1
|
Menarchek BJ, Bridi MCD. Latent mechanisms of plasticity are upregulated during sleep. Curr Opin Neurobiol 2025; 93:103029. [PMID: 40267630 DOI: 10.1016/j.conb.2025.103029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/25/2025]
Abstract
Sleep is thought to serve an important role in learning and memory, but the mechanisms by which sleep promotes plasticity remain unclear. Even in the absence of plastic changes in neuronal function, many molecular, cellular, and physiological processes linked to plasticity are upregulated during sleep. Therefore, sleep may be a state in which latent plasticity mechanisms are poised to respond following novel experiences during prior wake. Many of these plasticity-related processes can promote both synaptic strengthening and weakening. Signaling pathways activated during sleep may interact with complements of proteins, determined by the content of prior waking experience, to establish the polarity of plasticity. Furthermore, precise reactivation of neuronal spiking patterns during sleep may interact with ongoing neuromodulatory, dendritic, and network activity to strengthen and weaken synapses. In this review, we will discuss the idea that sleep elevates latent plasticity mechanisms, which drive bidirectional plasticity depending on prior waking experience.
Collapse
Affiliation(s)
- Benjamin J Menarchek
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| | - Michelle C D Bridi
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA.
| |
Collapse
|
2
|
Bridi MCD, Peixoto L. Excitatory/Inhibitory imbalance as a mechanism linking autism and sleep problems. Curr Opin Neurobiol 2025; 90:102968. [PMID: 39754885 PMCID: PMC11839321 DOI: 10.1016/j.conb.2024.102968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/06/2025]
Abstract
Sleep problems occur more frequently in individuals with autism spectrum disorder (ASD) than in typically developing individuals, and recent studies support a genetic link between ASD and sleep disturbances. However, it remains unclear how sleep problems may be mechanistically connected to ASD phenotypes. A longstanding hypothesis posits that an imbalance between excitatory and inhibitory (E/I) signaling in the brain underlies the behavioral characteristics of ASD. In recent years, emerging evidence has shown that regulation of the E/I ratio is coupled to sleep/wake states in wild-type animal models. In this review, we will explore the idea of altered E/I regulation over the sleep/wake cycle as a mechanism bridging sleep disruption and behavioral phenotypes in ASD.
Collapse
Affiliation(s)
- Michelle C D Bridi
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| | - Lucia Peixoto
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University Spokane, 99202, USA.
| |
Collapse
|
3
|
Nagai H. Deciphering prefrontal circuits underlying stress and depression: exploring the potential of volume electron microscopy. Microscopy (Oxf) 2024; 73:391-404. [PMID: 39045685 DOI: 10.1093/jmicro/dfae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/07/2024] [Accepted: 07/23/2024] [Indexed: 07/25/2024] Open
Abstract
Adapting to environmental changes and formulating behavioral strategies are central to the nervous system, with the prefrontal cortex being crucial. Chronic stress impacts this region, leading to disorders including major depression. This review discusses the roles for prefrontal cortex and the effects of stress, highlighting similarities and differences between human/primates and rodent brains. Notably, the rodent medial prefrontal cortex is analogous to the human subgenual anterior cingulate cortex in terms of emotional regulation, sharing similarities in cytoarchitecture and circuitry, while also performing cognitive functions similar to the human dorsolateral prefrontal cortex. It has been shown that chronic stress induces atrophic changes in the rodent mPFC, which mirrors the atrophy observed in the subgenual anterior cingulate cortex and dorsolateral prefrontal cortex of depression patients. However, the precise alterations in neural circuitry due to chronic stress are yet to be fully unraveled. The use of advanced imaging techniques, particularly volume electron microscopy, is emphasized as critical for the detailed examination of synaptic changes, providing a deeper understanding of stress and depression at the molecular, cellular and circuit levels. This approach offers invaluable insights into the alterations in neuronal circuits within the medial prefrontal cortex caused by chronic stress, significantly enriching our understanding of stress and depression pathologies.
Collapse
Affiliation(s)
- Hirotaka Nagai
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Research Building B 4F, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| |
Collapse
|
4
|
Ozdinler PH. Sleep Apnea and Amyotrophic Lateral Sclerosis: Cause, Correlation, Any Relation? Brain Sci 2024; 14:978. [PMID: 39451992 PMCID: PMC11505663 DOI: 10.3390/brainsci14100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a motor neuron disease with progressive neurodegeneration, affecting both the cortical and the spinal component of the motor neuron circuitry in patients. The cellular and molecular basis of selective neuronal vulnerability is beginning to emerge. Yet, there are no effective cures for ALS, which affects more than 200,000 people worldwide each year. Recent studies highlight the importance of the glymphatic system and its proper function for the clearance of the cerebral spinal fluid, which is achieved mostly during the sleep period. Therefore, a potential link between problems with sleep and neurodegenerative diseases has been postulated. This paper discusses the present understanding of this potential correlation.
Collapse
Affiliation(s)
- P Hande Ozdinler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
5
|
Wilson DA, Sullivan RM, Smiley JF, Saito M, Raineki C. Developmental alcohol exposure is exhausting: Sleep and the enduring consequences of alcohol exposure during development. Neurosci Biobehav Rev 2024; 158:105567. [PMID: 38309498 PMCID: PMC10923002 DOI: 10.1016/j.neubiorev.2024.105567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Prenatal alcohol exposure is the leading nongenetic cause of human intellectual impairment. The long-term impacts of prenatal alcohol exposure on health and well-being are diverse, including neuropathology leading to behavioral, cognitive, and emotional impairments. Additionally negative effects also occur on the physiological level, such as the endocrine, cardiovascular, and immune systems. Among these diverse impacts is sleep disruption. In this review, we describe how prenatal alcohol exposure affects sleep, and potential mechanisms of those effects. Furthermore, we outline the evidence that sleep disruption across the lifespan may be a mediator of some cognitive and behavioral impacts of developmental alcohol exposure, and thus may represent a promising target for treatment.
Collapse
Affiliation(s)
- Donald A Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, USA.
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, USA
| | - John F Smiley
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University Medical Center, New York, NY, USA
| | - Mariko Saito
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University Medical Center, New York, NY, USA
| | - Charlis Raineki
- Department of Psychology, Brock University, St. Catharines, ON, Canada; Centre for Neuroscience, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
6
|
Lyons LC, Vanrobaeys Y, Abel T. Sleep and memory: The impact of sleep deprivation on transcription, translational control, and protein synthesis in the brain. J Neurochem 2023; 166:24-46. [PMID: 36802068 PMCID: PMC10919414 DOI: 10.1111/jnc.15787] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/20/2023]
Abstract
In countries around the world, sleep deprivation represents a widespread problem affecting school-age children, teenagers, and adults. Acute sleep deprivation and more chronic sleep restriction adversely affect individual health, impairing memory and cognitive performance as well as increasing the risk and progression of numerous diseases. In mammals, the hippocampus and hippocampus-dependent memory are vulnerable to the effects of acute sleep deprivation. Sleep deprivation induces changes in molecular signaling, gene expression and may cause changes in dendritic structure in neurons. Genome wide studies have shown that acute sleep deprivation alters gene transcription, although the pool of genes affected varies between brain regions. More recently, advances in research have drawn attention to differences in gene regulation between the level of the transcriptome compared with the pool of mRNA associated with ribosomes for protein translation following sleep deprivation. Thus, in addition to transcriptional changes, sleep deprivation also affects downstream processes to alter protein translation. In this review, we focus on the multiple levels through which acute sleep deprivation impacts gene regulation, highlighting potential post-transcriptional and translational processes that may be affected by sleep deprivation. Understanding the multiple levels of gene regulation impacted by sleep deprivation is essential for future development of therapeutics that may mitigate the effects of sleep loss.
Collapse
Affiliation(s)
- Lisa C Lyons
- Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Yann Vanrobaeys
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Iowa Neuroscience Institute, Iowa City, Iowa, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, USA
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Iowa Neuroscience Institute, Iowa City, Iowa, USA
| |
Collapse
|
7
|
Milman NE, Tinsley CE, Raju RM, Lim MM. Loss of sleep when it is needed most - Consequences of persistent developmental sleep disruption: A scoping review of rodent models. Neurobiol Sleep Circadian Rhythms 2023; 14:100085. [PMID: 36567958 PMCID: PMC9768382 DOI: 10.1016/j.nbscr.2022.100085] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Sleep is an essential component of development. Developmental sleep disruption (DSD) impacts brain maturation and has been associated with significant consequences on socio-emotional development. In humans, poor sleep during infancy and adolescence affects neurodevelopmental outcomes and may be a risk factor for the development of autism spectrum disorder (ASD) or other neuropsychiatric illness. Given the wide-reaching and enduring consequences of DSD, identifying underlying mechanisms is critical to best inform interventions with translational capacity. In rodents, studies have identified some mechanisms and neural circuits by which DSD causes later social, emotional, sensorimotor, and cognitive changes. However, these studies spanned methodological differences, including different developmental timepoints for both sleep disruption and testing, different DSD paradigms, and even different rodent species. In this scoping review on DSD in rodents, we synthesize these various studies into a cohesive framework to identify common neural mechanisms underlying DSD-induced dysfunction in brain and behavior. Ultimately, this review serves the goal to inform the generation of novel translational interventions for human developmental disorders featuring sleep disruption.
Collapse
Affiliation(s)
- Noah E.P. Milman
- Oregon Health and Science University, Dept. of Behavioral and Systems Neuroscience, Portland, OR, 97214, USA
- Veterans Affairs Portland Health Care System, Portland, OR, 97214, USA
| | - Carolyn E. Tinsley
- Oregon Health and Science University, Dept. of Behavioral and Systems Neuroscience, Portland, OR, 97214, USA
- Veterans Affairs Portland Health Care System, Portland, OR, 97214, USA
| | - Ravikiran M. Raju
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Miranda M. Lim
- Oregon Health and Science University, Dept. of Behavioral and Systems Neuroscience, Portland, OR, 97214, USA
- Veterans Affairs Portland Health Care System, Portland, OR, 97214, USA
| |
Collapse
|
8
|
Maiellano G, Scandella L, Francolini M. Exploiting volume electron microscopy to investigate structural plasticity and stability of the postsynaptic compartment of central synapses. Front Cell Neurosci 2023; 17:1153593. [PMID: 37032841 PMCID: PMC10079905 DOI: 10.3389/fncel.2023.1153593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Volume reconstruction from electron microscopy datasets is a tool increasingly used to study the ultrastructure of the synapse in the broader context of neuronal network and brain organization. Fine modifications of synapse structure, such as activity-dependent dendritic spine enlargement and changes in the size and shape of the postsynaptic density, occur upon maturation and plasticity. The lack of structural plasticity or the inability to stabilize potentiated synapses are associated with synaptic and neuronal functional impairment. Mapping these rearrangements with the high resolution of electron microscopy proved to be essential in order to establish precise correlations between the geometry of synapses and their functional states. In this review we discuss recent discoveries on the substructure of the postsynaptic compartment of central excitatory synapses and how those are correlated with functional states of the neuronal network. The added value of volume electron microscopy analyses with respect to conventional transmission electron microscopy studies is highlighted considering that some limitations of volume-based methods imposed several adjustments to describe the geometry of this synaptic compartment and new parameters-that are good indicators of synapses strength and activity-have been introduced.
Collapse
Affiliation(s)
- Greta Maiellano
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
- MeLis, CNRS UMR 5284, INSERMU1314, Institut NeuroMyoGène, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Lucrezia Scandella
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Maura Francolini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
9
|
Blumberg MS, Dooley JC, Tiriac A. Sleep, plasticity, and sensory neurodevelopment. Neuron 2022; 110:3230-3242. [PMID: 36084653 PMCID: PMC9588561 DOI: 10.1016/j.neuron.2022.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/04/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022]
Abstract
A defining feature of early infancy is the immense neural plasticity that enables animals to develop a brain that is functionally integrated with a growing body. Early infancy is also defined as a period dominated by sleep. Here, we describe three conceptual frameworks that vary in terms of whether and how they incorporate sleep as a factor in the activity-dependent development of sensory and sensorimotor systems. The most widely accepted framework is exemplified by the visual system where retinal waves seemingly occur independent of sleep-wake states. An alternative framework is exemplified by the sensorimotor system where sensory feedback from sleep-specific movements activates the brain. We prefer a third framework that encompasses the first two but also captures the diverse ways in which sleep modulates activity-dependent development throughout the nervous system. Appreciation of the third framework will spur progress toward a more comprehensive and cohesive understanding of both typical and atypical neurodevelopment.
Collapse
Affiliation(s)
- Mark S Blumberg
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA.
| | - James C Dooley
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - Alexandre Tiriac
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
10
|
Bian WJ, Atrooz F, Patel S, Rababa'h AM. Editorial: Sleep Deprivation, Circadian Misalignment and Addiction Vulnerability in Adolescents. Front Neurosci 2022; 16:940039. [PMID: 35873819 PMCID: PMC9296837 DOI: 10.3389/fnins.2022.940039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Wen-Jie Bian
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, United States
- *Correspondence: Wen-Jie Bian
| | - Fatin Atrooz
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Sanket Patel
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Abeer M. Rababa'h
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|