, g = 1.30-3.90). In addition, P% was significantly greater during 60% 1RM compared with both 20 and 40% 1RM (p < 0.01, g = 1.58-2.58) and 40% was greater than 20% 1RM (p = 0.003, g = 1.09). A braking phase was present during each load and, thus, a 1RM JS load was not established. Heavier loads may be needed to achieve a 100% propulsive phase when using this method.
Collapse
Affiliation(s)
- Baylee S Techmanski
- Athlete Performance, Mequon, Wisconsin
- Department of Human Movement Sciences, Carroll University, Waukesha, Wisconsin
| | | | - Irineu Loturco
- Nucleus of High Performance in Sport, Sao Paulo, Brazil; and
| | - Timothy J Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha, Wisconsin
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford, Greater Manchester, United Kingdom
| |
Collapse
|
2
|
Soriano MA, Jiménez-Ormeño E, Lake JP, McMahon JJ, Gallo-Salazar C, Mundy P, Comfort P. Kinetics and Kinematics of the Push Press, Push Jerk, and Split Jerk. J Strength Cond Res 2024; 38:1359-1365. [PMID: 39072653 DOI: 10.1519/jsc.0000000000004810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Abstract
Soriano, MA, Jiménez-Ormeño, E, Lake, JP, McMahon, JJ, Gallo-Salazar, C, Mundy, P, and Comfort, P. Kinetics and kinematics of the push press, push jerk, and split jerk. J Strength Cond Res 38(8): 1359–1365, 2024—The aim of this study was to explore the kinetics and kinematics across incremental loads with the push press (PP), push jerk (PJ), and split jerk (SJ). Eighteen resistance-trained men performed the 1 repetition maximum (1RM) tests (visit 1) 3–7 days before an incremental loading protocol (60, 75, and 90% 1RM) of the 3 exercises (visit 2). Kinetics and kinematics were derived from force-time data and compared using a repeated-measures analysis of variance with load and exercise as within-subject factors. Dependent variables for the biomechanics assessment were categorized as output (power and impulse), driver (force and work), and strategy (displacement and duration) metrics. The interrepetition reliability was assessed using the intraclass correlation coefficient and coefficient of variation. The PP, PJ, and SJ 1RM performance were 89.7 ± 15.4, 95.6 ± 14.4, and 103.0 ± 16.9 kg, respectively. Driver, strategy, and outcome metrics displayed moderate-to-excellent (intraclass correlation coefficient: 0.58–0.98) reliability with acceptable variability (% coefficient of variation: 2.02–10.00). Increased load resulted in significantly large increases in force, work, displacement, duration, power, and impulse (p < 0.001,
= 0.534–0.903). Exercise selection had a significant and large effect on power, impulse, work, and force (p < 0.016,
= 0.387–0.534). There was a significant and large effect of load × exercise interaction on work, displacement, and duration (p < 0.019,
= 0.158–0.220). Practitioners are encouraged to use heavier loads (90 > 75 > 60% 1RM) during the SJ exercise to maximize output, driver, and strategy kinetics and kinematics.
Collapse
Affiliation(s)
- Marcos A Soriano
- Strength Training and Neuromuscular Performance (STreNgthP) Research Group, Camilo José Cela University, Madrid, Spain
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Frederick Road Campus, Manchester, United Kingdom
- Centre for Sport Studies, Rey Juan Carlos University, Madrid, Spain
| | - Ester Jiménez-Ormeño
- Strength Training and Neuromuscular Performance (STreNgthP) Research Group, Camilo José Cela University, Madrid, Spain
| | - Jason P Lake
- Department of Sport and Exercise Sciences, University of Chichester, Chichester, United Kingdom
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - John J McMahon
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Frederick Road Campus, Manchester, United Kingdom
| | - César Gallo-Salazar
- Strength Training and Neuromuscular Performance (STreNgthP) Research Group, Camilo José Cela University, Madrid, Spain
| | - Peter Mundy
- Hawkin Dynamics, Inc., Westbrook, Maine; and
- Department of Applied Sciences and Health, Coventry University, Coventry, United Kingdom
| | - Paul Comfort
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Frederick Road Campus, Manchester, United Kingdom
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
3
|
Suchomel TJ, Techmanski BS, Kissick CR, Comfort P. Can the Velocity of a 1RM Hang Power Clean Be Used to Estimate a 1RM Hang High Pull? J Strength Cond Res 2024; 38:1321-1325. [PMID: 38900178 DOI: 10.1519/jsc.0000000000004845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
ABSTRACT Suchomel, TJ, Techmanski, BS, Kissick, CR, and Comfort, P. Can the velocity of a 1RM hang power clean be used to estimate a 1RM hang high pull? J Strength Cond Res 38(7): 1321-1325, 2024-The purpose of this study was to estimate the 1-repetition maximum hang high pull (1RM HHP) using the peak barbell velocity of a 1RM hang power clean (HPC). Fifteen resistance-trained men (age = 25.5 ± 4.5 years, body mass = 88.3 ± 15.4 kg, height = 176.1 ± 8.5 cm, relative 1RM HPC = 1.3 ± 0.2 kg·kg-1) with previous HPC experience participated in 2 testing sessions that included performing a 1RM HPC and HHP repetitions with 20, 40, 60, and 80% of their 1RM HPC. Peak barbell velocity was measured using a linear position transducer during the 1RM HPC and HHP repetitions performed at each load. The peak barbell velocity achieved during the 1RM HPC was determined as the criterion value for a 1RM performance. Subject-specific linear regression analyses were completed using slope-intercept equations created from the peak velocity of the 1RM HPC and the peak barbell velocities produced at each load during the HHP repetitions. The peak barbell velocity during the 1RM HPC was 1.74 ± 0.30 m·s-1. The average load-velocity profile showed that the estimated 1RM HHP of the subjects was 98.0 ± 19.3% of the 1RM HPC. Although a 1RM HHP value may be estimated using the peak barbell velocity during the HPC, strength and conditioning practitioners should avoid this method because of the considerable variation within the measurement. Additional research examining different methods of load prescription for weightlifting pulling derivatives is needed.
Collapse
Affiliation(s)
- Timothy J Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha, Wisconsin
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford, Greater Manchester, United Kingdom
| | - Baylee S Techmanski
- Department of Human Movement Sciences, Carroll University, Waukesha, Wisconsin
- Athlete Performance, Mequon, Wisconsin
| | - Cameron R Kissick
- Department of Human Movement Sciences, Carroll University, Waukesha, Wisconsin
- New York Mets, Queens, New York; and
| | - Paul Comfort
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford, Greater Manchester, United Kingdom
- Strength and Power Research Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
4
|
Ben-Zeev T, Sadres E, Hoffman JR. Comparison of Force Measures Between Start Position, Transition Phase, and Midthigh Pull With Weightlifting Performance During Israel National Competition. J Strength Cond Res 2023; 37:2200-2205. [PMID: 37682014 DOI: 10.1519/jsc.0000000000004538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
ABSTRACT Ben-Zeev, T, Sadres, E, and Hoffman, JR. Comparison of force measures between start position, transition phase, and midthigh pull with weightlifting performance during Israel National Competition. J Strength Cond Res 37(11): 2200-2205, 2023-This study compared the relationship between peak force (PKF) and rate of force development (RFD) at isometric start position pull (ISPP), isometric transition position pull (ITPP), and isometric midthigh pull (IMTP) with the snatch (SN), clean and jerk (C&J), and total score (TOT) in 30 national and international Israeli weightlifters (18 men and 12 women). All measures were collected either 1 week before or 1 week after the Israel weightlifting championship. A significant correlation was observed between peak force at all pull positions and performance in the SN, C&J, and TOT for men, women, and both sexes combined ( p < 0.001). The correlations were all very strong (e.g., r values all above 0.90) for both ISPP and ITPP, and all weightlifting performance variables, whereas the correlation between IMTP and weightlifting performance ranged from moderate ( r = 0.69) to strong ( r = 0.89). In addition, significant differences were observed between the correlation coefficient value in ISPP and ITPP with the TOT score compared with the correlations observed in IMTP ( z = 0.7, p = 0.046, and z = 1.7, p = 0.049, respectively). Significant differences were also observed in the women group for ISPP for the SN and TOT score compared with the correlation in IMTP ( z = 1.72, p = 0.043, and z = 1.75, p = 0.040, respectively). Rate of force development at 250 milliseconds significantly ( p values <0.05) correlated with the SN, C&J, and TOT in women ( r 's = 0.65, 0.68, and 0.67, respectively), and when both sexes were combined ( r 's = 0.59, 0.61, and 0.60, respectively), but not for the men. Results of this investigation indicated the importance of isometric force capabilities at ISPP and ITPP for weightlifting performance.
Collapse
Affiliation(s)
- Tavor Ben-Zeev
- Sport Science Program, School of Health Sciences, Ariel University, Ariel, Israel; and
| | | | - Jay R Hoffman
- Sport Science Program, School of Health Sciences, Ariel University, Ariel, Israel; and
| |
Collapse
|
5
|
Comfort P, Haff GG, Suchomel TJ, Soriano MA, Pierce KC, Hornsby WG, Haff EE, Sommerfield LM, Chavda S, Morris SJ, Fry AC, Stone MH. National Strength and Conditioning Association Position Statement on Weightlifting for Sports Performance. J Strength Cond Res 2023; 37:1163-1190. [PMID: 36952649 DOI: 10.1519/jsc.0000000000004476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
ABSTRACT Comfort, P, Haff, GG, Suchomel, TJ, Soriano, MA, Pierce, KC, Hornsby, WG, Haff, EE, Sommerfield, LM, Chavda, S, Morris, SJ, Fry, AC, and Stone, MH. National Strength and Conditioning Association position statement on weightlifting for sports performance. J Strength Cond Res XX(X): 000-000, 2022-The origins of weightlifting and feats of strength span back to ancient Egypt, China, and Greece, with the introduction of weightlifting into the Olympic Games in 1896. However, it was not until the 1950s that training based on weightlifting was adopted by strength coaches working with team sports and athletics, with weightlifting research in peer-reviewed journals becoming prominent since the 1970s. Over the past few decades, researchers have focused on the use of weightlifting-based training to enhance performance in nonweightlifters because of the biomechanical similarities (e.g., rapid forceful extension of the hips, knees, and ankles) associated with the second pull phase of the clean and snatch, the drive/thrust phase of the jerk and athletic tasks such as jumping and sprinting. The highest force, rate of force development, and power outputs have been reported during such movements, highlighting the potential for such tasks to enhance these key physical qualities in athletes. In addition, the ability to manipulate barbell load across the extensive range of weightlifting exercises and their derivatives permits the strength and conditioning coach the opportunity to emphasize the development of strength-speed and speed-strength, as required for the individual athlete. As such, the results of numerous longitudinal studies and subsequent meta-analyses demonstrate the inclusion of weightlifting exercises into strength and conditioning programs results in greater improvements in force-production characteristics and performance in athletic tasks than general resistance training or plyometric training alone. However, it is essential that such exercises are appropriately programmed adopting a sequential approach across training blocks (including exercise variation, loads, and volumes) to ensure the desired adaptations, whereas strength and conditioning coaches emphasize appropriate technique and skill development of athletes performing such exercises.
Collapse
Affiliation(s)
- Paul Comfort
- University of Salford, Greater Manchester, United Kingdom
- Edith Cowan University, Perth, Australia
| | - G Gregory Haff
- University of Salford, Greater Manchester, United Kingdom
- Edith Cowan University, Perth, Australia
| | - Timothy J Suchomel
- University of Salford, Greater Manchester, United Kingdom
- Carroll University, Waukesha, Wisconsin
| | | | | | | | - Erin E Haff
- University of Salford, Greater Manchester, United Kingdom
- Australian Weightlifting Federation, Chandler, Australia
| | | | - Shyam Chavda
- London Sports Institute, Middlesex University, London, United Kingdom
- British Weightlifting, Leeds, United Kingdom
| | | | | | | |
Collapse
|
6
|
Suchomel TJ, Techmanski BS, Kissick CR, Comfort P. Reliability, Validity, and Comparison of Barbell Velocity Measurement Devices during the Jump Shrug and Hang High Pull. J Funct Morphol Kinesiol 2023; 8:35. [PMID: 36976132 PMCID: PMC10055813 DOI: 10.3390/jfmk8010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/18/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
This study examined the reliability, potential bias, and practical differences between the GymAware Powertool (GA), Tendo Power Analyzer (TENDO), and Push Band 2.0 (PUSH) during the jump shrug (JS) and hang high pull (HHP) performed across a spectrum of loads. Fifteen resistance-trained men performed JS and HHP repetitions with 20, 40, 60, 80, and 100% of their 1RM hang power clean, and mean (MBV) and peak barbell velocity (PBV) were determined by each velocity measurement device. Least-products regression and Bland-Altman plots were used to examine instances of proportional, fixed, and systematic bias between the TENDO and PUSH compared to the GA. Hedge's g effect sizes were also calculated to determine any meaningful differences between devices. The GA and TENDO displayed excellent reliability and acceptable variability during the JS and HHP while the PUSH showed instances of poor-moderate reliability and unacceptable variability at various loads. While the TENDO and PUSH showed instances of various bias, the TENDO device demonstrated greater validity when compared to the GA. Trivial-small differences were shown between the GA and TENDO during the JS and HHP exercises while trivial-moderate differences existed between GA and PUSH during the JS. However, despite trivial-small effects between the GA and PUSH devices at 20 and 40% 1RM during the HHP, practically meaningful differences existed at 60, 80, and 100%, indicating that the PUSH velocity outputs were not accurate. The TENDO appears to be more reliable and valid than the PUSH when measuring MBV and PBV during the JS and HHP.
Collapse
Affiliation(s)
- Timothy J. Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha, WI 53186, USA
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford M6 6PU, UK
| | | | | | - Paul Comfort
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford M6 6PU, UK
| |
Collapse
|
7
|
Suchomel TJ, McKeever SM, Nolen JD, Comfort P. Muscle Architectural and Force-Velocity Curve Adaptations following 10 Weeks of Training with Weightlifting Catching and Pulling Derivatives. J Sports Sci Med 2022; 21:504-516. [PMID: 36523888 PMCID: PMC9741714 DOI: 10.52082/jssm.2022.504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/28/2022] [Indexed: 12/30/2022]
Abstract
The aims of this study were to examine the muscle architectural, rapid force production, and force-velocity curve adaptations following 10 weeks of resistance training with either submaximal weightlifting catching (CATCH) or pulling (PULL) derivatives or pulling derivatives with phase-specific loading (OL). 27 resistance-trained men were randomly assigned to the CATCH, PULL, or OL groups and completed pre- and post-intervention ultrasound, countermovement jump (CMJ), and isometric mid-thigh pull (IMTP). Vastus lateralis and biceps femoris muscle thickness, pennation angle, and fascicle length, CMJ force at peak power, velocity at peak power, and peak power, and IMTP peak force and force at 100-, 150-, 200-, and 250 ms were assessed. There were no significant or meaningful differences in muscle architecture measures for any group (p > 0.05). The PULL group displayed small-moderate (g = 0.25-0.81) improvements in all CMJ variables while the CATCH group displayed trivial effects (g = 0.00-0.21). In addition, the OL group displayed trivial and small effects for CMJ force (g = -0.12-0.04) and velocity variables (g = 0.32-0.46), respectively. The OL group displayed moderate (g = 0.48-0.73) improvements in all IMTP variables while to PULL group displayed small-moderate (g = 0.47-0.55) improvements. The CATCH group displayed trivial-small (g = -0.39-0.15) decreases in IMTP performance. The PULL and OL groups displayed visible shifts in their force-velocity curves; however, these changes were not significant (p > 0.05). Performing weightlifting pulling derivatives with either submaximal or phase-specific loading may enhance rapid and peak force production characteristics. Strength and conditioning practitioners should load pulling derivatives based on the goals of each specific phase, but also allow their athletes ample exposure to achieve each goal.
Collapse
Affiliation(s)
- Timothy J Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford, Greater Manchester UK
| | | | - Justin D Nolen
- Health Performance Institute, Illinois Bone and Joint Institute, Highland Park
| | - Paul Comfort
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford, Greater Manchester UK
- Centre for Exercise and Sports Science Research, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
8
|
Berton R, da Silva DD, dos Santos ML, Silva CMPE, Tricoli V. Weightlifting derivatives vs. plyometric exercises: Effects on unloaded and loaded vertical jumps and sprint performance. PLoS One 2022; 17:e0274962. [PMID: 36137137 PMCID: PMC9499257 DOI: 10.1371/journal.pone.0274962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to compare the effects of weightlifting derivatives (WL) and plyometric exercises (PLYO) on unloaded and loaded vertical jumps and sprint performance. Initially, 45 resistance-trained men underwent a 4-week WL learning period. Then, the participants were randomly assigned to 1 of 3 groups (WL (n = 15), PLYO (n = 15), and control group (CG) (n = 15)) and followed a training period of 8 weeks. The WL group performed exercises to stimulate the entire force-velocity profile, while the PLYO group performed exercises with an emphasis in vertical- and horizontal-oriented. The CG did not perform any exercise. Pre- and post-training assessments included peak power output (PPO) and jump height (JH) in the squat jump (SJ), countermovement jump (CMJ), CMJ with 60% and 80% of the body mass (CMJ60% and CMJ80%, respectively), and mean sprinting speeds over 5, 10, 20, and 30 m distances. From pre- to post-training, PLYO significantly increased (p≤0.05) PPO and JH in the SJ, PPO during CMJ, and PPO and JH in the CMJ60%; however, no significant changes were observed in JH during CMJ, and PPO and JH in the CMJ80%. For WL and CG, no significant changes were observed in the unloaded and loaded vertical jumps variables. PLYO also resulted in significant improvements (p≤0.05) for 5, 10, and 20 m sprint speeds, but not for 30 m. For WL and CG, no significant changes were observed for all sprint speeds. In conclusion, these data demonstrate that PLYO was more effective than a technically-oriented WL program to improve unloaded and loaded vertical jumps and sprint performance.
Collapse
Affiliation(s)
- Ricardo Berton
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
- * E-mail:
| | | | - Marcel Lopes dos Santos
- School of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK, United States of America
| | | | - Valmor Tricoli
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Meechan D, McErlain-Naylor SA, McMahon JJ, Suchomel TJ, Comfort P. Comparing biomechanical time series data across countermovement shrug loads. J Sports Sci 2022; 40:1658-1667. [PMID: 35950819 DOI: 10.1080/02640414.2022.2091351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The effect of load on time-series data has yet to be investigated during weightlifting derivatives. This study compared the effect of load on the force-time and velocity-time curves during the countermovement shrug (CMS). Twenty-nine males performed the CMS at relative loads of 40%, 60%, 80%, 100%, 120%, and 140% one repetition maximum (1RM) power clean (PC). A force plate measured the vertical ground reaction force (VGRF), which was used to calculate the barbell-lifter system velocity. Time-series data were normalized to 100% of the movement duration and assessed via statistical parametric mapping (SPM). SPM analysis showed greater negative velocity at heavier loads early in the unweighting phase (12-38% of the movement), and greater positive velocity at lower loads during the last 16% of the movement. Relative loads of 40% 1RM PC maximised propulsion velocity, whilst 140% 1RM maximized force. At higher loads, the braking and propulsive phases commence at an earlier percentage of the time-normalized movement, and the total absolute durations increase with load. It may be more appropriate to prescribe the CMS during a maximal strength mesocycle given the ability to use supramaximal loads. Future research should assess training at different loads on the effects of performance.
Collapse
Affiliation(s)
- David Meechan
- The Salford Institute of Human Movement and Rehabilitation, University of Salford, Salford, UK.,Department of Elite Training Science and Technology Division, Hong Kong Sports Institute, Hong Kong, China
| | | | - John J McMahon
- The Salford Institute of Human Movement and Rehabilitation, University of Salford, Salford, UK
| | - Timothy J Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha, Wisconsin, US
| | - Paul Comfort
- The Salford Institute of Human Movement and Rehabilitation, University of Salford, Salford, UK.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.,Institute for Sport, Physical Activity and Leisure, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| |
Collapse
|
10
|
Chavda S, Hill M, Martin S, Swisher A, Haff GG, Turner AN. Weightlifting: An Applied Method of Technical Analysis. Strength Cond J 2021. [DOI: 10.1519/ssc.0000000000000614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Lopes Dos Santos M, Jagodinsky A, Lagally KM, Tricoli V, Berton R. Determining the Peak Power Output for Weightlifting Derivatives Using Body Mass Percentage: A Practical Approach. Front Sports Act Living 2021; 3:628068. [PMID: 33959705 PMCID: PMC8093619 DOI: 10.3389/fspor.2021.628068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/22/2021] [Indexed: 11/22/2022] Open
Affiliation(s)
- Marcel Lopes Dos Santos
- School of Kinesiology and Recreation, Illinois State University, Normal, IL, United States.,School of Kinesiology, Applied Health and Recreation, Oklahoma State University, Stillwater, OK, United States
| | - Adam Jagodinsky
- School of Kinesiology and Recreation, Illinois State University, Normal, IL, United States
| | - Kristen M Lagally
- School of Kinesiology and Recreation, Illinois State University, Normal, IL, United States
| | - Valmor Tricoli
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Ricardo Berton
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Suchomel TJ, McKeever SM, McMahon JJ, Comfort P. The Effect of Training with Weightlifting Catching or Pulling Derivatives on Squat Jump and Countermovement Jump Force-Time Adaptations. J Funct Morphol Kinesiol 2020; 5:E28. [PMID: 33467244 PMCID: PMC7739439 DOI: 10.3390/jfmk5020028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to examine the changes in squat jump (SJ) and countermovement jump (CMJ) force-time curve characteristics following 10 weeks of training with either load-matched weightlifting catching (CATCH) or pulling derivatives (PULL) or pulling derivatives that included force- and velocity-specific loading (OL). Twenty-five resistance-trained men were randomly assigned to the CATCH, PULL, or OL groups. Participants completed a 10 week, group-specific training program. SJ and CMJ height, propulsion mean force, and propulsion time were compared at baseline and after 3, 7, and 10 weeks. In addition, time-normalized SJ and CMJ force-time curves were compared between baseline and after 10 weeks. No between-group differences were present for any of the examined variables, and only trivial to small changes existed within each group. The greatest improvements in SJ and CMJ height were produced by the OL and PULL groups, respectively, while only trivial changes were present for the CATCH group. These changes were underpinned by greater propulsion forces and reduced propulsion times. The OL group displayed significantly greater relative force during the SJ and CMJ compared to the PULL and CATCH groups, respectively. Training with weightlifting pulling derivatives may produce greater vertical jump adaptations compared to training with catching derivatives.
Collapse
Affiliation(s)
- Timothy J. Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha, WI 53186, USA;
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford, Greater Manchester M6 6PU, UK; (J.J.M.); (P.C.)
| | - Shana M. McKeever
- Department of Human Movement Sciences, Carroll University, Waukesha, WI 53186, USA;
| | - John J. McMahon
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford, Greater Manchester M6 6PU, UK; (J.J.M.); (P.C.)
| | - Paul Comfort
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford, Greater Manchester M6 6PU, UK; (J.J.M.); (P.C.)
- Centre for Exercise and Sports Science Research, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|