1
|
Madar AD, Jiang A, Dong C, Sheffield MEJ. Synaptic plasticity rules driving representational shifting in the hippocampus. Nat Neurosci 2025; 28:848-860. [PMID: 40113934 DOI: 10.1038/s41593-025-01894-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/17/2025] [Indexed: 03/22/2025]
Abstract
Synaptic plasticity is widely thought to support memory storage in the brain, but the rules determining impactful synaptic changes in vivo are not known. We considered the trial-by-trial shifting dynamics of hippocampal place fields (PF) as an indicator of ongoing plasticity during memory formation and familiarization. By implementing different plasticity rules in computational models of spiking place cells and comparing them to experimentally measured PFs from mice navigating familiar and new environments, we found that behavioral timescale synaptic plasticity (BTSP), rather than Hebbian spike-timing-dependent plasticity (STDP), best explains PF shifting dynamics. BTSP-triggering events are rare, but more frequent during new experiences. During exploration, their probability is dynamic-it decays after PF onset, but continually drives a population-level representational drift. Additionally, our results show that BTSP occurs in CA3 but is less frequent and phenomenologically different than in CA1. Overall, our study provides a new framework to understand how synaptic plasticity continuously shapes neuronal representations during learning.
Collapse
Affiliation(s)
- Antoine D Madar
- Department of Neurobiology, Neuroscience Institute, University of Chicago, Chicago, IL, USA.
| | - Anqi Jiang
- Department of Neurobiology, Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Can Dong
- Department of Neurobiology, Neuroscience Institute, University of Chicago, Chicago, IL, USA
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark E J Sheffield
- Department of Neurobiology, Neuroscience Institute, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Moldwin T, Azran LS, Segev I. The calcitron: A simple neuron model that implements many learning rules via the calcium control hypothesis. PLoS Comput Biol 2025; 21:e1012754. [PMID: 39879254 PMCID: PMC11835382 DOI: 10.1371/journal.pcbi.1012754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 02/18/2025] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
Theoretical neuroscientists and machine learning researchers have proposed a variety of learning rules to enable artificial neural networks to effectively perform both supervised and unsupervised learning tasks. It is not always clear, however, how these theoretically-derived rules relate to biological mechanisms of plasticity in the brain, or how these different rules might be mechanistically implemented in different contexts and brain regions. This study shows that the calcium control hypothesis, which relates synaptic plasticity in the brain to the calcium concentration ([Ca2+]) in dendritic spines, can produce a diverse array of learning rules. We propose a simple, perceptron-like neuron model, the calcitron, that has four sources of [Ca2+]: local (following the activation of an excitatory synapse and confined to that synapse), heterosynaptic (resulting from the activity of other synapses), postsynaptic spike-dependent, and supervisor-dependent. We demonstrate that by modulating the plasticity thresholds and calcium influx from each calcium source, we can reproduce a wide range of learning and plasticity protocols, such as Hebbian and anti-Hebbian learning, frequency-dependent plasticity, and unsupervised recognition of frequently repeating input patterns. Moreover, by devising simple neural circuits to provide supervisory signals, we show how the calcitron can implement homeostatic plasticity, perceptron learning, and BTSP-inspired one-shot learning. Our study bridges the gap between theoretical learning algorithms and their biological counterparts, not only replicating established learning paradigms but also introducing novel rules.
Collapse
Affiliation(s)
- Toviah Moldwin
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Li Shay Azran
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Idan Segev
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
3
|
Chater TE, Eggl MF, Goda Y, Tchumatchenko T. Competitive processes shape multi-synapse plasticity along dendritic segments. Nat Commun 2024; 15:7572. [PMID: 39217140 PMCID: PMC11365941 DOI: 10.1038/s41467-024-51919-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Neurons receive thousands of inputs onto their dendritic arbour, where individual synapses undergo activity-dependent plasticity. Long-lasting changes in postsynaptic strengths correlate with changes in spine head volume. The magnitude and direction of such structural plasticity - potentiation (sLTP) and depression (sLTD) - depend upon the number and spatial distribution of stimulated synapses. However, how neurons allocate resources to implement synaptic strength changes across space and time amongst neighbouring synapses remains unclear. Here we combined experimental and modelling approaches to explore the elementary processes underlying multi-spine plasticity. We used glutamate uncaging to induce sLTP at varying number of synapses sharing the same dendritic branch, and we built a model incorporating a dual role Ca2+-dependent component that induces spine growth or shrinkage. Our results suggest that competition among spines for molecular resources is a key driver of multi-spine plasticity and that spatial distance between simultaneously stimulated spines impacts the resulting spine dynamics.
Collapse
Affiliation(s)
- Thomas E Chater
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Maximilian F Eggl
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Venusberg-Campus 1, 53127, Bonn, Germany
- Institute of Neuroscience, CSIC-UMH, Alicante, Spain
| | - Yukiko Goda
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan.
- Synapse Biology Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Kunigami-gun, Okinawa, Japan.
| | - Tatjana Tchumatchenko
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
4
|
Zhai S, Otsuka S, Xu J, Clarke VRJ, Tkatch T, Wokosin D, Xie Z, Tanimura A, Agarwal HK, Ellis-Davies GCR, Contractor A, Surmeier DJ. Ca 2+-dependent phosphodiesterase 1 regulates the plasticity of striatal spiny projection neuron glutamatergic synapses. Cell Rep 2024; 43:114540. [PMID: 39058595 PMCID: PMC11426333 DOI: 10.1016/j.celrep.2024.114540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 05/14/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Long-term synaptic plasticity at glutamatergic synapses on striatal spiny projection neurons (SPNs) is central to learning goal-directed behaviors and habits. Our studies reveal that SPNs manifest a heterosynaptic, nitric oxide (NO)-dependent form of long-term postsynaptic depression of glutamatergic SPN synapses (NO-LTD) that is preferentially engaged at quiescent synapses. Plasticity is gated by Ca2+ entry through CaV1.3 Ca2+ channels and phosphodiesterase 1 (PDE1) activation, which blunts intracellular cyclic guanosine monophosphate (cGMP) and NO signaling. Both experimental and simulation studies suggest that this Ca2+-dependent regulation of PDE1 activity allows for local regulation of dendritic cGMP signaling. In a mouse model of Parkinson disease (PD), NO-LTD is absent because of impaired interneuronal NO release; re-balancing intrastriatal neuromodulatory signaling restores NO release and NO-LTD. Taken together, these studies provide important insights into the mechanisms governing NO-LTD in SPNs and its role in psychomotor disorders such as PD.
Collapse
Affiliation(s)
- Shenyu Zhai
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shintaro Otsuka
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jian Xu
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Vernon R J Clarke
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Tatiana Tkatch
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - David Wokosin
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Zhong Xie
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Asami Tanimura
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hitesh K Agarwal
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | - Anis Contractor
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - D James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
5
|
Zhai S, Otsuka S, Xu J, Clarke VRJ, Tkatch T, Wokosin D, Xie Z, Tanimura A, Agarwal HK, Ellis-Davies GCR, Contractor A, Surmeier DJ. Ca 2+ -dependent phosphodiesterase 1 regulates the plasticity of striatal spiny projection neuron glutamatergic synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590962. [PMID: 38712260 PMCID: PMC11071484 DOI: 10.1101/2024.04.24.590962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Long-term synaptic plasticity at glutamatergic synapses on striatal spiny projection neurons (SPNs) is central to learning goal-directed behaviors and habits. Although considerable attention has been paid to the mechanisms underlying synaptic strengthening and new learning, little scrutiny has been given to those involved in the attenuation of synaptic strength that attends suppression of a previously learned association. Our studies revealed a novel, non-Hebbian, long-term, postsynaptic depression of glutamatergic SPN synapses induced by interneuronal nitric oxide (NO) signaling (NO-LTD) that was preferentially engaged at quiescent synapses. This form of plasticity was gated by local Ca 2+ influx through CaV1.3 Ca 2+ channels and stimulation of phosphodiesterase 1 (PDE1), which degraded cyclic guanosine monophosphate (cGMP) and blunted NO signaling. Consistent with this model, mice harboring a gain-of-function mutation in the gene coding for the pore-forming subunit of CaV1.3 channels had elevated depolarization-induced dendritic Ca 2+ entry and impaired NO-LTD. Extracellular uncaging of glutamate and intracellular uncaging of cGMP suggested that this Ca 2+ -dependent regulation of PDE1 activity allowed for local regulation of dendritic NO signaling. This inference was supported by simulation of SPN dendritic integration, which revealed that dendritic spikes engaged PDE1 in a branch-specific manner. In a mouse model of Parkinson's disease (PD), NO-LTD was absent not because of a postsynaptic deficit in NO signaling machinery, but rather due to impaired interneuronal NO release. Re-balancing intrastriatal neuromodulatory signaling in the PD model restored NO release and NO-LTD. Taken together, these studies provide novel insights into the mechanisms governing NO-LTD in SPN and its role in psychomotor disorders, like PD.
Collapse
|
6
|
Kourosh-Arami M, Komaki A, Gholami M, Marashi SH, Hejazi S. Heterosynaptic plasticity-induced modulation of synapses. J Physiol Sci 2023; 73:33. [PMID: 38057729 PMCID: PMC10717068 DOI: 10.1186/s12576-023-00893-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Plasticity is a common feature of synapses that is stated in different ways and occurs through several mechanisms. The regular action of the brain needs to be balanced in several neuronal and synaptic features, one of which is synaptic plasticity. The different homeostatic processes, including the balance between excitation/inhibition or homeostasis of synaptic weights at the single-neuron level, may obtain this. Homosynaptic Hebbian-type plasticity causes associative alterations of synapses. Both homosynaptic and heterosynaptic plasticity characterize the corresponding aspects of adjustable synapses, and both are essential for the regular action of neural systems and their plastic synapses.In this review, we will compare homo- and heterosynaptic plasticity and the main factors affecting the direction of plastic changes. This review paper will also discuss the diverse functions of the different kinds of heterosynaptic plasticity and their properties. We argue that a complementary system of heterosynaptic plasticity demonstrates an essential cellular constituent for homeostatic modulation of synaptic weights and neuronal activity.
Collapse
Affiliation(s)
- Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoumeh Gholami
- Department of Physiology, Medical College, Arak University of Medical Sciences, Arak, Iran
| | | | - Sara Hejazi
- Department of Industrial Engineering & Management Systems, University of Central Florida, Orlando, USA
| |
Collapse
|
7
|
Moza S. Action at a Distance: Theoretical Mechanisms of Cross-Dendritic Heterosynaptic Modification. eNeuro 2023; 10:ENEURO.0419-23.2023. [PMID: 37985149 PMCID: PMC10668207 DOI: 10.1523/eneuro.0419-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/22/2023] Open
Abstract
Highlighted Research Paper: T. Moldwin, M. Kalmenson, and I. Segev, "Asymmetric voltage attenuation in dendrites can enable hierarchical heterosynaptic plasticity." eNeuro (2023).
Collapse
Affiliation(s)
- Sahil Moza
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
8
|
Madar A, Dong C, Sheffield M. BTSP, not STDP, Drives Shifts in Hippocampal Representations During Familiarization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562791. [PMID: 37904999 PMCID: PMC10614909 DOI: 10.1101/2023.10.17.562791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Synaptic plasticity is widely thought to support memory storage in the brain, but the rules determining impactful synaptic changes in-vivo are not known. We considered the trial-by-trial shifting dynamics of hippocampal place fields (PFs) as an indicator of ongoing plasticity during memory formation. By implementing different plasticity rules in computational models of spiking place cells and comparing to experimentally measured PFs from mice navigating familiar and novel environments, we found that Behavioral-Timescale-Synaptic-Plasticity (BTSP), rather than Hebbian Spike-Timing-Dependent-Plasticity, is the principal mechanism governing PF shifting dynamics. BTSP-triggering events are rare, but more frequent during novel experiences. During exploration, their probability is dynamic: it decays after PF onset, but continually drives a population-level representational drift. Finally, our results show that BTSP occurs in CA3 but is less frequent and phenomenologically different than in CA1. Overall, our study provides a new framework to understand how synaptic plasticity shapes neuronal representations during learning.
Collapse
Affiliation(s)
- A.D. Madar
- Department of Neurobiology, Neuroscience Institute, University of Chicago
| | - C. Dong
- Department of Neurobiology, Neuroscience Institute, University of Chicago
- current affiliation: Department of Neurobiology, Stanford University School of Medicine
| | - M.E.J. Sheffield
- Department of Neurobiology, Neuroscience Institute, University of Chicago
| |
Collapse
|