1
|
Mantskava M, Chkhitauri L, Shekiladze E, Tskhvediani N, Kalmakhelidze S, Momtselidze N, Prantl L, Jung F, Machaliński B, Wojciech P, Sanikidze T. Impact of different severity hyperglycemia on erythrocyte rheological properties1. Clin Hemorheol Microcirc 2024; 87:271-281. [PMID: 38363605 DOI: 10.3233/ch-239104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
BACKGROUND The triad "insulin resistance, prediabetes, diabetes" is three independent neologies with characteristic features and development. In addition, each are characterized by progression and the possibility of transition from one form to other. Due to the fact that diabetes is one of the common diseases associated with high rates of disability, it is necessary to improve diagnostic methods and educational regimens for successful prevention and treatment of the disease. OBJECTIVE We investigated Band 3 protein (B3p) level, osmotic resistance of erythrocytes, the total antioxidant activity (TAA) of blood serum, level of HbA1 in group patients with insulin resistance (IR), prediabetes, and Type 2 Diabetes Mellitus (T2DM) and comparative with health control group. METHODS We used original, accurate research methods that measure the essence of the studied quantities. RESULTS Disruptions of glucose and insulin homeostasis ay lead to the initiation of oxidative stress (in our study demonstrated by a decrease of TAA of blood serum) increased redox-sensitive PTP activity and aberrant band 3 phosphorylation, potentially leading to reduced erythrocyte deformability. At the same time glycation of Hb during T2DM may affect its cross-link with membrane proteins, in particular with B3p, and although appears to limit its cross-linking and decrease its clusterization ability, induces alterations in the cytoskeletal matrix, and thereby decrease erythrocytes' osmotic resistance making them more susceptible to hemolysis. CONCLUSIONS The osmotic resistance of the erythrocytes can be used as a sensitive marker for the detection of the early stages of hyperglycemia (prediabetes). This set of clinical trials will make it possible to identify diseases that make up the triad at an early stage. Early detection of disorders and continued research in this direction will help in the development of a diagnostic scheme for the prevention of such patients. Based on our data, research into anti-oxidation drugs is very important. With the help of the array of studies described in the article and antioxidant treatment, the likelihood of successful treatment will increase.
Collapse
Affiliation(s)
- M Mantskava
- Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
- Tbilisi State Medical University, Tbilisi, Georgia
| | - L Chkhitauri
- Ivane Javakhishvili State University, Tbilisi, Georgia
| | - E Shekiladze
- Tbilisi State Medical University, Tbilisi, Georgia
| | | | - S Kalmakhelidze
- Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
- Tbilisi State Medical University, Tbilisi, Georgia
| | - N Momtselidze
- Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| | - L Prantl
- University Hospital Regensburg, Regensburg, Germany
| | - F Jung
- Brandenburg University of Technology, Cottbus Senftenberg, Germany
| | | | - P Wojciech
- Pomeranian Medical University, Szczecin, Poland
| | - T Sanikidze
- Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
- Tbilisi State Medical University, Tbilisi, Georgia
| |
Collapse
|
2
|
Zhong Y, Xu Y, Tan Y, Zhang X, Wang R, Chen D, Wang Z, Zhong X. Lipidomics of the erythrocyte membrane and network pharmacology to explore the mechanism of mangiferin from Anemarrhenae rhizoma in treating type 2 diabetes mellitus rats. J Pharm Biomed Anal 2023; 230:115386. [PMID: 37044004 DOI: 10.1016/j.jpba.2023.115386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
Mangiferin, a natural C-glucoside xanthone, is one of the major bioactive ingredients derived from the dry rhizome of Anemarrhenae rhizome, which has been reported to exhibit various pharmacological effects, including anti-oxidant, anti-inflammatory, anti-fatty liver, anti-metabolic syndrome, and anti-diabetic. However, the precise molecular mechanisms underlying its impact on phospholipid metabolism in the erythrocyte membrane of type 2 diabetes mellitus (T2DM) remain unclear. The present research aimed to evaluate the effects of mangiferin on glucose and lipid metabolism in T2DM model rats and discuss the relationship between lipid metabolites and potential targets involved in the hypoglycemic effects by integrating lipidomics and network pharmacology method. After 8 consecutive weeks of treatment with mangiferin, the T2DM model rats exhibited significant improvements in several biochemical indices and cytokines, including fasting blood glucose (FBG) levels after 12 h of fasting, fasting insulin level (FINS), total cholesterol (T-CHO), triacylglycerols (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), homeostasis model assessment of insulin resistance (HMOA-IR), TNF-α and IL-6. A total of 22 differential lipid metabolites were selected from erythrocyte membrane phospholipids, which were closely associated with the processes of T2DM. These metabolites mainly belonged to glycerophospholipid metabolism and sphingolipid metabolism. Based on network pharmacology analysis, 22 genes were recognized as the potential targets of mangiferin against diabetes. Moreover, molecular docking analysis revealed that the targets of TNF, CASP3, PTGS2, MMP9, RELA, PLA2G2A, PPARA, and NOS3 could be involved in the modulation of inflammatory signaling pathways and arachidonic acid (AA) metabolism to improve IR and hyperglycemia. The combination of immunohistochemical staining and PCR showed that mangiferin could treat T2DM by regulating the expression of PPARγ protein and NF-κB mRNA expression to impact glycerophospholipids (GPs) and AA metabolism. The present study showed that mangiferin might alleviate IR and hyperglycemia of T2DM model rats via multiple targets and multiple pathways to adjust their phospholipid metabolism, which may be the underlying mechanism for mangiferin in the treatment of T2DM.
Collapse
Affiliation(s)
- Yanmei Zhong
- Centre for Drug Research and Development, Guangdong Pharmaceutical University, 280 Waihuan East Road, Guangzhou 510006, China
| | - Yingying Xu
- Department of Pharmacy, the Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou 510260, China
| | - Yongzhen Tan
- Department of Traditional Chinese Medicine, the Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou 510260, China
| | - Xuanxuan Zhang
- Centre for Drug Research and Development, Guangdong Pharmaceutical University, 280 Waihuan East Road, Guangzhou 510006, China
| | - Ruolun Wang
- Department of Pharmacy, the Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou 510260, China
| | - Danmin Chen
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou 510260, China
| | - Zhaotao Wang
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou 510260, China.
| | - Xunlong Zhong
- Department of Pharmacy, the Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou 510260, China.
| |
Collapse
|
3
|
Cheng Y, Wang H, Yao N, Ren Q, Bai Y, You LW, Chen XF, Guo JR. Autologous blood transfusion impedes glycolysis in macrophages to inhibit red blood cell injury in type 2 diabetes through PI3K/Akt/PKM2 signaling axis. Acta Diabetol 2023; 60:481-492. [PMID: 36625925 DOI: 10.1007/s00592-022-02026-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023]
Abstract
AIMS To explore the effect and mechanism of autologous blood transfusion impeding glycolysis in macrophages and inhibiting red blood cells (RBCs) injury in type 2 diabetes through PI3K/Akt/PKM2 signaling axis. METHODS Cell transfection were performed and diabetic mice model was constructed. The group were divided into control (NC) and type 2 diabetes model (T2D). T2D model mice were injected with preserved autologous blood, si-PI3K, si-PKM2, si-NC Tran+T2D, (Tran+T2D+si-PI3K, Tran+T2D si-PKM2, Tran+T2D+si-NC) through tail vein. The anti-oxidative effects of transfusion of autologous blood in CD14+ monocytes were detected. The expression of PI3K/Akt/PKM2 protein in CD14+ monocytes were examined by western blot. Effect of autologous blood transfusion ameliorating RBCs injury by regulating PI3K and PKM2 in T2D mice were detected. RESULTS Effects on oxidative stress in T2D mice were all overturned after autologous blood transfusion in T2D mice. The results manifested that the levels of PI3K, pAkt and PKM2 were downregulated, while the expression of HIF-1α was upregulated in CD14+ monocytes from T2D mice, whereas these influences were all effectively reversed by autologous blood transfusion in T2D mice. The survival rate of RBCs in the serum of T2D mice was declined in the serum of T2D mice, while the effect was reversed by the autologous blood transfusion. CONCLUSION Autologous blood transfusion can reduce glycolysis in macrophages and inhibit the release of inflammatory factors through the PI3K/PKM2 signal axis, thereby inhibiting red blood cell damage and improving the oxygen-carrying capacity and survival activity of RBCs in diabetic patients.
Collapse
Affiliation(s)
- Yong Cheng
- Department of Anesthesiology, Shanghai Gongli Hospital, Naval Military Medical University, No. 219, Miaopu Road, Pudong New Area, Shanghai, 200135, People's Republic of China
| | - Huan Wang
- Department of Anesthesiology, Shanghai Gongli Hospital, Naval Military Medical University, No. 219, Miaopu Road, Pudong New Area, Shanghai, 200135, People's Republic of China
| | - Na Yao
- Department of Anesthesiology, Shanghai Gongli Hospital, Naval Military Medical University, No. 219, Miaopu Road, Pudong New Area, Shanghai, 200135, People's Republic of China
| | - Qin Ren
- Department of Anesthesiology, Shanghai Gongli Hospital, Naval Military Medical University, No. 219, Miaopu Road, Pudong New Area, Shanghai, 200135, People's Republic of China
| | - Yu Bai
- Department of Anesthesiology, Shanghai Gongli Hospital, Naval Military Medical University, No. 219, Miaopu Road, Pudong New Area, Shanghai, 200135, People's Republic of China
| | - Lai-Wei You
- Department of Anesthesiology, Shanghai Gongli Hospital, Naval Military Medical University, No. 219, Miaopu Road, Pudong New Area, Shanghai, 200135, People's Republic of China
| | - Xiao-Fei Chen
- Department of Anesthesiology, Lihuili Hospital, Medical School of Ningbo University, Zhejiang, 315040, China.
| | - Jian-Rong Guo
- Department of Anesthesiology, Shanghai Gongli Hospital, Naval Military Medical University, No. 219, Miaopu Road, Pudong New Area, Shanghai, 200135, People's Republic of China.
| |
Collapse
|
4
|
Kurhaluk N, Tkachenko H, Tomin V. Invitro impact of a combination of red and infrared LEDs, infrared laser and magnetic field on biomarkers of oxidative stress and hemolysis of erythrocytes sampled from healthy individuals and diabetes patients. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 242:112685. [PMID: 36921401 DOI: 10.1016/j.jphotobiol.2023.112685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
AIMS Low-intensity infrared laser irradiation with output emissions of the laser and LED for in vitro irradiation of plasma and erythrocyte samples collected from healthy individuals and diabetes mellitus (DM) patients was used in the current study. METHODS The generated emission was in the range 0.85-0.89 nm with pulse duration near 130 ns and repetition rates of pulses 50, 150, 600, and 1500 Hz, average power 0, 50, or 100 mW, in the range of 1-9 min for different 30 variants of irradiation. The levels of 2-thiobarbituric-acid reactive substances (TBARS), aldehydic and ketonic derivatives of oxidatively modified proteins (OMP), total antioxidant capacity (TAC), acid-induced resistance of erythrocytes, and activities of the main antioxidant enzymes were assessed in erythrocyte and plasma samples after irradiation. RESULTS The low-intensity infrared laser irradiation and low-intensity light emitted by a red LED decreased the lipid peroxidation levels in the erythrocytes of both healthy individuals and DM patients. A statistically significant decrease in TBARS and OMP levels and an increase in the TAC level were observed at the irradiation energy of 34.39 and 68.79 J/cm2 for samples collected from both healthy individuals and DM patients. The effects of the irradiation were accompanied by a statistically significant decrease in catalase activity of both healthy individuals and DM patients. CONCLUSIONS In many variants of the laser irradiation and low-intensity light emitted by a red LED used in our study, a decrease in the percent of hemolyzed erythrocytes was observed, suggesting that laser therapy protocols should take into account fluencies, frequencies, and wavelengths of the laser before the beginning of treatment, especially in DM patients.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk, Poland.
| | - Halyna Tkachenko
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk, Poland
| | - Vladimir Tomin
- Department of Physics, Institute of Science and Technology, Pomeranian University in Słupsk, Słupsk, Poland
| |
Collapse
|
5
|
Zajda A, Sikora J, Hynninen M, Tampio J, Huttunen KM, Markowicz-Piasecka M. Substituent effects of sulfonamide derivatives of metformin that can dually improve cellular glucose utilization and anti-coagulation. Chem Biol Interact 2023; 373:110381. [PMID: 36746201 DOI: 10.1016/j.cbi.2023.110381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/03/2023] [Indexed: 02/07/2023]
Abstract
Metformin, the most frequently prescribed medicine for the management of type 2 diabetes, has been shown to reduce cardiovascular events in diabetic patients in pre-clinical and clinical studies. The present work reports the design, synthesis, and biological assessment of the impact of six benzenesulfonamide biguanides on various aspects of hemostasis, cell function, red blood cell integrity (RBC), and their ability to uptake glucose in human umbilical endothelial cells (HUVECs). It was found that all synthesized o- and m-benzenesulfonamides, particularly derivatives with nitro (3) and amino groups (4), are characterized by a good safety profile in HUVECs, which was further confirmed in the cellular integrity studies. The biguanide analogues with methoxy group (1, 2) and an amino substituent (5, 6) significantly increased glucose utilization in HUVECs, similarly to the parent drug. Intriguingly, compounds 1, 3, and 6 favourably influenced some of the coagulation parameters. Furthermore, derivative 3 also slowed the process of fibrin polymerization, indicating more beneficial anti-coagulant properties than metformin. None of the novel metformin analogues interact strongly with the erythrocyte lipid-protein bilayer. Our findings indicate that derivative 3 has highly desirable anti-coagulant properties, and compounds 1 and 6 have potential dual-action activity, including anti-hyperglycaemic properties and anti-coagulant activity. As such, these derivatives can be used as lead molecules for further development of anti-diabetic agents with a beneficial effect on hypercoagulability.
Collapse
Affiliation(s)
- Agnieszka Zajda
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego1, 90-151, Lodz, Poland.
| | - Joanna Sikora
- Department of Bioinorganic Chemistry, Medical University of Lodz, ul. Muszyńskiego1, 90-151, Lodz, Poland.
| | - Mira Hynninen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Janne Tampio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Magdalena Markowicz-Piasecka
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego1, 90-151, Lodz, Poland.
| |
Collapse
|
6
|
Zhang Z, Tai Y, Liu Z, Pu Y, An L, Li X, Li L, Wang Y, Yang Z, Duan C, Hou K, Zhang Q, Ren F, Ma Q, Su Y. Effects of d-ribose on human erythrocytes: Non-enzymatic glycation of hemoglobin, eryptosis, oxidative stress and energy metabolism. Blood Cells Mol Dis 2023; 99:102725. [PMID: 36682143 DOI: 10.1016/j.bcmd.2023.102725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
d-Ribose is not only an important component of some biomacromolecules, but also an active pentose with strong reducibility and non-enzymatic glycation ability. Previous studies reported the diverse role of d-ribose in different cells. In this study, the effects of d-ribose on non-enzymatic glycation of hemoglobin (Hb), as well as eryptosis, oxidative stress and energy metabolism of erythrocytes were observed by molecular fluorescence spectrophotometry, multi-wavelength spectrophotometry, high-pressure liquid chromatography (HPLC), mass spectrometry (MS) and flow cytometer. The results showed that d-ribose had the strongest non-enzymatic glycation ability to Hb in vitro when compared with other monosaccharides, and could enter the erythrocytes in a concentration-dependent manner, which was not inhibited by the specific glucose transporter 1 (GLUT1) inhibitor WZB117. In addition, d-ribose incubation increased the HbA1c, hemolysis, eryptosis, and ROS level of erythrocytes significantly more than that of d-glucose, however, no changes were observed in the levels of ATP, NADPH, and other intermediate energy metabolites in d-ribose treatment. Therefore, the strong non-enzymatic glycation ability of d-ribose may play an important role in erythrocyte damage.
Collapse
Affiliation(s)
- Zehong Zhang
- Institute of Blood Conservation, Baotou Medical College, 31# Jianshe Road, Donghe District, 014040 Baotou, Inner Mongolia, China
| | - Yu Tai
- Institute of Blood Conservation, Baotou Medical College, 31# Jianshe Road, Donghe District, 014040 Baotou, Inner Mongolia, China
| | - Zhi Liu
- Institute of Blood Conservation, Baotou Medical College, 31# Jianshe Road, Donghe District, 014040 Baotou, Inner Mongolia, China
| | - Yunxia Pu
- Physical and Chemical Laboratory, Inner Mongolia Center for Disease Control and Prevention, South Section of Yongping Road, Xincheng District, 010080 Hohhot, Inner Mongolia, China
| | - Liang An
- Clinical Laboratory, The Fourth Hospital of Baotou, 1(#) Aogen Road, Qingshan District, 014030, Baotou, Inner Mongolia, China
| | - Xiaojing Li
- Institute of Blood Conservation, Baotou Medical College, 31# Jianshe Road, Donghe District, 014040 Baotou, Inner Mongolia, China
| | - Lili Li
- Institute of Blood Conservation, Baotou Medical College, 31# Jianshe Road, Donghe District, 014040 Baotou, Inner Mongolia, China
| | - Yaqi Wang
- Institute of Blood Conservation, Baotou Medical College, 31# Jianshe Road, Donghe District, 014040 Baotou, Inner Mongolia, China
| | - Zhongbin Yang
- Institute of Blood Conservation, Baotou Medical College, 31# Jianshe Road, Donghe District, 014040 Baotou, Inner Mongolia, China
| | - Chao Duan
- Institute of Blood Conservation, Baotou Medical College, 31# Jianshe Road, Donghe District, 014040 Baotou, Inner Mongolia, China
| | - Kun Hou
- Physical and Chemical Laboratory, Inner Mongolia Center for Disease Control and Prevention, South Section of Yongping Road, Xincheng District, 010080 Hohhot, Inner Mongolia, China
| | - Qing Zhang
- Physical and Chemical Laboratory, Inner Mongolia Center for Disease Control and Prevention, South Section of Yongping Road, Xincheng District, 010080 Hohhot, Inner Mongolia, China
| | - Fuyu Ren
- Institute of Blood Conservation, Baotou Medical College, 31# Jianshe Road, Donghe District, 014040 Baotou, Inner Mongolia, China
| | - Qiang Ma
- Institute of Blood Conservation, Baotou Medical College, 31# Jianshe Road, Donghe District, 014040 Baotou, Inner Mongolia, China.
| | - Yan Su
- Institute of Blood Conservation, Baotou Medical College, 31# Jianshe Road, Donghe District, 014040 Baotou, Inner Mongolia, China.
| |
Collapse
|
7
|
Arkew M, Asmerom H, Tesfa T, Tsegaye S, Gemechu K, Bete T, Haile K. Red Blood Cell Parameters and Their Correlation with Glycemic Control Among Type 2 Diabetic Adult Patients in Eastern Ethiopia: A Comparative Cross-Sectional Study. Diabetes Metab Syndr Obes 2022; 15:3499-3507. [PMID: 36388065 PMCID: PMC9656327 DOI: 10.2147/dmso.s386093] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Background Diabetes has been proposed to inflict an insult on the hematopoietic milieu marked by changes in hematological indices including red blood cell parameters. Thus, this study aimed to assess the red blood cell parameters and their correlation with glycemic control in type 2 diabetic adult patients in comparison with apparently healthy individuals. Methods A comparative cross-sectional study was conducted at the chronic illness clinic of Hiwot Fana Comprehensive Specialized University Hospital from May 20 to July 10, 2022. A total of 220 (110 type 2 diabetic patients and 110 controls) study participants were selected by a simple random sampling technique. Five milliliters of venous blood were collected by the vacutainer blood collection technique. Red blood cell parameters and blood glucose levels were determined using UniCel DxH 800 and Biosystems A25 analyzers, respectively. Independent sample t-test and Pearson correlation test were used for the data analysis. P-value <0.05 was considered statistically significant. Results Statistically significant difference was observed in RBC parameters of T2DM patients and the control group. The mean RBC count, Hgb, Hct (P < 0.001), and MCHC (P = 0.002) in patients with type 2 diabetes was significantly lower than in the control group. However, the mean of RDW was significantly increased in type 2 diabetic patient groups than in the control group (P < 0.001). The mean RBC count, Hct, and Hgb in patients with good glycemic control were significantly higher than the patients with poor glycemic control. Besides, a statistically significant negative correlation was observed between glycemic control and RBC count, Hgb, and Hct level in diabetic patients. Conclusion In this study, a statistically significant difference was observed in red blood cell parameters of type 2 diabetic patients compared to the control group. A significant negative correlation was noted between glycemic control and RBC parameters in type 2 diabetic patients. Therefore, evaluation of RBC parameters should be considered for better management of patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Mesay Arkew
- School of Medical Laboratory Sciences, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Haftu Asmerom
- School of Medical Laboratory Sciences, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Tewodros Tesfa
- School of Medical Laboratory Sciences, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Setegn Tsegaye
- College of Health and Medical Sciences, Debre Berhan University, Debre Berhan, Ethiopia
| | - Kabtamu Gemechu
- School of Medical Laboratory Sciences, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Tilahun Bete
- Department of Psychiatry, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Kassahun Haile
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Wolkite University, Wolkite, Ethiopia
| |
Collapse
|
8
|
Chkhitauri L, Sanikidze T, Giorgadze E, Asatiani K, Kipiani N, Momtselidze N, Mantskava M. Comprehensive study of the rheological status and intensity of oxidative stress during the progression of type 2 diabetes mellitus to prevent its complications. Clin Hemorheol Microcirc 2022; 83:69-79. [PMID: 36120773 DOI: 10.3233/ch-221512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Prevention of Type 2 diabetes mellitus (T2DM) requires a modifying effect on the pathological processes inducing the β-cell dysfunction. OBJECTIVES the comprehensive study of the violation of rheological parameters in patients with different stages of diabetes and identification of possible links between these alterations with the intensity of the oxidative stress in the patient's body. METHODS 60 patients with IR, prediabetes, T2DM and healthy volunteers were included. Full range of the rheological parameters of the patients' blood - the indicators of erythrocytes aggregation index (EAI), the relative deformability of the erythrocytes membranes (ERDI), blood plasma viscosity (BPV), and oxidative stress intensity (OSI) were examined. RESULTS In patients with insulin resistance (IR), prediabetes, and T2DM the ERDI was statistically significantly lower and BPV - higher compared to control; a significant increase in EAI was detected in the patient group with prediabetes and T2DM compared to the control. CONCLUSION The level of rheological disorders in patients increases with the increase of the level of carbohydrate metabolism disorders and intensity of oxidative stress and reaches a maximum during manifested diabetes. Diagnosis of hemorheological disorders and OSI in T2DM can serve as an early marker of target organ damage possibility.
Collapse
Affiliation(s)
- Lela Chkhitauri
- Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - Tamar Sanikidze
- Tbilisi State Medical University, Tbilisi, Georgia.,Ivane Beritashvili Experimental Center of Biomedicine, Tbilisi, Georgia
| | - Elene Giorgadze
- Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | | | - Nana Kipiani
- Tbilisi State Medical University, Tbilisi, Georgia
| | - Nana Momtselidze
- Ivane Beritashvili Experimental Center of Biomedicine, Tbilisi, Georgia.,Multidisciplinary Science High School, Tbilisi, Georgia.,UNIK-Kutaisi University, Kutaisi, Georgia
| | - Maka Mantskava
- Tbilisi State Medical University, Tbilisi, Georgia.,Ivane Beritashvili Experimental Center of Biomedicine, Tbilisi, Georgia.,Multidisciplinary Science High School, Tbilisi, Georgia.,European University, Tbilisi, Georgia
| |
Collapse
|
9
|
Krisnamurti DGB, Purwaningsih EH, Tarigan TJE, Soetikno V, Louisa M. Hematological indices and their correlation with glucose control parameters in a prediabetic rat model. Vet World 2022; 15:672-678. [PMID: 35497944 PMCID: PMC9047127 DOI: 10.14202/vetworld.2022.672-678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/04/2022] [Indexed: 01/16/2023] Open
Abstract
Background and Aim: Chronic hyperglycemia in prediabetic individuals would progress to diabetes and lead to several systemic disruptions, including hematological parameters. This study aimed to investigate the correlation between prediabetes and hematological indices in a prediabetic rat model. Materials and Methods: Eighteen male rats were randomly divided into two groups of nine. Prediabetes was induced in nine rats by a 3-week high-fat and high-glucose diet, followed by low-dose streptozotocin (STZ) injection (30 mg/kg body weight). The oral glucose tolerance test was performed, and the fasting blood glucose (FBG) and insulin levels were measured 72 h after STZ administration. The control group of nine rats was given standard diets. At the end of the 3rd week, the animals fasted overnight before blood collection. Blood samples were drawn and used for the analysis of the FBG and fasting insulin levels and glycated albumin to define prediabetes criteria before hematology analysis. Results: We found a significant increase in the FBG and insulin levels in the prediabetic versus the control group. There were decreases in red blood cells, hemoglobin, and hematocrit levels and red cell distribution in prediabetic rats versus the control. At the same time, a significant increase in the platelet count was observed in the prediabetic group. There was a positive correlation between FBG and lymphocytes and neutrophil-lymphocyte ratio in prediabetic rats. On the other hand, we found a negative correlation between white blood cell count and glycated albumin. Conclusion: Correlations were found in several hematological parameters in the prediabetic rat models. The changes in hematological indices in prediabetic rats may be further used as a valuable indicator of glycemic control.
Collapse
Affiliation(s)
| | - Erni H. Purwaningsih
- Department of Medical Pharmacy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Tri Juli Edi Tarigan
- Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Vivian Soetikno
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
10
|
Extracellular Vesicles—New Players in Cell-To-Cell Communication in Gestational Diabetes Mellitus. Biomedicines 2022; 10:biomedicines10020462. [PMID: 35203669 PMCID: PMC8962272 DOI: 10.3390/biomedicines10020462] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 12/17/2022] Open
Abstract
Research in extracellular vesicles (EVs) has contributed to a better understanding of physiological and pathophysiological conditions. Biologically active cargo, such as miRNAs and proteins, is critical in many different biological processes. In this context, pregnancy is one of the most complex physiological states, which needs a highly regulated system to ensure the correct nourishment and development of the baby. However, pre-existent maternal conditions and habits can modify the EV-cargo and dysregulate the system leading to pregnancy complications, with gestational diabetes mellitus (GDM) being one of the most reported and influential. Calcification and aging of muscle cells, protein modification in vascular control or variations in the levels of specific miRNAs are some of the changes observed or led by EV populations as adaptation to GDM. Interestingly, insulin sensitivity and glucose tolerance changes are not fully understood to date. Nevertheless, the increasing evidence generated has opened new possibilities in the biomarker discovery field but also in the understanding of cellular mechanisms modified and involved in GDM. This brief review aims to discuss some of the findings in GDM and models used for that purpose and their potential roles in the metabolic alterations during pregnancy, with a focus on insulin sensitivity and glucose tolerance.
Collapse
|
11
|
Asmamaw M, Sime T, Kene K, Fekadie Baye M, Teshome M, Zawdie B. Evaluation of Red Blood Cell Parameters as a Biomarker for Long-Term Glycemic Control Monitoring Among Type 2 Diabetic Patients in Southwest Ethiopia: A Cross-Sectional Study. Diabetes Metab Syndr Obes 2021; 14:4993-5000. [PMID: 35002271 PMCID: PMC8722719 DOI: 10.2147/dmso.s348907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The main aim of this study was to assess red blood cell parameters as a biomarker for long-term glycemic monitoring among T2 DM patients. METHODS Facility-based cross-sectional study through a consecutive sampling technique was conducted among 124 T2 DM patients at the chronic illness follow-up clinic of Jimma Medical Center (JMC) from July 27 to August 31, 2020. A structured questionnaire was used to collect socio-demographic and clinical-related data. Five milliliters of the blood specimen were collected from each eligible T2 DM patient. Glycated hemoglobin (HbA1c) and red blood cell parameters were determined by Cobas 6000 and DxH 800 fully automated analyzers, respectively. Data were entered into EpiData software version 3.1 and exported to SPSS 25 version for analysis. Independent t-test and Pearson's correlation coefficient were used to address the research questions. A P-value <0.05 was considered statistically significant. RESULTS The mean age of study participants was 51.84± 11.6 years. Moreover, 60.5% of T2 DM patients were in poor glycemic control. There was a significant mean difference between good and poor glycemic controlled T2 DM patients in red blood cell count (4.79±0.5 vs 4.38±0.8), hemoglobin (14.13±1.4 vs 13.60±1.6), mean corpuscular volume (89.52±4.7 vs 92.62±7.5), mean corpuscular hemoglobin (29.63±1.6 vs 30.77±2.9), and red cell distribution width (13.68±1.1 vs 14.63±1.2) respectively. Red blood cell count was inversely correlated (r=-0.280, p=0.002) with HbA1c while mean corpuscular volume (r=0.267, p=0.003), mean corpuscular hemoglobin (r=0.231, p=0.010), and red cell distribution width (r= 0.496, p=0.000) were positively correlated with level of HbA1c. CONCLUSION Red cell count, mean corpuscular volume, mean corpuscular hemoglobin, and red cell distribution width could be useful indicators to monitor the glycemic status of T2 DM patients instead of HbA1c, though large prospective studies should be considered.
Collapse
Affiliation(s)
- Misganaw Asmamaw
- Division of Biochemistry, Department of Biomedical Sciences, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Tariku Sime
- Division of Biochemistry, Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Kumsa Kene
- Division of Biochemistry, Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Minale Fekadie Baye
- Division of Biochemistry, Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Muluken Teshome
- Division of Physiology, Department of Biomedical Sciences, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Belay Zawdie
- Division of Biochemistry, Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| |
Collapse
|
12
|
Tupe RS, Bangar N, Nisar A, Kulkarni A, Sankhe N, Chauhan R, Mistry N, Shaikh S. Piperine exhibits preventive and curative effect on erythrocytes membrane modifications and oxidative stress against in vitro albumin glycation. J Food Biochem 2021; 45:e13846. [PMID: 34219237 DOI: 10.1111/jfbc.13846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 11/27/2022]
Abstract
Inhibition of non-enzymatic glycation processes is an essential aspect of treating type 2 diabetes and related complications. In this study, piperine's preventative, simultaneous and curative effect in glucose-induced albumin glycation was examined by analyzing the structural and functional markers of albumin. The protective and antioxidant influence of piperine on erythrocytes was assessed by examining cellular membrane modifications with antioxidant status. Albumin glycation was performed in three different experimental sets of 21 days at 37°C in dark conditions-using different piperine concentrations (250, 500, and 1,000 μM) and time of addition of glucose (30 mM)/piperine (1,000 μM) in a respective solution at 10th day. Piperine with glycated albumin leads to decreased fructosamine, carbonyl group, and protein-bound glucose. It had protected free amino groups, thiol group, and reduced beta-amyloid, protein aggregates formation. The presence of piperine with glycated albumin prevented erythrocytes hemolysis, membrane modifications, and maintained the antioxidant status. Piperine showed the antiglycation effects in a dose-dependent manner, additionally, its pre-treatment exhibited maximum attenuation by manifesting its primarily preventive role. PRACTICAL APPLICATIONS: Piperine is a natural alkaloid compound found in pepper, has been reported to possess anti-cancer, anti-microbial, and anti-inflammatory properties. The present study evaluated the antiglycation potential of piperine in albumin's glycation and it displayed preventive action, protected erythrocytes from oxidative damage induced by glycated albumin. We concluded that the daily intake of piperine can be adequate to prevent glycation-induced diabetic complications development in hyperglycemic conditions.
Collapse
Affiliation(s)
- Rashmi S Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, India
| | - Nilima Bangar
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, India
- Biochemical Sciences Division, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Akib Nisar
- Biochemical Sciences Division, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Amruta Kulkarni
- Biochemical Sciences Division, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Neena Sankhe
- Biochemical Sciences Division, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Rohan Chauhan
- Biochemical Sciences Division, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Nidhi Mistry
- Biochemical Sciences Division, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Shamim Shaikh
- Biochemical Sciences Division, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth (Deemed to be University), Pune, India
| |
Collapse
|
13
|
Livshits L, Barshtein G, Arbell D, Gural A, Levin C, Guizouarn H. Do We Store Packed Red Blood Cells under "Quasi-Diabetic" Conditions? Biomolecules 2021; 11:biom11070992. [PMID: 34356616 PMCID: PMC8301930 DOI: 10.3390/biom11070992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/21/2021] [Accepted: 07/01/2021] [Indexed: 01/28/2023] Open
Abstract
Red blood cell (RBC) transfusion is one of the most common therapeutic procedures in modern medicine. Although frequently lifesaving, it often has deleterious side effects. RBC quality is one of the critical factors for transfusion efficacy and safety. The role of various factors in the cells’ ability to maintain their functionality during storage is widely discussed in professional literature. Thus, the extra- and intracellular factors inducing an accelerated RBC aging need to be identified and therapeutically modified. Despite the extensively studied in vivo effect of chronic hyperglycemia on RBC hemodynamic and metabolic properties, as well as on their lifespan, only limited attention has been directed at the high sugar concentration in RBCs storage media, a possible cause of damage to red blood cells. This mini-review aims to compare the biophysical and biochemical changes observed in the red blood cells during cold storage and in patients with non-insulin-dependent diabetes mellitus (NIDDM). Given the well-described corresponding RBC alterations in NIDDM and during cold storage, we may regard the stored (especially long-stored) RBCs as “quasi-diabetic”. Keeping in mind that these RBC modifications may be crucial for the initial steps of microvascular pathogenesis, suitable preventive care for the transfused patients should be considered. We hope that our hypothesis will stimulate targeted experimental research to establish a relationship between a high sugar concentration in a storage medium and a deterioration in cells’ functional properties during storage.
Collapse
Affiliation(s)
- Leonid Livshits
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, CH-8057 Zurich, Switzerland;
| | - Gregory Barshtein
- Biochemistry Department, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
- Correspondence: ; Tel.: +972-2-6758309
| | - Dan Arbell
- Pediatric Surgery Department, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel;
| | - Alexander Gural
- Department of Hematology, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel;
| | - Carina Levin
- Pediatric Hematology Unit, Emek Medical Center, Afula 1834111, Israel;
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Hélène Guizouarn
- Institut de Biologie Valrose, Université Côte d’Azur, CNRS, Inserm, 28 Av. Valrose, 06100 Nice, France;
| |
Collapse
|
14
|
Kosmachevskaya OV, Novikova NN, Topunov AF. Carbonyl Stress in Red Blood Cells and Hemoglobin. Antioxidants (Basel) 2021; 10:253. [PMID: 33562243 PMCID: PMC7914924 DOI: 10.3390/antiox10020253] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
The paper overviews the peculiarities of carbonyl stress in nucleus-free mammal red blood cells (RBCs). Some functional features of RBCs make them exceptionally susceptible to reactive carbonyl compounds (RCC) from both blood plasma and the intracellular environment. In the first case, these compounds arise from the increased concentrations of glucose or ketone bodies in blood plasma, and in the second-from a misbalance in the glycolysis regulation. RBCs are normally exposed to RCC-methylglyoxal (MG), triglycerides-in blood plasma of diabetes patients. MG modifies lipoproteins and membrane proteins of RBCs and endothelial cells both on its own and with reactive oxygen species (ROS). Together, these phenomena may lead to arterial hypertension, atherosclerosis, hemolytic anemia, vascular occlusion, local ischemia, and hypercoagulation phenotype formation. ROS, reactive nitrogen species (RNS), and RCC might also damage hemoglobin (Hb), the most common protein in the RBC cytoplasm. It was Hb with which non-enzymatic glycation was first shown in living systems under physiological conditions. Glycated HbA1c is used as a very reliable and useful diagnostic marker. Studying the impacts of MG, ROS, and RNS on the physiological state of RBCs and Hb is of undisputed importance for basic and applied science.
Collapse
Affiliation(s)
- Olga V. Kosmachevskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
| | | | - Alexey F. Topunov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
| |
Collapse
|
15
|
A Translational In Vivo and In Vitro Metabolomic Study Reveals Altered Metabolic Pathways in Red Blood Cells of Type 2 Diabetes. J Clin Med 2020; 9:jcm9061619. [PMID: 32471219 PMCID: PMC7355709 DOI: 10.3390/jcm9061619] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 12/21/2022] Open
Abstract
Clinical parameters used in type 2 diabetes mellitus (T2D) diagnosis and monitoring such as glycosylated haemoglobin (HbA1c) are often unable to capture important information related to diabetic control and chronic complications. In order to search for additional biomarkers, we performed a pilot study comparing T2D patients with healthy controls matched by age, gender, and weight. By using 1H-nuclear magnetic resonance (NMR) based metabolomics profiling of red blood cells (RBCs), we found that the metabolic signature of RBCs in T2D subjects differed significantly from non-diabetic controls. Affected metabolites included glutathione, 2,3-bisphophoglycerate, inosinic acid, lactate, 6-phosphogluconate, creatine and adenosine triphosphate (ATP) and several amino acids such as leucine, glycine, alanine, lysine, aspartate, phenylalanine and tyrosine. These results were validated by an independent cohort of T2D and control patients. An analysis of the pathways in which these metabolites were involved showed that energetic and redox metabolism in RBCs were altered in T2D, as well as metabolites transported by RBCs. Taken together, our results revealed that the metabolic profile of RBCs can discriminate healthy controls from T2D patients. Further research is needed to determine whether metabolic fingerprint in RBC could be useful to complement the information obtained from HbA1c and glycemic variability as well as its potential role in the diabetes management.
Collapse
|
16
|
Abdel Moneim A, Suleiman HA, Mahmoud B, Mabrouk D, Zaky MY, Mahmoud B. Viral clearance ameliorates hematological and inflammatory markers among diabetic patients infected with hepatitis C genotype 4. Clin Exp Med 2020; 20:231-240. [PMID: 32076917 DOI: 10.1007/s10238-019-00605-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
The achievement of virological response in the treatment of hepatitis C virus (HCV) can improve the extrahepatic manifestations. The present study aimed to investigate the effect of HCV eradication after sofosbuvir/daclatasvir (SOF/DCV) therapy on hematological and inflammatory biomarkers in type 2 diabetic patients infected with HCV genotype 4. Between October 2017 and August 2018, among 145 patients with HCV genotype 4, 30 patients were enrolled in the study based on the fact that they have type 2 diabetes. Enrolled HCV-diabetic patients were treated for 12 weeks with SOF/DCV regimen. Patients were screened by laboratory investigations before treatment (baseline values) and after HCV treatment (post-treatment values). Additionally, 30 healthy individuals were enrolled as a control group. Among the patient's cohort, the sustained virological response was achieved by 100% of the treated patients after 12 weeks of SOF/DCV therapy. Moreover, the levels of insulin resistance (HOMA-IR), nitric oxide, interleukin-1β, red cell distribution width, platelet distribution width, mean platelet volume were improved significantly (P < 0.001) in treated patients after successful viral clearance compared to baseline values. In addition, virological clearance exhibited positive correlations with interleukin-1β, nitric oxide, leukocytes count, red cell distribution width, and mean platelet volume. In conclusion, the data suggest the potential amelioration effect of HCV eradication after treatment with SOF/DCV regimen on the inflammatory status among HCV-diabetic patients which is reflected by the noticeable improvement of altered hematological indices and inflammatory biomarkers.
Collapse
Affiliation(s)
- A Abdel Moneim
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Salah Salem St., Beni Suef, 62511, Egypt.
| | - H A Suleiman
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - B Mahmoud
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - D Mabrouk
- Department of Microbiology, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - M Y Zaky
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Salah Salem St., Beni Suef, 62511, Egypt
| | - B Mahmoud
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| |
Collapse
|
17
|
Feng L, Chen H, Chen J, Xiong C, Shao X, Wang X, Ning J, Xiang Z, Wang X, Chen T, Xiao H, Tang H, Li X, Hong G, Zou H. The Product of Red Blood Cells and Hematocrit Can Be Used as a Novel Indicator of Impaired Fasting Blood Glucose Status. Diabetes Metab Syndr Obes 2020; 13:4007-4015. [PMID: 33149640 PMCID: PMC7602892 DOI: 10.2147/dmso.s270276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/03/2020] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE To explore whether the red blood cell count multiplied by hematocrit index (RBCHct) in blood routine parameters can indicate the risk of impaired fasting blood glucose (IFG), and whether it is related to insulin resistance and inflammation. METHODS In this cross-sectional study, previous history of diabetes was excluded, and people with normal and impaired IFG were included. We use Spearman analysis to evaluate the correlation between RBCHct index and fasting plasma glucose, insulin resistance homeostasis model assessment (HOMA-IR), and hypersensitive C-reactive protein (hs-CRP). Binary logistic regression analysis was used to evaluate the RBCHct index for assessing the potential risk of IFG, and the receiver operating characteristic (ROC) curve was used to evaluate the RBCHct index for diagnosing insulin resistance and chronic low-grade inflammatory efficacy among those with IFG. RESULTS Correlation analysis showed that the RBCHct index and fasting plasma glucose (r=0.088, P=0.003); HOMA-IR (r=0.199, P<0.001); and hs-CRP (r=0.097, P=0.001) were positively correlated. After adjusting for confounding factors, the risk of IFG in the third and fourth quartiles of the RBCHct index increased to 1.889 and 3.048 times. The area under the ROC curve of the RBCHct index for diagnosis of insulin resistance state (HOMA-IR) was 0.695 (p<0.001), and the area under the ROC curve of the RBCHct index for the diagnosis of chronic low-inflammatory state (hs-CRP) was 0.641 (P=0.010). CONCLUSION The RBCHct index may be a potential indicator for assessing the risk of prediabetes and is closely related to whether the body is in a state of insulin resistance and inflammation under IFG.
Collapse
Affiliation(s)
- Ling Feng
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou510630, People’s Republic of China
| | - Haishan Chen
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou510630, People’s Republic of China
| | - Jianhui Chen
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou510630, People’s Republic of China
| | - Chongxiang Xiong
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou510630, People’s Republic of China
| | - Xiaofei Shao
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou510630, People’s Republic of China
| | - Xin Wang
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou510630, People’s Republic of China
| | - Jing Ning
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou510630, People’s Republic of China
| | - Zhicong Xiang
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou510630, People’s Republic of China
| | - Xuan Wang
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou510630, People’s Republic of China
| | - Tong Chen
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou510630, People’s Republic of China
| | - Hua Xiao
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou510630, People’s Republic of China
| | - Hongjuan Tang
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou510630, People’s Republic of China
| | - Xiaolin Li
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou510630, People’s Republic of China
| | - Guobao Hong
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou510630, People’s Republic of China
| | - Hequn Zou
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou510630, People’s Republic of China
- Correspondence: Hequn Zou; Xiaofei ShaoDepartment of Nephrology, The Third Affiliated Hospital, Southern Medical University, 183, Zhongshan West Avenue, Tianhe District, Guangzhou510630, People’s Republic of China Email ;
| |
Collapse
|