1
|
Lin Y, Breugem CC, Maas SM, de Bakker BS, Li G. The important role of RPS14, RPL5 and MDM2 in TP53-associated ribosome stress in mycophenolic acid-induced microtia. Int J Pediatr Otorhinolaryngol 2021; 151:110916. [PMID: 34537545 DOI: 10.1016/j.ijporl.2021.110916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Mycophenolate embryopathy (ME) is a congenital malformation induced by mycophenolic acid (MA). Microtia is the most common ME phenotype. This study aimed to identify the key genes in the pathological process of microtia caused by mycophenolate mofetil (MM) through bioinformatics methods, to explore the potential pathogenesis, and to provide a direction for future genetic research on aetiology. METHODS Genes related to MM and microtia were obtained from the GeneCards database for bioinformatics. Metacore was used to identify and visualize the upstream and downstream gene relationships in the protein-protein interaction (PPI) results of these genes. The clusterProfiler R software package was used to simulate and visualize the enrichment results based on data from Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. RESULTS Fifty-nine genes were associated with microtia and MM/MA. The hub genes with the most significant effects on MM/MA-induced microtia pathogenesis included tumour protein P53 (p53), MDM2 proto-oncogene (MDM2), ribosomal protein L5 (RPL5) and ribosomal protein S14 (RBS14). The GO term with the most enriched genes was peptidyl-tyrosine phosphorylation. For the KEGG terms, there was significant enrichment regarding the haematopoietic cell lineage, apoptosis, p53 signalling, proteasome and necroptosis. CONCLUSIONS We propose that an axis composed of MA, microtia, TP53 and related genes is involved in ME pathogenesis. The important role of TP53-associated ribosome stress in ME pathogenesis is consistent with our previous findings from MA-induced cleft lip and palate. Deregulation of genes protective against TP53 overexpression, such as MDM2, could be a strategy for constructing a microtia animal model.
Collapse
Affiliation(s)
- Yangyang Lin
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, Amsterdam Medical Centre, Amsterdam, the Netherlands; Plastic Surgery Hospital, Peking Union Medical College, Beijing, China
| | - Corstiaan C Breugem
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, Amsterdam Medical Centre, Amsterdam, the Netherlands
| | - Saskia M Maas
- Amsterdam UMC, Department of Clinical Genetics, Academic Medical Center, Amsterdam, the Netherlands
| | - Bernadette S de Bakker
- Department of Medical Biology, Section Clinical Anatomy & Embryology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Gaofeng Li
- Department of Plastic and Cosmeitc Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, 61 Jiefangxi road, Changsha, 410005, Hunan, PR China.
| |
Collapse
|
2
|
Yu L, Lemay P, Ludlow A, Guyot MC, Jones M, Mohamed FF, Saroya GA, Panaretos C, Schneider E, Wang Y, Myers G, Khoriaty R, Li Q, Franceschi R, Engel JD, Kaartinen V, Rothstein TL, Justice MJ, Kibar Z, Singh SA. A new murine Rpl5 (uL18) mutation provides a unique model of variably penetrant Diamond-Blackfan anemia. Blood Adv 2021; 5:4167-4178. [PMID: 34464976 PMCID: PMC8945612 DOI: 10.1182/bloodadvances.2021004658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/04/2021] [Indexed: 01/28/2023] Open
Abstract
Ribosome dysfunction is implicated in multiple abnormal developmental and disease states in humans. Heterozygous germline mutations in genes encoding ribosomal proteins are found in most individuals with Diamond-Blackfan anemia (DBA), whereas somatic mutations have been implicated in a variety of cancers and other disorders. Ribosomal protein-deficient animal models show variable phenotypes and penetrance, similar to human patients with DBA. In this study, we characterized a novel ENU mouse mutant (Skax23m1Jus) with growth and skeletal defects, cardiac malformations, and increased mortality. After genetic mapping and whole-exome sequencing, we identified an intronic Rpl5 mutation, which segregated with all affected mice. This mutation was associated with decreased ribosome generation, consistent with Rpl5 haploinsufficiency. Rpl5Skax23-Jus/+ animals had a profound delay in erythroid maturation and increased mortality at embryonic day (E) 12.5, which improved by E14.5. Surviving mutant animals had macrocytic anemia at birth, as well as evidence of ventricular septal defect (VSD). Surviving adult and aged mice exhibited no hematopoietic defect or VSD. We propose that this novel Rpl5Skax23-Jus/+ mutant mouse will be useful in studying the factors influencing the variable penetrance that is observed in DBA.
Collapse
Affiliation(s)
- Lei Yu
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Philippe Lemay
- Department of Neurosciences, CHU Sainte Justine Research Center, University of Montréal, Montreal, QC, Canada
| | - Alexander Ludlow
- Center for Immunobiology and Department of Investigative Medicine,Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI
| | - Marie-Claude Guyot
- Department of Neurosciences, CHU Sainte Justine Research Center, University of Montréal, Montreal, QC, Canada
| | - Morgan Jones
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Fatma F. Mohamed
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI
| | - Ghazi-Abdullah Saroya
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI
| | - Christopher Panaretos
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI
| | - Emily Schneider
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Yu Wang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Greggory Myers
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Rami Khoriaty
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Qing Li
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Renny Franceschi
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Vesa Kaartinen
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI
| | - Thomas L. Rothstein
- Center for Immunobiology and Department of Investigative Medicine,Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI
| | - Monica J. Justice
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; and
| | - Zoha Kibar
- Department of Neurosciences, CHU Sainte Justine Research Center, University of Montréal, Montreal, QC, Canada
| | - Sharon A. Singh
- Center for Immunobiology and Department of Investigative Medicine,Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
3
|
Lin Y, Song T, Ronde EM, Ma G, Cui H, Xu M. The important role of MDM2, RPL5, and TP53 in mycophenolic acid-induced cleft lip and palate. Medicine (Baltimore) 2021; 100:e26101. [PMID: 34032749 PMCID: PMC8154508 DOI: 10.1097/md.0000000000026101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
Mycophenolate embryopathy (MPE) is a mycophenolic acid (MPA)-induced congenital malformation with distinctive symptoms. Cleft lip/palate (CLP) is one of the most common symptoms of MPE. The aim of this study was to screen and verify hub genes involved in MPA-induced CLP and to explore the potential molecular mechanisms underlying MPE.Overlapping genes related to MPA and CLP were obtained from the GeneCards database. These genes were further analyzed via bioinformatics. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis results were visualized with the Cytoscape ClueGO plug-in. Gene protein-protein interaction (PPI) networks were constructed based on data obtained from the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database.Overall, 58 genes related to MPA and CLP were identified. The genes most relevant to MPA-induced CLP included ABCB1, COL1A1, Rac1, TGFβ1, EDN1, and TP53, as well as the TP53-associated genes MDM2 and RPL5. GO analysis demonstrated gene enrichment regarding such terms as ear, mesenchymal, striated muscle, and ureteric development. KEGG analysis demonstrated gene enrichment in such pathways as the HIF-1 signaling pathway, glycosylphosphatidylinositol-anchor biosynthesis, the TNF signaling pathway, and hematopoietic stem cell development.Bioinformatic analysis was performed on the genes currently known to be associated with MPA-induced CLP pathogenesis. MPA-induced CLP is mediated by multiple ribosome stress related genes and pathways. MDM2, RPL5 and TP53 could be the main contributor in this pathogenesis, along with several other genes. ABCB1 polymorphism could be related to the probability of MPA-induced CLP.
Collapse
Affiliation(s)
- Yangyang Lin
- Plastic Surgery Hospital of Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, Amsterdam Medical Centre, Amsterdam, The Netherlands
- People's Hospital of Guangxi Zhuang Autonomous Region, Nanning
| | - Tao Song
- Plastic Surgery Hospital of Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing
| | - Elsa M. Ronde
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, Amsterdam Medical Centre, Amsterdam, The Netherlands
| | - Gang Ma
- People's Hospital of Guangxi Zhuang Autonomous Region, Nanning
| | - Huiqin Cui
- The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Meng Xu
- Plastic Surgery Hospital of Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing
| |
Collapse
|