1
|
Ouerghi N, Abassi W, Jebabli N, Feki M, Bouassida A, Weiss K, Rosemann T, Knechtle B. Crocus Sativus Linnaeus (Saffron) intake does not affect physiological and perceptual responses during a repeated sprint test in healthy active young males. BMC Res Notes 2024; 17:246. [PMID: 39227898 PMCID: PMC11373116 DOI: 10.1186/s13104-024-06918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024] Open
Abstract
The study aimed to investigate the effects of acute ingestion of saffron (SAF) on physiological (i.e., heart rate and blood lactate) and perceptual (i.e., ratings of perceived exertion [RPE] and feeling scale) measures in response to a repeated-sprint ability test (RSS) in healthy young males (N = 22; mean ± SD: age, 21.7 ± 1.24 yrs.). All participants completed two experimental trials with a one-week washout period using a double-blind, placebo-controlled, crossover design. In each session, the participants were randomly chosen to receive either a capsule of saffron (300 mg) (SAF session) or a capsule of lactose (PLB session) two hours before performing the RSS.No significant differences (p > 0.05) were found for heart rate, RPE, and feeling scale between the SAF or PLB sessions at pre- and post-RSS. There were no significant changes (p > 0.05) in peak time, total time, fatigue index, and blood lactate in either the SAF or PLB sessions. Acute SAF ingestion did not significantly improve RSS performance nor physiological and perceptual measures in active young males. Future trials should address the topic by using shortened/prolonged higher doses of SAF on biological, physical, physiological, and perceptual responses to acute and chronic exercise.
Collapse
Affiliation(s)
- Nejmeddine Ouerghi
- Research Unit "Sport Sciences, Health and Movement" (UR22JS01) High Institute of Sport and Physical Education of Kef, University of Jendouba, Kef, 7100, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Rabta Hospital, Tunis, LR99ES11, 1007, Tunisia
- University of Gafsa, High Institute of Sport and Physical Education of Gafsa, Gafsa, 2100, Tunisia
| | - Wissal Abassi
- Research Unit "Sport Sciences, Health and Movement" (UR22JS01) High Institute of Sport and Physical Education of Kef, University of Jendouba, Kef, 7100, Tunisia
| | - Nidhal Jebabli
- Research Unit "Sport Sciences, Health and Movement" (UR22JS01) High Institute of Sport and Physical Education of Kef, University of Jendouba, Kef, 7100, Tunisia
| | - Moncef Feki
- Faculty of Medicine of Tunis, University of Tunis El Manar, Rabta Hospital, Tunis, LR99ES11, 1007, Tunisia
| | - Anissa Bouassida
- Research Unit "Sport Sciences, Health and Movement" (UR22JS01) High Institute of Sport and Physical Education of Kef, University of Jendouba, Kef, 7100, Tunisia
| | - Katja Weiss
- Institute of Primary Care, University of Zurich, Zurich, 8000, Switzerland
| | - Thomas Rosemann
- Institute of Primary Care, University of Zurich, Zurich, 8000, Switzerland
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, Zurich, 8000, Switzerland.
- Medbase St. Gallen Am Vadianplatz, Vadianstrasse 26, St. Gallen, 9000, Switzerland.
| |
Collapse
|
2
|
Harlow J, Blodgett K, Stedman J, Pojednic R. Dietary Supplementation on Physical Performance and Recovery in Active-Duty Military Personnel: A Systematic Review of Randomized and Quasi-Experimental Controlled Trials. Nutrients 2024; 16:2746. [PMID: 39203882 PMCID: PMC11357047 DOI: 10.3390/nu16162746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Warfighters, often called tactical athletes, seek dietary supplementation to enhance training and recovery. Roughly 69% of active-duty US military personnel have reported consuming dietary supplements. The objective of this systematic review was to examine the impact of dietary supplements on muscle-related physical performance and recovery in active-duty military personnel. METHODS Randomized controlled trials and quasi-experimental controlled trials of oral dietary supplementation in active-duty military members were examined. A protocol was registered (PROSPERO CRD42023401472), and a systematic search of MEDLINE and CINAHL was undertaken. Inclusion criteria consisted of studies published between 1990-2023 with outcomes of muscle performance and recovery among active-duty military populations. The risk of bias was assessed with the McMaster University Guidelines and Critical Review Form for Quantitative Studies. RESULTS Sixteen studies were included. Four were conducted on protein or carbohydrate; four on beta-alanine alone, creatine alone, or in combination; two on mixed nutritional supplements; two on probiotics alone or in combination with beta hydroxy-beta methylbutyrate calcium; and four on phytonutrient extracts including oregano, beetroot juice, quercetin, and resveratrol. Ten examined outcomes related to physical performance, and six on outcomes of injury or recovery. Overall, protein, carbohydrate, beta-alanine, creatine, and beetroot juice modestly improved performance, while quercetin did not. Protein, carbohydrates, beta-alanine, probiotics, and oregano reduced markers of inflammation, while resveratrol did not. CONCLUSIONS Nutrition supplementation may have small benefits on muscle performance and recovery in warfighters. However, there are significant limitations in interpretation due to the largely inconsistent evidence of ingredients and comparable outcomes. Thus, there is inadequate practical evidence to suggest how dietary supplementation may affect field performance.
Collapse
Affiliation(s)
- Jacie Harlow
- Department of Health and Human Performance, Norwich University, Northfield, VT 05663, USA (K.B.)
| | - Kylie Blodgett
- Department of Health and Human Performance, Norwich University, Northfield, VT 05663, USA (K.B.)
| | - Jenna Stedman
- Department of Nutrition & Dietetics, Kansas University Medical Center, Kansas City, KS 66103, USA;
| | - Rachele Pojednic
- Department of Health and Human Performance, Norwich University, Northfield, VT 05663, USA (K.B.)
- Stanford Lifestyle Medicine, Stanford Prevention Research Center, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Wang Y, Tian Z, Li Z, Kim JC. Effects of Flavonoid Supplementation on Athletic Performance in Healthy Adults: A Systematic Review and Meta-Analysis. Nutrients 2023; 15:4547. [PMID: 37960199 PMCID: PMC10647833 DOI: 10.3390/nu15214547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Flavonoids, known for their antioxidant properties, can prevent reactive oxygen species (ROS) and influence athletic performance through various physiological and metabolic mechanisms. However, there are conflicting results after summarizing and analyzing the relevant literature. Hence, it is warranted to evaluate the overall impact of flavonoids on athletic performance in healthy adults based on a comprehensive and systematic review and meta-analysis. After searching four databases for literature published since their respective establishments until February 2023 and conducting publication bias and quality assessments, a total of 22 studies were ultimately included. The names and doses of flavonoids, various outcome measurements, as well as types of training, were extracted from included studies. The athletic performance outcomes from the included studies were categorized into 'performance tests' and 'exercise tolerance,' depending on the type of training undertaken. Several statistical results, such as pooled effect size (ES), among others, were implemented by meta-analysis using the random effects model. The results of meta-analysis suggest that there is currently sufficient evidence (ES = -0.28; 95% confidence interval (CI): [-0.50, -0.07]; p = 0.01 and ES = 0.23; 95% CI: [0.07, 0.39]; p = 0.005) to support the notion that flavonoid supplementation enhanced athletic performance in performance tests and exercise tolerance. In addition, among the subgroups, nonsignificant results were observed for athletes (p = 0.28) and acute supplementation (p = 0.41) in performance tests, as well as athletes (p = 0.57) and acute supplementation (p = 0.44) in exercise tolerance. Meanwhile, significant results were found for non-athletes (p = 0.04) and long-term supplementation (p = 0.02) in performance tests, as well as non-athletes (p = 0.005) in performance tests and long-term supplementation (p = 0.006) in exercise tolerance. The nonsignificant results were likely due to the limitation in the number of related papers, sample sizes, optimal dosage, duration, type of flavonoids, and other factors. Therefore, future research should focus on further investigating these relationships with larger sample sizes, optimal dosage, duration, and type of flavonoids to provide more robust conclusions.
Collapse
Affiliation(s)
| | | | | | - Jae Cheol Kim
- Department of Sport Science, Jeonbuk National University, Jeonju 54896, Republic of Korea; wangying890922-@jbnu.ac.kr (Y.W.); (Z.T.); (Z.L.)
| |
Collapse
|
4
|
Gonçalves AC, Gaspar D, Flores-Félix JD, Falcão A, Alves G, Silva LR. Effects of Functional Phenolics Dietary Supplementation on Athletes' Performance and Recovery: A Review. Int J Mol Sci 2022; 23:4652. [PMID: 35563043 PMCID: PMC9102074 DOI: 10.3390/ijms23094652] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, many efforts have been made to identify micronutrients or nutritional strategies capable of preventing, or at least, attenuating, exercise-induced muscle damage and oxidative stress, and improving athlete performance. The reason is that most exercises induce various changes in mitochondria and cellular cytosol that lead to the generation of reactive species and free radicals whose accumulation can be harmful to human health. Among them, supplementation with phenolic compounds seems to be a promising approach since their chemical structure, composed of catechol, pyrogallol, and methoxy groups, gives them remarkable health-promoting properties, such as the ability to suppress inflammatory processes, counteract oxidative damage, boost the immune system, and thus, reduce muscle soreness and accelerate recovery. Phenolic compounds have also already been shown to be effective in improving temporal performance and reducing psychological stress and fatigue. Therefore, the aim of this review is to summarize and discuss the current knowledge on the effects of dietary phenolics on physical performance and recovery in athletes and sports practitioners. Overall, the reports show that phenolics exert important benefits on exercise-induced muscle damage as well as play a biological/physiological role in improving physical performance.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Dário Gaspar
- Department of Sport Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal;
| | - José David Flores-Félix
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
| | - Amílcar Falcão
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal;
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
- CPIRN-UDI/IPG—Center of Potential and Innovation of Natural Resources, Research Unit for Inland Development (UDI), Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| |
Collapse
|
5
|
Does Flavonoid Consumption Improve Exercise Performance? Is It Related to Changes in the Immune System and Inflammatory Biomarkers? A Systematic Review of Clinical Studies since 2005. Nutrients 2021; 13:nu13041132. [PMID: 33808153 PMCID: PMC8065858 DOI: 10.3390/nu13041132] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Flavonoids are attracting increasing attention due to their antioxidant, cardioprotective, and immunomodulatory properties. Nevertheless, little is known about their role in exercise performance in association with immune function. This systematic review firstly aimed to shed light on the ergogenic potential of flavonoids. A search strategy was run using SCOPUS database. The returned studies were screened by prespecified eligibility criteria, including intervention lasting at least one week and performance objectively quantified, among others. Fifty-one studies (54 articles) met the inclusion criteria, involving 1288 human subjects, either physically untrained or trained. Secondly, we aimed to associate these studies with the immune system status. Seventeen of the selected studies (18 articles) assessed changes in the immune system. The overall percentage of studies reporting an improved exercise performance following flavonoid supplementation was 37%, the proportion being 25% when considering quercetin, 28% for flavanol-enriched extracts, and 54% for anthocyanins-enriched extracts. From the studies reporting an enhanced performance, only two, using anthocyanin supplements, focused on the immune system and found certain anti-inflammatory effects of these flavonoids. These results suggest that flavonoids, especially anthocyanins, may exert beneficial effects for athletes’ performances, although further studies are encouraged to establish the optimal dosage and to clarify their impact on immune status.
Collapse
|
6
|
Zhang Z, Michniak-Kohn B. Flavosomes, novel deformable liposomes for the co-delivery of anti-inflammatory compounds to skin. Int J Pharm 2020; 585:119500. [DOI: 10.1016/j.ijpharm.2020.119500] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/25/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023]
|
7
|
Williamson E. Nutritional implications for ultra-endurance walking and running events. EXTREME PHYSIOLOGY & MEDICINE 2016; 5:13. [PMID: 27895900 PMCID: PMC5117571 DOI: 10.1186/s13728-016-0054-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 11/01/2016] [Indexed: 01/15/2023]
Abstract
This paper examines the various nutritional challenges which athletes encounter in preparing for and participating in ultra-endurance walking and running events. Special attention is paid to energy level, performance, and recovery within the context of athletes' intake of carbohydrate, protein, fat, and various vitamins and minerals. It outlines, by way of a review of literature, those factors which promote optimal performance for the ultra-endurance athlete and provides recommendations from multiple researchers concerned with the nutrition and performance of ultra-endurance athletes. Despite the availability of some research about the subject, there is a paucity of longitudinal material which examines athletes by nature and type of ultra-endurance event, gender, age, race, and unique physiological characteristics. Optimal nutrition results in a decreased risk of energy depletion, better performance, and quicker full-recovery.
Collapse
Affiliation(s)
- Eric Williamson
- Department of Exercise Science, University of Toronto, 55 Harbord Street, Toronto, ON M5S 2W6 Canada
| |
Collapse
|
8
|
Campbell B, Wilborn C, La Bounty P, Taylor L, Nelson MT, Greenwood M, Ziegenfuss TN, Lopez HL, Hoffman JR, Stout JR, Schmitz S, Collins R, Kalman DS, Antonio J, Kreider RB. International Society of Sports Nutrition position stand: energy drinks. J Int Soc Sports Nutr 2013; 10:1. [PMID: 23281794 PMCID: PMC3538552 DOI: 10.1186/1550-2783-10-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 12/31/2012] [Indexed: 12/18/2022] Open
Abstract
Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on a critical analysis of the literature on the safety and efficacy of the use of energy drinks (ED) or energy shots (ES). The ISSN has concluded the following. 1. Although ED and ES contain a number of nutrients that are purported to affect mental and/or physical performance, the primary ergogenic nutrients in most ED and ES appear to be carbohydrate and/or caffeine. 2. The ergogenic value of caffeine on mental and physical performance has been well-established but the potential additive benefits of other nutrients contained in ED and ES remains to be determined. 3. Consuming ED 10-60 minutes before exercise can improve mental focus, alertness, anaerobic performance, and/or endurance performance. 4. Many ED and ES contain numerous ingredients; these products in particular merit further study to demonstrate their safety and potential effects on physical and mental performance. 5. There is some limited evidence that consumption of low-calorie ED during training and/or weight loss trials may provide ergogenic benefit and/or promote a small amount of additional fat loss. However, ingestion of higher calorie ED may promote weight gain if the energy intake from consumption of ED is not carefully considered as part of the total daily energy intake. 6. Athletes should consider the impact of ingesting high glycemic load carbohydrates on metabolic health, blood glucose and insulin levels, as well as the effects of caffeine and other stimulants on motor skill performance. 7. Children and adolescents should only consider use of ED or ES with parental approval after consideration of the amount of carbohydrate, caffeine, and other nutrients contained in the ED or ES and a thorough understanding of the potential side effects. 8. Indiscriminant use of ED or ES, especially if more than one serving per day is consumed, may lead to adverse events and harmful side effects. 9. Diabetics and individuals with pre-existing cardiovascular, metabolic, hepatorenal, and neurologic disease who are taking medications that may be affected by high glycemic load foods, caffeine, and/or other stimulants should avoid use of ED and/or ES unless approved by their physician.
Collapse
Affiliation(s)
- Bill Campbell
- Exercise and Performance Nutrition Laboratory, Dept. of Physical Education and Exercise Science, University of South Florida, 4202 E. Fowler Avenue, PED 214, Tampa, FL, 33620, USA
| | - Colin Wilborn
- Human Performance Laboratory, University of Mary Hardin-Baylor, Belton, TX, 76513, USA
| | - Paul La Bounty
- Department of Health, Human Performance, and Recreation, Baylor University, Box 97313, Waco, TX, 76798, USA
| | - Lem Taylor
- Human Performance Laboratory, University of Mary Hardin-Baylor, Belton, TX, 76513, USA
| | - Mike T Nelson
- Department of Health and Human Performance, University of St.Thomas, St. Paul, MN, 55105, USA
| | - Mike Greenwood
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, Texas, TX, 77843-4243, USA
| | | | - Hector L Lopez
- The Center for Applied Health Sciences, Stow, OH, 44224, USA
| | - Jay R Hoffman
- Institute of Exercise Physiology and Wellness, Department of Sport and Exercise Science, University of Central Florida, Orlando, FL, 32816, USA
| | - Jeffrey R Stout
- Institute of Exercise Physiology and Wellness, Department of Sport and Exercise Science, University of Central Florida, Orlando, FL, 32816, USA
| | - Stephen Schmitz
- Medical Surveillance and Risk Management, Shire HGT, 300 Shire Way, Lexington, MA, 02421, USA
| | | | - Doug S Kalman
- Miami Research Associates, Endocrinology & Nutrition Department, 6141 Sunset Drive - Suite 301, Miami, FL, 33143, USA
| | - Jose Antonio
- Farquhar College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Richard B Kreider
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, Texas, TX, 77843-4243, USA
| |
Collapse
|