1
|
Simpson CWC, Moore KS, Smith HK, Coskun B, Hamlin MJ. Tissue oxygenation in response to low-load and high-load back squats with continuous blood flow restriction in athletes. J Sports Sci 2025:1-10. [PMID: 39884956 DOI: 10.1080/02640414.2025.2457859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/18/2025] [Indexed: 02/01/2025]
Abstract
To determine muscle oxygenation with continuous blood flow restriction (BFR) training in high load (HL), 80% one-repetition maximum (1RM) and low load (LL), 30% 1RM squat exercises. In week-2 of a 4-week resistance training programme as part of their 3-set training routine, two groups of athletes (n = 4 each), one performing HL training with low cuff pressure (20% arterial occlusion pressure (AOP)), the other LL training with high cuff pressure (60% AOP) had muscle oxygenation assessed with near-infrared spectrophotometry (NIRS), arterial oxygen saturation (SPO2), heart rate (HR), barbell velocity and ratings of perceived exertion (RPE) during barbell back squats (BBS). Changes in the vastus lateralis oximetry were compared to pre- and post-training squat (1RM). Across athletes, there were significant associations between two pre-set-3 exercise variables and post-training 1RM, Tissue Saturation Index (TSI) (R2 = 0.92, p < 0.0002) and HHb concentration (R2 = 0.79, p < 0.003). Generalised regression models indicated that TSI % and HHb concentrations before and after set 3 timepoints were significant predictors of post-training 1RM in the LL group (R2 = 0.99, BIC = -24.9). Well-tolerated continuous LL-BFR training provided greater increases in strength than HL-BFR in athletes.
Collapse
Affiliation(s)
- Charles W C Simpson
- Department of Tourism, Sport and Society, Lincoln University, Christchurch, New Zealand
- Department of Biochemistry, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Katelyn S Moore
- Department of Tourism, Sport and Society, Lincoln University, Christchurch, New Zealand
| | - Hoani K Smith
- Department of Tourism, Sport and Society, Lincoln University, Christchurch, New Zealand
| | - Betul Coskun
- Department of Tourism, Sport and Society, Lincoln University, Christchurch, New Zealand
- Faculty of Sport Sciences, Erciyes University, Kayseri, Turkey
| | - Michael J Hamlin
- Department of Tourism, Sport and Society, Lincoln University, Christchurch, New Zealand
| |
Collapse
|
2
|
Takei S, Kambayashi S, Katsuge M, Okada J, Hirayama K. Portions of the force-velocity relationship targeted by weightlifting exercises. Sci Rep 2024; 14:31021. [PMID: 39730831 DOI: 10.1038/s41598-024-82251-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/03/2024] [Indexed: 12/29/2024] Open
Abstract
We compared the force-velocity (F-V) characteristics between jump squat (JS) and weightlifting (hang clean [HC] and HC pull [HCP]) to determine lower limb F-V portions targeted by weightlifting exercises. Ten weightlifters performed JS at 0% (body weight only) to 70% of their one-repetition maximum (1RM) for back squat, and HC and HCP at 30‒90% and 30‒110% of their 1RM for HC, respectively. Force and velocity values at each relative load were plotted to determine the F-V features of JS, HC, and HCP. Linear regression was used to evaluate each participant's JS F-V results to obtain individual F-V relationships. Regression equations evaluated the JS force at a given velocity for each relative load of HC and HCP. HC produced significantly less force than JS at given velocities for 30%, 40%, and 50% 1RM. Furthermore, HCP produced significantly less force than JS at a given velocity for 30% 1RM and exhibited less force than JS at a given velocity for 40% 1RM with moderate effect size. HC and HCP produce comparable forces to JS within the velocity ranges of 60‒90% and 50‒110% 1RM, respectively. Thus, weightlifting exercises target low‒moderate-velocity portion of the lower limb F-V relationship.
Collapse
Affiliation(s)
- Seiichiro Takei
- Institute of Sports Science & Medicine, Teikyo University, Tokyo, 192-0395, Japan
| | - Sohma Kambayashi
- Graduate School of Sport Sciences, Waseda University, Saitama, 359-1192, Japan
| | - Motoki Katsuge
- Graduate School of Sport Sciences, Waseda University, Saitama, 359-1192, Japan
| | - Junichi Okada
- Faculty of Sport Sciences, Waseda University, Saitama, 359-1192, Japan
| | - Kuniaki Hirayama
- Faculty of Sport Sciences, Waseda University, Saitama, 359-1192, Japan.
| |
Collapse
|
3
|
Silva C, Berton R, Boccato J, Tricoli V. Effects of Training With Different Hang-Power-Clean Intensities on the Maximum Dynamic Strength, Vertical Jump, and Sprint Performance of Female Handball Players. Int J Sports Physiol Perform 2024; 19:1467-1472. [PMID: 39374924 DOI: 10.1123/ijspp.2023-0325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 06/24/2024] [Accepted: 07/30/2024] [Indexed: 10/09/2024]
Abstract
PURPOSE To compare the effects of 7 weeks of training with different hang-power-clean (HPC) intensities on the maximum dynamic strength, vertical jump, and sprint performance of female handball players. METHODS Professional handball athletes with at least 1 year of HPC experience volunteered to participate. The athletes were balanced by position and randomly assigned to a group with HPC at 90% (HPC90%) or 50% (HPC50%) of HPC 1-repetition maximum (1RM). The training volume was equalized between groups. Pretraining and posttraining assessments included 1RM HPC, jump height in the squat jump (SJ) and countermovement jump (CMJ), and sprint speeds at 5, 20, and 30 m. RESULTS From pretraining to posttraining, both groups significantly increased (P ≤ .05) 1RM HPC, although a small effect size was observed in favor of HPC90%. HPC90% and HPC50% did not induce significant changes (P > .05) in the SJ and CMJ height, although for the SJ, a small effect size was observed in favor of HPC90%. Both groups induced a significant improvement (P ≤ .05) in 5-, 20-, and 30-m sprint speeds, although for all speeds, small to moderate effect sizes were observed in favor of HPC90%. CONCLUSIONS Both training groups induced significant improvements in 1RM HPC and sprint speeds, whereas no significant changes were observed in vertical jumps. In addition, based mainly on the effect sizes, the HPC90% group was more effective for increasing 1RM HPC, SJ, and sprint speeds than the HPC50% group.
Collapse
Affiliation(s)
- Claudio Silva
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Ricardo Berton
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - João Boccato
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Valmor Tricoli
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Techmanski BS, Kissick CR, Loturco I, Suchomel TJ. Using Barbell Acceleration to Determine the 1 Repetition Maximum of the Jump Shrug. J Strength Cond Res 2024; 38:1486-1493. [PMID: 39072659 DOI: 10.1519/jsc.0000000000004872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
ABSTRACT Techmanski, BS, Kissick, CR, Loturco, I, and Suchomel, TJ. Using barbell acceleration to determine the 1 repetition maximum of the jump shrug. J Strength Cond Res 38(8): 1486-1493, 2024-The purpose of this study was to determine the 1 repetition maximum (1RM) of the jump shrug (JS) using the barbell acceleration characteristics of repetitions performed with relative percentages of the hang power clean (HPC). Fifteen resistance-trained men (age = 25.5 ± 4.5 years, body mass = 88.5 ± 15.7 kg, height = 176.1 ± 8.5 cm, relative 1RM HPC = 1.3 ± 0.2 kg·kg-1) completed 2 testing sessions that included performing a 1RM HPC and JS repetitions with 20, 40, 60, 80, and 100% of their 1RM HPC. A linear position transducer was used to determine concentric duration and the percentage of the propulsive phase (P%) where barbell acceleration was greater than gravitational acceleration (i.e., a>-9.81 m·s-2). Two 1 way repeated measures ANOVA were used to compare each variable across loads, whereas Hedge's g effect sizes were used to examine the magnitude of the differences. Concentric duration ranged from 449.7 to 469.8 milliseconds and did not vary significantly between loads (p = 0.253; g = 0.20-0.39). The P% was 57.4 ± 7.2%, 64.8 ± 5.9%, 73.2 ± 4.3%, 78.7 ± 4.0%, and 80.3 ± 3.5% when using 20, 40, 60, 80, and 100% 1RM HPC, respectively. P% produced during the 80 and 100% 1RM loads were significantly greater than those at 20, 40, and 60% 1RM (p < 0.01, g = 1.30-3.90). In addition, P% was significantly greater during 60% 1RM compared with both 20 and 40% 1RM (p < 0.01, g = 1.58-2.58) and 40% was greater than 20% 1RM (p = 0.003, g = 1.09). A braking phase was present during each load and, thus, a 1RM JS load was not established. Heavier loads may be needed to achieve a 100% propulsive phase when using this method.
Collapse
Affiliation(s)
- Baylee S Techmanski
- Athlete Performance, Mequon, Wisconsin
- Department of Human Movement Sciences, Carroll University, Waukesha, Wisconsin
| | | | - Irineu Loturco
- Nucleus of High Performance in Sport, Sao Paulo, Brazil; and
| | - Timothy J Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha, Wisconsin
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford, Greater Manchester, United Kingdom
| |
Collapse
|
5
|
Soriano MA, Jiménez-Ormeño E, Lake JP, McMahon JJ, Gallo-Salazar C, Mundy P, Comfort P. Kinetics and Kinematics of the Push Press, Push Jerk, and Split Jerk. J Strength Cond Res 2024; 38:1359-1365. [PMID: 39072653 DOI: 10.1519/jsc.0000000000004810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Abstract
Soriano, MA, Jiménez-Ormeño, E, Lake, JP, McMahon, JJ, Gallo-Salazar, C, Mundy, P, and Comfort, P. Kinetics and kinematics of the push press, push jerk, and split jerk. J Strength Cond Res 38(8): 1359–1365, 2024—The aim of this study was to explore the kinetics and kinematics across incremental loads with the push press (PP), push jerk (PJ), and split jerk (SJ). Eighteen resistance-trained men performed the 1 repetition maximum (1RM) tests (visit 1) 3–7 days before an incremental loading protocol (60, 75, and 90% 1RM) of the 3 exercises (visit 2). Kinetics and kinematics were derived from force-time data and compared using a repeated-measures analysis of variance with load and exercise as within-subject factors. Dependent variables for the biomechanics assessment were categorized as output (power and impulse), driver (force and work), and strategy (displacement and duration) metrics. The interrepetition reliability was assessed using the intraclass correlation coefficient and coefficient of variation. The PP, PJ, and SJ 1RM performance were 89.7 ± 15.4, 95.6 ± 14.4, and 103.0 ± 16.9 kg, respectively. Driver, strategy, and outcome metrics displayed moderate-to-excellent (intraclass correlation coefficient: 0.58–0.98) reliability with acceptable variability (% coefficient of variation: 2.02–10.00). Increased load resulted in significantly large increases in force, work, displacement, duration, power, and impulse (p < 0.001,
= 0.534–0.903). Exercise selection had a significant and large effect on power, impulse, work, and force (p < 0.016,
= 0.387–0.534). There was a significant and large effect of load × exercise interaction on work, displacement, and duration (p < 0.019,
= 0.158–0.220). Practitioners are encouraged to use heavier loads (90 > 75 > 60% 1RM) during the SJ exercise to maximize output, driver, and strategy kinetics and kinematics.
Collapse
Affiliation(s)
- Marcos A Soriano
- Strength Training and Neuromuscular Performance (STreNgthP) Research Group, Camilo José Cela University, Madrid, Spain
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Frederick Road Campus, Manchester, United Kingdom
- Centre for Sport Studies, Rey Juan Carlos University, Madrid, Spain
| | - Ester Jiménez-Ormeño
- Strength Training and Neuromuscular Performance (STreNgthP) Research Group, Camilo José Cela University, Madrid, Spain
| | - Jason P Lake
- Department of Sport and Exercise Sciences, University of Chichester, Chichester, United Kingdom
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - John J McMahon
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Frederick Road Campus, Manchester, United Kingdom
| | - César Gallo-Salazar
- Strength Training and Neuromuscular Performance (STreNgthP) Research Group, Camilo José Cela University, Madrid, Spain
| | - Peter Mundy
- Hawkin Dynamics, Inc., Westbrook, Maine; and
- Department of Applied Sciences and Health, Coventry University, Coventry, United Kingdom
| | - Paul Comfort
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Frederick Road Campus, Manchester, United Kingdom
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
6
|
Suchomel TJ, Techmanski BS, Kissick CR, Comfort P. Can the Velocity of a 1RM Hang Power Clean Be Used to Estimate a 1RM Hang High Pull? J Strength Cond Res 2024; 38:1321-1325. [PMID: 38900178 DOI: 10.1519/jsc.0000000000004845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
ABSTRACT Suchomel, TJ, Techmanski, BS, Kissick, CR, and Comfort, P. Can the velocity of a 1RM hang power clean be used to estimate a 1RM hang high pull? J Strength Cond Res 38(7): 1321-1325, 2024-The purpose of this study was to estimate the 1-repetition maximum hang high pull (1RM HHP) using the peak barbell velocity of a 1RM hang power clean (HPC). Fifteen resistance-trained men (age = 25.5 ± 4.5 years, body mass = 88.3 ± 15.4 kg, height = 176.1 ± 8.5 cm, relative 1RM HPC = 1.3 ± 0.2 kg·kg-1) with previous HPC experience participated in 2 testing sessions that included performing a 1RM HPC and HHP repetitions with 20, 40, 60, and 80% of their 1RM HPC. Peak barbell velocity was measured using a linear position transducer during the 1RM HPC and HHP repetitions performed at each load. The peak barbell velocity achieved during the 1RM HPC was determined as the criterion value for a 1RM performance. Subject-specific linear regression analyses were completed using slope-intercept equations created from the peak velocity of the 1RM HPC and the peak barbell velocities produced at each load during the HHP repetitions. The peak barbell velocity during the 1RM HPC was 1.74 ± 0.30 m·s-1. The average load-velocity profile showed that the estimated 1RM HHP of the subjects was 98.0 ± 19.3% of the 1RM HPC. Although a 1RM HHP value may be estimated using the peak barbell velocity during the HPC, strength and conditioning practitioners should avoid this method because of the considerable variation within the measurement. Additional research examining different methods of load prescription for weightlifting pulling derivatives is needed.
Collapse
Affiliation(s)
- Timothy J Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha, Wisconsin
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford, Greater Manchester, United Kingdom
| | - Baylee S Techmanski
- Department of Human Movement Sciences, Carroll University, Waukesha, Wisconsin
- Athlete Performance, Mequon, Wisconsin
| | - Cameron R Kissick
- Department of Human Movement Sciences, Carroll University, Waukesha, Wisconsin
- New York Mets, Queens, New York; and
| | - Paul Comfort
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford, Greater Manchester, United Kingdom
- Strength and Power Research Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
7
|
James LP, Weakley J, Comfort P, Huynh M. The Relationship Between Isometric and Dynamic Strength Following Resistance Training: A Systematic Review, Meta-Analysis, and Level of Agreement. Int J Sports Physiol Perform 2024; 19:2-12. [PMID: 37741636 DOI: 10.1123/ijspp.2023-0066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/30/2023] [Accepted: 08/14/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Maximal lower-body strength can be assessed both dynamically and isometrically; however, the relationship between the changes in these 2 forms of strength following resistance training is not well understood. PURPOSE To systematically review and analyze the effects of resistance training on changes in maximal dynamic (1-repetition-maximum back squat, deadlift, and power clean) and position-matched isometric strength (isometric midthigh pull and the isometric squat). In addition, individual-level data were used to quantify the agreement and relationship between changes in dynamic and isometric strength. METHODS Databases were systematically searched to identify eligible articles, and meta-analysis procedures were performed on the extracted data. The raw results from 4 studies were acquired, enabling bias and absolute reliability measures to be calculated using Bland-Altman test of agreement. RESULTS Eleven studies met the inclusion criteria, which resulted in 29 isometric-dynamic change comparisons. The overall pooled effect was 0.13 in favor of dynamic testing; however, the prediction interval ranged from g = -0.49 to 0.75. There was no evidence of bias (P = .825) between isometric and dynamic tests; however, the reliability coefficient was estimated to be 16%, and the coefficient of variation (%) was 109.27. CONCLUSIONS As a range of future effects can be expected when comparing isometric to dynamic strength changes following resistance training, and limited proportionality exists between changes in these 2 strength qualities, there is strong evidence that isometric and dynamic strength represent separate neuromuscular domains. These findings can be used to inform strength-assessment models in athlete populations.
Collapse
Affiliation(s)
- Lachlan P James
- Department of Dietetics, Nutrition and Sport, Sport, Performance, and Nutrition Research Group, School of Allied Health, Human Services, & Sport, La Trobe University, Melbourne, VIC, Australia
| | - Jonathon Weakley
- School of Behavioral and Health Sciences, Australian Catholic University, Brisbane, QLD, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Center, Australian Catholic University, Brisbane, QLD, Australia
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
| | - Paul Comfort
- Directorate of Psychology and Sport, University of Salford, Salford, United Kingdom
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Minh Huynh
- Department of Dietetics, Nutrition and Sport, Sport, Performance, and Nutrition Research Group, School of Allied Health, Human Services, & Sport, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Loturco I, Zabaloy S, Pereira LA, Moura TBMA, Mercer VP, Victor F, Zając A, Matusinski A, Freitas TT, Bishop C. Resistance Training Practices of Brazilian Olympic Sprint and Jump Coaches: Toward a Deeper Understanding of Their Choices and Insights (Part III). J Hum Kinet 2024; 90:183-214. [PMID: 38380293 PMCID: PMC10875694 DOI: 10.5114/jhk/182888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/20/2024] [Indexed: 02/22/2024] Open
Abstract
In the final part of this three-article collection on the training strategies of Brazilian Olympic sprint and jump coaches, we provide a detailed description of the resistance training methods and exercises most commonly employed by these speed experts. Always with the objective of maximizing the sprint and jump capabilities of their athletes, these experienced coaches primarily utilize variable, eccentric, concentric, machine-based, isometric, complex, and isoinertial resistance training methods in their daily practices. Squats (in their different forms), Olympic weightlifting, ballistics, hip thrusts, lunges, calf raises, core exercises, leg curls, stiff-leg deadlifts, and leg extension are the most commonly prescribed exercises in their training programs, during both the preparatory and competitive periods. Therefore, the current manuscript comprehensively describes and examines these methods, with the additional aim of extrapolating their application to other sports, especially those where sprint speed is a key performance factor.
Collapse
Affiliation(s)
- Irineu Loturco
- NAR—Nucleus of High Performance in Sport, São Paulo, Brazil
- Department of Human Movement Sciences, Federal University of São Paulo, São Paulo, Brazil
- Department of Sport, Health, and Exercise Science, University of South Wales, Pontypridd, Wales, United Kingdom
| | - Santiago Zabaloy
- Faculty of Physical Activity and Sports, University of Flores, Buenos Aires, Argentina
| | | | | | | | | | - Adam Zając
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Aleksander Matusinski
- Department of Exercise and Sport Performance, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Tomás T. Freitas
- NAR—Nucleus of High Performance in Sport, São Paulo, Brazil
- UCAM Research Center for High Performance Sport, UCAM Universidad Católica de Murcia, Murcia, Spain
- Facultad de Deporte, UCAM Universidad Católica de Murcia, Murcia, Spain
| | - Chris Bishop
- London Sport Institute, Middlesex University, London, United Kingdom
| |
Collapse
|
9
|
Comfort P, Haff GG, Suchomel TJ, Soriano MA, Pierce KC, Hornsby WG, Haff EE, Sommerfield LM, Chavda S, Morris SJ, Fry AC, Stone MH. National Strength and Conditioning Association Position Statement on Weightlifting for Sports Performance. J Strength Cond Res 2023; 37:1163-1190. [PMID: 36952649 DOI: 10.1519/jsc.0000000000004476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
ABSTRACT Comfort, P, Haff, GG, Suchomel, TJ, Soriano, MA, Pierce, KC, Hornsby, WG, Haff, EE, Sommerfield, LM, Chavda, S, Morris, SJ, Fry, AC, and Stone, MH. National Strength and Conditioning Association position statement on weightlifting for sports performance. J Strength Cond Res XX(X): 000-000, 2022-The origins of weightlifting and feats of strength span back to ancient Egypt, China, and Greece, with the introduction of weightlifting into the Olympic Games in 1896. However, it was not until the 1950s that training based on weightlifting was adopted by strength coaches working with team sports and athletics, with weightlifting research in peer-reviewed journals becoming prominent since the 1970s. Over the past few decades, researchers have focused on the use of weightlifting-based training to enhance performance in nonweightlifters because of the biomechanical similarities (e.g., rapid forceful extension of the hips, knees, and ankles) associated with the second pull phase of the clean and snatch, the drive/thrust phase of the jerk and athletic tasks such as jumping and sprinting. The highest force, rate of force development, and power outputs have been reported during such movements, highlighting the potential for such tasks to enhance these key physical qualities in athletes. In addition, the ability to manipulate barbell load across the extensive range of weightlifting exercises and their derivatives permits the strength and conditioning coach the opportunity to emphasize the development of strength-speed and speed-strength, as required for the individual athlete. As such, the results of numerous longitudinal studies and subsequent meta-analyses demonstrate the inclusion of weightlifting exercises into strength and conditioning programs results in greater improvements in force-production characteristics and performance in athletic tasks than general resistance training or plyometric training alone. However, it is essential that such exercises are appropriately programmed adopting a sequential approach across training blocks (including exercise variation, loads, and volumes) to ensure the desired adaptations, whereas strength and conditioning coaches emphasize appropriate technique and skill development of athletes performing such exercises.
Collapse
Affiliation(s)
- Paul Comfort
- University of Salford, Greater Manchester, United Kingdom
- Edith Cowan University, Perth, Australia
| | - G Gregory Haff
- University of Salford, Greater Manchester, United Kingdom
- Edith Cowan University, Perth, Australia
| | - Timothy J Suchomel
- University of Salford, Greater Manchester, United Kingdom
- Carroll University, Waukesha, Wisconsin
| | | | | | | | - Erin E Haff
- University of Salford, Greater Manchester, United Kingdom
- Australian Weightlifting Federation, Chandler, Australia
| | | | - Shyam Chavda
- London Sports Institute, Middlesex University, London, United Kingdom
- British Weightlifting, Leeds, United Kingdom
| | | | | | | |
Collapse
|
10
|
Suchomel TJ, Techmanski BS, Kissick CR, Comfort P. Reliability, Validity, and Comparison of Barbell Velocity Measurement Devices during the Jump Shrug and Hang High Pull. J Funct Morphol Kinesiol 2023; 8:35. [PMID: 36976132 PMCID: PMC10055813 DOI: 10.3390/jfmk8010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/18/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
This study examined the reliability, potential bias, and practical differences between the GymAware Powertool (GA), Tendo Power Analyzer (TENDO), and Push Band 2.0 (PUSH) during the jump shrug (JS) and hang high pull (HHP) performed across a spectrum of loads. Fifteen resistance-trained men performed JS and HHP repetitions with 20, 40, 60, 80, and 100% of their 1RM hang power clean, and mean (MBV) and peak barbell velocity (PBV) were determined by each velocity measurement device. Least-products regression and Bland-Altman plots were used to examine instances of proportional, fixed, and systematic bias between the TENDO and PUSH compared to the GA. Hedge's g effect sizes were also calculated to determine any meaningful differences between devices. The GA and TENDO displayed excellent reliability and acceptable variability during the JS and HHP while the PUSH showed instances of poor-moderate reliability and unacceptable variability at various loads. While the TENDO and PUSH showed instances of various bias, the TENDO device demonstrated greater validity when compared to the GA. Trivial-small differences were shown between the GA and TENDO during the JS and HHP exercises while trivial-moderate differences existed between GA and PUSH during the JS. However, despite trivial-small effects between the GA and PUSH devices at 20 and 40% 1RM during the HHP, practically meaningful differences existed at 60, 80, and 100%, indicating that the PUSH velocity outputs were not accurate. The TENDO appears to be more reliable and valid than the PUSH when measuring MBV and PBV during the JS and HHP.
Collapse
Affiliation(s)
- Timothy J. Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha, WI 53186, USA
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford M6 6PU, UK
| | | | | | - Paul Comfort
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford M6 6PU, UK
| |
Collapse
|
11
|
Suchomel TJ, McKeever SM, Sijuwade O, Carpenter L. Propulsion Phase Characteristics of Loaded Jump Variations in Resistance-Trained Women. Sports (Basel) 2023; 11:sports11020044. [PMID: 36828329 PMCID: PMC9966711 DOI: 10.3390/sports11020044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
The purpose of this study was to compare the propulsion phase characteristics of the jump squat (JS), hexagonal barbell jump (HEXJ), and jump shrug (JShrug) performed across a spectrum of relative loads. Thirteen resistance-trained women (18-23 years old) performed JS, HEXJ, and JShrug repetitions at body mass (BM) or with 20, 40, 60, 80, or 100% BM during three separate testing sessions. Propulsion mean force (MF), duration (Dur), peak power output (PP), force at PP (FPP), and velocity at PP (VPP) were compared between exercises and loads using a series of 3 × 6 repeated measures ANOVA and Hedge's g effect sizes. There were no significant differences in MF or Dur between exercises. While load-averaged HEXJ and JShrug PP were significantly greater than the JS, there were no significant differences between exercises at any individual load. The JShrug produced significantly greater FPP than the JS and HEXJ at loads ranging from BM-60% BM, but not at 80 or 100% BM. Load-averaged VPP produced during the JS and HEXJ was significantly greater than the JShrug; however, there were no significant differences between exercises at any individual load. Practically meaningful differences between exercises indicated that the JShrug produced greater magnitudes of force during shorter durations compared to the JS and HEXJ at light loads (BM-40%). The JS and HEXJ may be classified as more velocity-dominant exercises while the JShrug may be more force-dominant. Thus, it is important to consider the context in which each exercise is prescribed for resistance-trained women to provide an effective training stimulus.
Collapse
Affiliation(s)
- Timothy J. Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha, WI 53186, USA
- Correspondence: ; Tel.: +1-262-524-7441
| | | | | | - Logan Carpenter
- Department of Human Movement Sciences, Carroll University, Waukesha, WI 53186, USA
| |
Collapse
|
12
|
Giles G, Lutton G, Martin J. Scoping Review of the Isometric Mid-Thigh Pull Performance Relationship to Dynamic Sport Performance Assessments. J Funct Morphol Kinesiol 2022; 7:114. [PMID: 36547660 PMCID: PMC9784779 DOI: 10.3390/jfmk7040114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Attempting to understand on-field sport performance from dynamic performance tests of athleticism (i.e., sprinting, jumping, strength) is common practice in sport. In recent years, the isometric mid-thigh pull (IMTP) has gained popularity in the sport performance community as an assessment tool. This scoping review examined the relationship of the IMTP to common dynamic sports assessments to evaluate the robustness of the IMTP to profile lower body force production characteristics. The literature search was conducted according to PRISMA-ScR guidelines. Articles were selected from 5 electronic databases. Data was extracted and synthesized to evaluate the reported relationships between IMTP and common dynamic sport performance assessments. Forty-eight publications were identified and included in the review. Articles reviewed were all within the past 25 years with most (66.7%) published within the past 5 years. Multiple researchers utilized the IMTP across numerous sports and generally reported consistent results. Strong correlations (41.8% of reported, r = 0.71 to 1.00) between the IMTP and the dynamic sport performance assessments were found. The available evidence suggests the IMTP is a viable option for practitioners and researchers to use to profile athletic ability. Furthermore, based on the publication year of included articles, IMTP research is relatively young and warrants further investigation.
Collapse
Affiliation(s)
| | | | - Joel Martin
- School of Kinesiology, George Mason University, Manassas, VA 20109, USA
| |
Collapse
|
13
|
Comparison between Olympic Weightlifting Lifts and Derivatives for External Load and Fatigue Monitoring. Healthcare (Basel) 2022; 10:healthcare10122499. [PMID: 36554023 PMCID: PMC9777922 DOI: 10.3390/healthcare10122499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/26/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Load management is an extremely important subject in fatigue control and adaptation processes in almost all sports. In Olympic Weightlifting (OW), two of the load variables are intensity and volume. However, it is not known if all exercises produce fatigue of the same magnitude. Thus, this study aimed to compare the fatigue prompted by the Clean and Jerk and the Snatch and their derivative exercises among male and female participants, respectively. We resorted to an experimental quantitative design in which fatigue was induced in adult individuals with weightlifting experience of at least two years through the execution of a set of 10 of the most used lifts and derivatives in OW (Snatch, Snatch Pull, Muscle Snatch, Power Snatch, and Back Squat; Clean and Jerk, Power Clean, Clean, High Hang Clean, and Hang Power Clean). Intensity and volume between exercises were equalized (four sets of three repetitions), after which one Snatch Pull test was performed where changes in velocity, range of motion, and mean power were assessed as fatigue measures. Nine women and twelve men participated in the study (age, 29.67 ± 5.74 years and 28.17 ± 5.06 years, respectively). The main results showed higher peak velocity values for the Snatch Pull test when compared with Power Snatch (p = 0.008; ES = 0.638), Snatch (p < 0.001; ES = 0.998), Snatch Pull (p < 0.001, ES = 0.906), and Back Squat (p < 0.001; ES = 0.906) while the differences between the Snatch Pull test and the derivatives of Clean and Jerk were almost nonexistent. It is concluded that there were differences in the induction of fatigue between most of the exercises analyzed and, therefore, coaches and athletes could improve the planning of training sessions by accounting for the fatigue induced by each lift.
Collapse
|
14
|
Suchomel TJ, McKeever SM, Nolen JD, Comfort P. Muscle Architectural and Force-Velocity Curve Adaptations following 10 Weeks of Training with Weightlifting Catching and Pulling Derivatives. J Sports Sci Med 2022; 21:504-516. [PMID: 36523888 PMCID: PMC9741714 DOI: 10.52082/jssm.2022.504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/28/2022] [Indexed: 12/30/2022]
Abstract
The aims of this study were to examine the muscle architectural, rapid force production, and force-velocity curve adaptations following 10 weeks of resistance training with either submaximal weightlifting catching (CATCH) or pulling (PULL) derivatives or pulling derivatives with phase-specific loading (OL). 27 resistance-trained men were randomly assigned to the CATCH, PULL, or OL groups and completed pre- and post-intervention ultrasound, countermovement jump (CMJ), and isometric mid-thigh pull (IMTP). Vastus lateralis and biceps femoris muscle thickness, pennation angle, and fascicle length, CMJ force at peak power, velocity at peak power, and peak power, and IMTP peak force and force at 100-, 150-, 200-, and 250 ms were assessed. There were no significant or meaningful differences in muscle architecture measures for any group (p > 0.05). The PULL group displayed small-moderate (g = 0.25-0.81) improvements in all CMJ variables while the CATCH group displayed trivial effects (g = 0.00-0.21). In addition, the OL group displayed trivial and small effects for CMJ force (g = -0.12-0.04) and velocity variables (g = 0.32-0.46), respectively. The OL group displayed moderate (g = 0.48-0.73) improvements in all IMTP variables while to PULL group displayed small-moderate (g = 0.47-0.55) improvements. The CATCH group displayed trivial-small (g = -0.39-0.15) decreases in IMTP performance. The PULL and OL groups displayed visible shifts in their force-velocity curves; however, these changes were not significant (p > 0.05). Performing weightlifting pulling derivatives with either submaximal or phase-specific loading may enhance rapid and peak force production characteristics. Strength and conditioning practitioners should load pulling derivatives based on the goals of each specific phase, but also allow their athletes ample exposure to achieve each goal.
Collapse
Affiliation(s)
- Timothy J Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford, Greater Manchester UK
| | | | - Justin D Nolen
- Health Performance Institute, Illinois Bone and Joint Institute, Highland Park
| | - Paul Comfort
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford, Greater Manchester UK
- Centre for Exercise and Sports Science Research, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
15
|
Berton R, da Silva DD, dos Santos ML, Silva CMPE, Tricoli V. Weightlifting derivatives vs. plyometric exercises: Effects on unloaded and loaded vertical jumps and sprint performance. PLoS One 2022; 17:e0274962. [PMID: 36137137 PMCID: PMC9499257 DOI: 10.1371/journal.pone.0274962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to compare the effects of weightlifting derivatives (WL) and plyometric exercises (PLYO) on unloaded and loaded vertical jumps and sprint performance. Initially, 45 resistance-trained men underwent a 4-week WL learning period. Then, the participants were randomly assigned to 1 of 3 groups (WL (n = 15), PLYO (n = 15), and control group (CG) (n = 15)) and followed a training period of 8 weeks. The WL group performed exercises to stimulate the entire force-velocity profile, while the PLYO group performed exercises with an emphasis in vertical- and horizontal-oriented. The CG did not perform any exercise. Pre- and post-training assessments included peak power output (PPO) and jump height (JH) in the squat jump (SJ), countermovement jump (CMJ), CMJ with 60% and 80% of the body mass (CMJ60% and CMJ80%, respectively), and mean sprinting speeds over 5, 10, 20, and 30 m distances. From pre- to post-training, PLYO significantly increased (p≤0.05) PPO and JH in the SJ, PPO during CMJ, and PPO and JH in the CMJ60%; however, no significant changes were observed in JH during CMJ, and PPO and JH in the CMJ80%. For WL and CG, no significant changes were observed in the unloaded and loaded vertical jumps variables. PLYO also resulted in significant improvements (p≤0.05) for 5, 10, and 20 m sprint speeds, but not for 30 m. For WL and CG, no significant changes were observed for all sprint speeds. In conclusion, these data demonstrate that PLYO was more effective than a technically-oriented WL program to improve unloaded and loaded vertical jumps and sprint performance.
Collapse
Affiliation(s)
- Ricardo Berton
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
- * E-mail:
| | | | - Marcel Lopes dos Santos
- School of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK, United States of America
| | | | - Valmor Tricoli
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Oranchuk DJ, Harbour ET, Lindsay RS, Storey AG, Drinkwater EJ. Improved power clean performance with the hook-grip is not due to altered force-time or horizontal bar-path characteristics. J Sports Sci 2021; 40:226-235. [PMID: 34592911 DOI: 10.1080/02640414.2021.1986270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
he underlying biomechanical benefits of hook-grip (HG) over conventional closed-grip (CG) remain unclear. This study compared bar-path kinematics and force-time variables of the power clean (PC) performed with HG or CG. We also aimed to compared kinetic changes measured by force platform versus linear position transducer (LPT). Eleven well-trained men volunteered. Following a familiarisation session, HG, and CG 1RM conditions, were randomly completed seven days apart. System kinetics and barbell kinematics were recorded via synchronized force platform+LPT system and two-dimensional motion-capture. Statistical parametric mapping (SPM), analysis of variance, and standardised differences were utilised. The SPM cut-offs were determined via novel combination of force and displacement. No between-condition differences in normalised force-time variables of the pull or catch were detected. The first and second pull duration was similar between conditions (ES = 0.04-0.38). Conversely, catch and total PC durations were shorter at 80-95% (ES = 0.26-0.75), with the weightless phase more prolonged at 95% and 100% (ES = 0.54-0.76) with HG compared to CG. Improved timing of the turnover and catch phases appears to be the primary difference between HG and CG performance. Thus, grip type is possibly irrelevant to non-weightlifting athletes when performing submaximal catch-less derivatives..
Collapse
Affiliation(s)
- Dustin J Oranchuk
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand.,Institute of Health and Sport, Victoria University, Melbourne, Australia
| | - Eric T Harbour
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Riki S Lindsay
- Institute of Health and Sport, Victoria University, Melbourne, Australia
| | - Adam G Storey
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Eric J Drinkwater
- Centre for Sport Research, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
17
|
Lopes Dos Santos M, Berton R, Jagodinsky AE, Torry MR, Lagally KM. The effect of load based on body mass percentage on peak power output in the hang power clean, hang high pull, and mid-thigh clean pull. J Sports Med Phys Fitness 2021; 62:457-466. [PMID: 34256535 DOI: 10.23736/s0022-4707.21.12243-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Prescribing load at the peak power output (PPO) is one of the strategies utilized to enhance lower-body muscle power. PPO of an exercise is determined based on a relative percentage of the one-repetition maximum test (1RM). However, 1RM tests may be impractical in some weightlifting derivatives. This study aimed to identify the PPO of the hang power clean (HPC), hang high pull (HHP), and mid-thigh clean pull (MTCP) based on a relative percentage of body mass (BM). METHODS Fifteen males with weightlifting experience performed HPC, HHP, and MTCP at loads ranging from 30-90% BM. Kinematic data were collected through a 16-camera infrared motion capture system and processed based on a 3-dimensional lower-extremity model. Ground reaction force (GRF) data were collected from two force plates. PPO was calculated as the product of model center of mass velocity and combined vertical GRF during the concentric phase. RESULTS PPO occurred at 90% BM for the HPC. In addition, the PPO occurred at 90% BM for the HHP and it was not different than 70 and 80% BM. At last, the PPO for MTCP occurred at 80% BM and it was not different than 60 and 70% BM. CONCLUSIONS Relative percentages of BM can be used to determine PPO in the HPC, HHP, and MTCP. PPO during HPC is achieved at 90% BM, while the PPO for HHP and MTCP is achieved between 70 to 90% BM and 60 to 80% BM, respectively.
Collapse
Affiliation(s)
- Marcel Lopes Dos Santos
- School of Kinesiology and Recreation, Illinois State University, Normal, IL, USA - .,School of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK, USA -
| | - Ricardo Berton
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Adam E Jagodinsky
- School of Kinesiology and Recreation, Illinois State University, Normal, IL, USA
| | - Michael R Torry
- School of Kinesiology and Recreation, Illinois State University, Normal, IL, USA
| | - Kristen M Lagally
- School of Kinesiology and Recreation, Illinois State University, Normal, IL, USA
| |
Collapse
|
18
|
Suchomel TJ, Nimphius S, Bellon CR, Hornsby WG, Stone MH. Training for Muscular Strength: Methods for Monitoring and Adjusting Training Intensity. Sports Med 2021; 51:2051-2066. [PMID: 34101157 DOI: 10.1007/s40279-021-01488-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 01/21/2023]
Abstract
Linear loading, the two-for-two rule, percent of one repetition maximum (1RM), RM zones, rate of perceived exertion (RPE), repetitions in reserve, set-repetition best, autoregulatory progressive resistance exercise (APRE), and velocity-based training (VBT) are all methods of adjusting resistance training intensity. Each method has advantages and disadvantages that strength and conditioning practitioners should be aware of when measuring and monitoring strength characteristics. The linear loading and 2-for-2 methods may be beneficial for novice athletes; however, they may be limited in their capacity to provide athletes with variation and detrimental if used exclusively for long periods of time. The percent of 1RM and RM zone methods may provide athletes with more variation and greater potential for strength-power adaptations; however, they fail to account for daily changes in athlete's performance capabilities. An athlete's daily readiness can be addressed to various extents by both subjective (e.g., RPE, repetitions in reserve, set-repetition best, and APRE) and objective (e.g., VBT) load adjustment methods. Future resistance training monitoring may aim to include a combination of measures that quantify outcome (e.g., velocity, load, time, etc.) with process (e.g., variability, coordination, efficiency, etc.) relevant to the stage of learning or the task being performed. Load adjustment and monitoring methods should be used to supplement and guide the practitioner, quantify what the practitioner 'sees', and provide longitudinal data to assist in reviewing athlete development and providing baselines for the rate of expected development in resistance training when an athlete returns to sport from injury or large training load reductions.
Collapse
Affiliation(s)
- Timothy J Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha, WI, 53186, USA.
| | - Sophia Nimphius
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Christopher R Bellon
- Department of Health and Human Performance, The Citadel-The Military College of South Carolina, Charleston, SC, 29409, USA
| | - W Guy Hornsby
- Department of Coaching and Teaching Studies, West Virginia University, Morgantown, WV, 26505, USA
| | - Michael H Stone
- Center of Excellence for Sport Science and Coach Education, Department of Exercise and Sport Sciences, East Tennessee State University, Johnson City, TN, 37614, USA
| |
Collapse
|
19
|
Lopes Dos Santos M, Jagodinsky A, Lagally KM, Tricoli V, Berton R. Determining the Peak Power Output for Weightlifting Derivatives Using Body Mass Percentage: A Practical Approach. Front Sports Act Living 2021; 3:628068. [PMID: 33959705 PMCID: PMC8093619 DOI: 10.3389/fspor.2021.628068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/22/2021] [Indexed: 11/22/2022] Open
Affiliation(s)
- Marcel Lopes Dos Santos
- School of Kinesiology and Recreation, Illinois State University, Normal, IL, United States.,School of Kinesiology, Applied Health and Recreation, Oklahoma State University, Stillwater, OK, United States
| | - Adam Jagodinsky
- School of Kinesiology and Recreation, Illinois State University, Normal, IL, United States
| | - Kristen M Lagally
- School of Kinesiology and Recreation, Illinois State University, Normal, IL, United States
| | - Valmor Tricoli
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Ricardo Berton
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
Suchomel TJ, McKeever SM, McMahon JJ, Comfort P. The Effect of Training with Weightlifting Catching or Pulling Derivatives on Squat Jump and Countermovement Jump Force-Time Adaptations. J Funct Morphol Kinesiol 2020; 5:E28. [PMID: 33467244 PMCID: PMC7739439 DOI: 10.3390/jfmk5020028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to examine the changes in squat jump (SJ) and countermovement jump (CMJ) force-time curve characteristics following 10 weeks of training with either load-matched weightlifting catching (CATCH) or pulling derivatives (PULL) or pulling derivatives that included force- and velocity-specific loading (OL). Twenty-five resistance-trained men were randomly assigned to the CATCH, PULL, or OL groups. Participants completed a 10 week, group-specific training program. SJ and CMJ height, propulsion mean force, and propulsion time were compared at baseline and after 3, 7, and 10 weeks. In addition, time-normalized SJ and CMJ force-time curves were compared between baseline and after 10 weeks. No between-group differences were present for any of the examined variables, and only trivial to small changes existed within each group. The greatest improvements in SJ and CMJ height were produced by the OL and PULL groups, respectively, while only trivial changes were present for the CATCH group. These changes were underpinned by greater propulsion forces and reduced propulsion times. The OL group displayed significantly greater relative force during the SJ and CMJ compared to the PULL and CATCH groups, respectively. Training with weightlifting pulling derivatives may produce greater vertical jump adaptations compared to training with catching derivatives.
Collapse
Affiliation(s)
- Timothy J. Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha, WI 53186, USA;
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford, Greater Manchester M6 6PU, UK; (J.J.M.); (P.C.)
| | - Shana M. McKeever
- Department of Human Movement Sciences, Carroll University, Waukesha, WI 53186, USA;
| | - John J. McMahon
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford, Greater Manchester M6 6PU, UK; (J.J.M.); (P.C.)
| | - Paul Comfort
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford, Greater Manchester M6 6PU, UK; (J.J.M.); (P.C.)
- Centre for Exercise and Sports Science Research, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|