1
|
Soto-Perez J, Cleary CM, Sobrinho CR, Mulkey SB, Carroll JL, Tzingounis AV, Mulkey DK. Phox2b-expressing neurons contribute to breathing problems in Kcnq2 loss- and gain-of-function encephalopathy models. Nat Commun 2023; 14:8059. [PMID: 38052789 PMCID: PMC10698053 DOI: 10.1038/s41467-023-43834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023] Open
Abstract
Loss- and gain-of-function variants in the gene encoding KCNQ2 channels are a common cause of developmental and epileptic encephalopathy, a condition characterized by seizures, developmental delays, breathing problems, and early mortality. To understand how KCNQ2 dysfunction impacts behavior in a mouse model, we focus on the control of breathing by neurons expressing the transcription factor Phox2b which includes respiratory neurons in the ventral parafacial region. We find Phox2b-expressing ventral parafacial neurons express Kcnq2 in the absence of other Kcnq isoforms, thus clarifying why disruption of Kcnq2 but not other channel isoforms results in breathing problems. We also find that Kcnq2 deletion or expression of a recurrent gain-of-function variant R201C in Phox2b-expressing neurons increases baseline breathing or decreases the central chemoreflex, respectively, in mice during the light/inactive state. These results uncover mechanisms underlying breathing abnormalities in KCNQ2 encephalopathy and highlight an unappreciated vulnerability of Phox2b-expressing ventral parafacial neurons to KCNQ2 pathogenic variants.
Collapse
Affiliation(s)
- J Soto-Perez
- Dept of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - C M Cleary
- Dept of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - C R Sobrinho
- Dept of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - S B Mulkey
- Prenatal Pediatrics Institute, Children's National Hospital, Departments of Neurology and Pediatrics, The George Washington Univ. School of Medicine and Health Sciences, Washington, DC, USA
| | - J L Carroll
- Dept. of Pediatrics, Univ. Arkansas for Medical Sciences, Little Rock, AR, USA
| | - A V Tzingounis
- Dept of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA.
| | - D K Mulkey
- Dept of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
2
|
Hou B, Santaniello S, Tzingounis AV. KCNQ2 channels regulate the population activity of neonatal GABAergic neurons ex vivo. Front Neurol 2023; 14:1207539. [PMID: 37409016 PMCID: PMC10318362 DOI: 10.3389/fneur.2023.1207539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/18/2023] [Indexed: 07/07/2023] Open
Abstract
Over the last decade KCNQ2 channels have arisen as fundamental and indispensable regulators of neonatal brain excitability, with KCNQ2 loss-of-function pathogenic variants being increasingly identified in patients with developmental and epileptic encephalopathy. However, the mechanisms by which KCNQ2 loss-of-function variants lead to network dysfunction are not fully known. An important remaining knowledge gap is whether loss of KCNQ2 function alters GABAergic interneuron activity early in development. To address this question, we applied mesoscale calcium imaging ex vivo in postnatal day 4-7 mice lacking KCNQ2 channels in interneurons (Vgat-ires-cre;Kcnq2f/f;GCamp5). In the presence of elevated extracellular potassium concentrations, ablation of KCNQ2 channels from GABAergic cells increased the interneuron population activity in the hippocampal formation and regions of the neocortex. We found that this increased population activity depends on fast synaptic transmission, with excitatory transmission promoting the activity and GABAergic transmission curtailing it. Together, our data show that loss of function of KCNQ2 channels from interneurons increases the network excitability of the immature GABAergic circuits, revealing a new function of KCNQ2 channels in interneuron physiology in the developing brain.
Collapse
Affiliation(s)
- Bowen Hou
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Sabato Santaniello
- Department of Biomedical Engineering and CT Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, United States
| | - Anastasios V. Tzingounis
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
- Department of Biomedical Engineering and CT Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
3
|
Biba N, Becq H, Pallesi-Pocachard E, Sarno S, Granjeaud S, Montheil A, Kurz M, Villard L, Milh M, Santini PPL, Aniksztejn L. Time-limited alterations in cortical activity of a knock-in mice model of KCNQ2-related developmental and epileptic encephalopathy. J Physiol 2022; 600:2429-2460. [PMID: 35389519 DOI: 10.1113/jp282536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/10/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The electrophysiological impact of the pathogenic c.821C>T mutation of the KCNQ2 gene (p.T274M variant in Kv7.2 subunit) related to Developmental and Epileptic Encephalopathy has been analyzed both in vivo and ex-vivo in layers II/III and V of motor cortical slice from a knock-in mice model during development at neonatal, post-weaning and juvenile stages. M current density and conductance are decreased and excitability of layers II/III pyramidal cells is increased in slices from neonatal and post-weaning KI mice but not from juvenile KI mice. M current and excitability of layer V pyramidal cells are impacted in KI mice only at post-weaning stage. Spontaneous GABAergic network-driven events are recorded until post-weaning stage and their frequency are increased in layers II/III of the KI mice. KI mice displayed spontaneous seizures preferentially at post-weaning rather than at juvenile stages. ABSTRACT De novo missense variants in the KCNQ2 gene encoding the Kv7.2 subunit of the voltage-gated potassium Kv7/M channels are the main cause of Developmental and Epileptic Encephalopathy (DEE) with neonatal onset. While seizures usually resolve during development, cognitive/motor deficits persist. To better understand the cellular mechanisms underlying network dysfunction and their progression over time, we investigated in vivo, using local field potential recordings of freely moving animals, and ex-vivo in layers II/III and V of motor cortical slices, using patch-clamp recordings, the electrophysiological properties of pyramidal cells from a heterozygous knock-in (KI) mouse model carrying the Kv7.2 p.T274M pathogenic variant during neonatal, post-weaning and juvenile developmental stages. We found that KI mice displayed spontaneous seizures preferentially at post-weaning rather than at juvenile stages. At the cellular level, the variant led to a reduction in M current density/conductance and to neuronal hyperexcitability. These alterations were observed during the neonatal period in pyramidal cells of layers II /III and during post-weaning stage in pyramidal cells of layer V. Moreover, there was an increase in the frequency of spontaneous network driven events mediated by GABA receptors suggesting that the excitability of interneurons was also increased. However, all these alterations were no more observed in layers II/III and V of juvenile mice. Thus, our data indicate that the action of the variant is developmentally regulated. This raises the possibility that the age related seizure remission observed in KCNQ2-related DEE patient results from a time limited alteration of Kv7 channels activity and neuronal excitability. Abstract figure legend Knock-in mice harboring the heterozygous pathogenic p.T274M variant in the Kv7.2 subunit (c.821C>T mutation of the KCNQ2 gene) related to Developmental and Epileptic Encephalopathy displayed epileptic seizures preferentially at post-weaning rather than at juvenile developmental stages. At cellular level, in motor cortical slices the variant led to a reduction in M current density, to a hyperexcitability of pyramidal cells and to an increase in the frequency of spontaneous network driven events mediated by GABA receptors. All these alterations are time limited and are observed in pyramidal cells of neonatal mice until post-weaning but not of juvenile mice in which the pyramidal cells have electrophysiological properties similar to those of wild-type mice. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Najoua Biba
- INSERM, INMED (U1249), Aix-Marseille University, Turing centre for living system, Marseille, France
| | - Hélène Becq
- INSERM, INMED (U1249), Aix-Marseille University, Turing centre for living system, Marseille, France
| | - Emilie Pallesi-Pocachard
- INSERM, INMED (U1249), Aix-Marseille University, Turing centre for living system, Marseille, France
| | - Stefania Sarno
- INSERM, INMED (U1249), Aix-Marseille University, Turing centre for living system, Marseille, France
| | - Samuel Granjeaud
- Centre de Recherche en Cancérologie de Marseille, INSERM, U1068, Institut Paoli Calmettes, CNRS, UMR7258, Aix-Marseille University UM 105, Marseille, France
| | - Aurélie Montheil
- INSERM, INMED (U1249), Aix-Marseille University, Turing centre for living system, Marseille, France
| | - Marie Kurz
- INSERM, INMED (U1249), Aix-Marseille University, Turing centre for living system, Marseille, France
| | - Laurent Villard
- Aix-Marseille University, INSERM, MMG, Marseille, France.,Department of Medical Genetics, La Timone Childrens's Hospital, Marseille, France
| | - Mathieu Milh
- Aix-Marseille University, INSERM, MMG, Marseille, France.,Department of Pediatric Neurology, La Timone Children's Hospital, Marseille, France
| | | | - Laurent Aniksztejn
- INSERM, INMED (U1249), Aix-Marseille University, Turing centre for living system, Marseille, France
| |
Collapse
|
4
|
Abstract
KCNQ2 and KCNQ3 channels are associated with multiple neurodevelopmental disorders and are also therapeutic targets for neurological and neuropsychiatric diseases. For more than two decades, it has been thought that most KCNQ channels in the brain are either KCNQ2/3 or KCNQ3/5 heteromers. Here, we investigated the potential heteromeric compositions of KCNQ2-containing channels. We applied split-intein protein trans-splicing to form KCNQ2/5 tandems and coexpressed these with and without KCNQ3. Unexpectedly, we found that KCNQ2/5 tandems form functional channels independent of KCNQ3 in heterologous cells. Using mass spectrometry, we went on to demonstrate that KCNQ2 associates with KCNQ5 in native channels in the brain, even in the absence of KCNQ3. Additionally, our functional heterologous expression data are consistent with the formation of KCNQ2/3/5 heteromers. Thus, the composition of KCNQ channels is more diverse than has been previously recognized, necessitating a re-examination of the genotype/phenotype relationship of KCNQ2 pathogenic variants.
Collapse
|
5
|
Gao X, Bender F, Soh H, Chen C, Altafi M, Schütze S, Heidenreich M, Gorbati M, Corbu MA, Carus-Cadavieco M, Korotkova T, Tzingounis AV, Jentsch TJ, Ponomarenko A. Place fields of single spikes in hippocampus involve Kcnq3 channel-dependent entrainment of complex spike bursts. Nat Commun 2021; 12:4801. [PMID: 34376649 PMCID: PMC8355348 DOI: 10.1038/s41467-021-24805-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
Hippocampal pyramidal cells encode an animal's location by single action potentials and complex spike bursts. These elementary signals are believed to play distinct roles in memory consolidation. The timing of single spikes and bursts is determined by intrinsic excitability and theta oscillations (5-10 Hz). Yet contributions of these dynamics to place fields remain elusive due to the lack of methods for specific modification of burst discharge. In mice lacking Kcnq3-containing M-type K+ channels, we find that pyramidal cell bursts are less coordinated by the theta rhythm than in controls during spatial navigation, but not alert immobility. Less modulated bursts are followed by an intact post-burst pause of single spike firing, resulting in a temporal discoordination of network oscillatory and intrinsic excitability. Place fields of single spikes in one- and two-dimensional environments are smaller in the mutant. Optogenetic manipulations of upstream signals reveal that neither medial septal GABA-ergic nor cholinergic inputs alone, but rather their joint activity, is required for entrainment of bursts. Our results suggest that altered representations by bursts and single spikes may contribute to deficits underlying cognitive disabilities associated with KCNQ3-mutations in humans.
Collapse
Affiliation(s)
- Xiaojie Gao
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Franziska Bender
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Heun Soh
- University of Connecticut, Storrs, CT, USA
| | - Changwan Chen
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Institute for Vegetative Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Mahsa Altafi
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Schütze
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Matthias Heidenreich
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Maria Gorbati
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | | | - Marta Carus-Cadavieco
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Tatiana Korotkova
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Institute for Vegetative Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | | | - Thomas J Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany.
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany.
| | - Alexey Ponomarenko
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany.
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|