1
|
Jeon M, Kim MS, Kong CH, Min HS, Kang WC, Park K, Jung SY, Bae HJ, Park SJ, Lee JY, Kim JW, Ryu JH. 4-Methoxycinnamic acid ameliorates post-traumatic stress disorder-like behavior in mice by antagonizing the CRF type 1 receptor. Life Sci 2025; 361:123271. [PMID: 39603448 DOI: 10.1016/j.lfs.2024.123271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
AIMS Posttraumatic stress disorder (PTSD) is a debilitating neuropsychiatric illness caused by traumatic or life-threatening events and manifesting as various symptoms, including intrusive re-experiences of trauma, avoidance behaviors, hyperarousal, and negative changes in perception and mood. MAIN METHODS Current monoamine-based medications commonly exhibit limited efficacy and significant side effects, which hamper their clinical utility. To address this unmet need, we explored 4-methoxycinnamic acid (4-MCA) as a potential novel treatment for PTSD in a single prolonged stress (SPS)-induced animal model. KEY FINDINGS Administration of 4-MCA (3 and 10 mg/kg, p.o.) significantly mitigated anxiety-like behaviors, alleviated depression-like behaviors, and improved cognitive function in an SPS-treated PTSD mouse model. Further, 4-MCA treatment effectively rectified the fear extinction deficits in the fear conditioning test. Molecular analyses revealed that 4-MCA normalized the elevated corticotropin-releasing hormone (CRH) levels as well as the phosphorylation of protein kinase A (PKA) and cAMP response element-binding protein (CREB) in the amygdala, a pivotal region for fear memory formation. Co-administration of 4-MCA and the CRFR1 antagonist antalarmin at subeffective doses facilitated fear memory extinction. SIGNIFICANCE These findings suggest that 4-MCA alleviates SPS-induced PTSD-like behaviors by regulating the CRH-CRFR1-PKA-CREB signaling pathway in the amygdala, and that 4-MCA may be a potential candidate for future PTSD treatment.
Collapse
Affiliation(s)
- Mijin Jeon
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Min Seo Kim
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chang Hyeon Kong
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hoo Sik Min
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woo Chang Kang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Keontae Park
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seo Yun Jung
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ho Jung Bae
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Se Jin Park
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jae Yeol Lee
- Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji-Woon Kim
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Jong Hoon Ryu
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
2
|
Chudoba R, Dabrowska J. Distinct populations of corticotropin-releasing factor (CRF) neurons mediate divergent yet complementary defensive behaviors in response to a threat. Neuropharmacology 2023; 228:109461. [PMID: 36775096 PMCID: PMC10055972 DOI: 10.1016/j.neuropharm.2023.109461] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Defensive behaviors in response to a threat are shared across the animal kingdom. Active (fleeing, sheltering) or passive (freezing, avoiding) defensive responses are adaptive and facilitate survival. Selecting appropriate defensive strategy depends on intensity, proximity, temporal threat threshold, and past experiences. Hypothalamic corticotropin-releasing factor (CRF) is a major driver of an acute stress response, whereas extrahypothalamic CRF mediates stress-related affective behaviors. In this review, we shift the focus from a monolithic role of CRF as an anxiogenic peptide to comprehensively dissecting contributions of distinct populations of CRF neurons in mediating defensive behaviors. Direct interrogation of CRF neurons of the central amygdala (CeA) or the bed nucleus of the stria terminalis (BNST) show they drive unconditioned defensive responses, such as vigilance and avoidance of open spaces. Although both populations also contribute to learned fear responses in familiar, threatening contexts, CeA-CRF neurons are particularly attuned to the ever-changing environment. Depending on threat intensities, they facilitate discrimination of salient stimuli predicting manageable threats, and prevent their generalization. Finally, hypothalamic CRF neurons mediate initial threat assessment and active defense such as escape to shelter. Overall, these three major populations of CRF neurons demonstrate divergent, yet complementary contributions to the versatile defense system: heightened vigilance, discriminating salient threats, and active escape, representing three legs of the defense tripod. Despite the 'CRF exhaustion' in the field of affective neuroscience, understanding contributions of specific CRF neurons during adaptive defensive behaviors is needed in order to understand the implications of their dysregulation in fear- and anxiety-related psychiatric disorders. This article is part of the Special Issue on "Fear, Anxiety and PTSD".
Collapse
Affiliation(s)
- Rachel Chudoba
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States; Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States; School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Joanna Dabrowska
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States; Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States; School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States.
| |
Collapse
|
3
|
Warren WG, Papagianni EP, Hale E, Brociek RA, Cassaday HJ, Stevenson CW. Endocannabinoid metabolism inhibition has no effect on spontaneous fear recovery or extinction resistance in Lister hooded rats. Front Pharmacol 2022; 13:1082760. [PMID: 36588687 PMCID: PMC9798003 DOI: 10.3389/fphar.2022.1082760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Endocannabinoid transmission is emerging as a target for treating anxiety-related disorders, given its regulation of fear extinction. Boosting anandamide levels via inhibition of its metabolism by fatty acid amide hydrolase (FAAH) can enhance extinction, whereas inhibiting monoacylglycerol lipase (MAGL) to elevate 2-arachidonoylglycerol levels can impair extinction. However, whether endocannabinoids regulate fear relapse over time or extinction resistance remains unclear. In two experiments using auditory fear conditioned rats, we examined the effects of the FAAH inhibitor URB597 and the MAGL inhibitor JZL184 administered systemically on 1) spontaneous fear recovery after delayed extinction, and 2) extinction resistance resulting from immediate extinction [the immediate extinction deficit (IED)]. In Experiment 1, URB597 or JZL184 was given immediately after delayed extinction occurring 24 h after conditioning. Extinction recall and spontaneous fear recovery were tested drug-free 1 and 21 days later, respectively. We found no effects of either drug on extinction recall or spontaneous fear recovery. In Experiment 2, URB597 or JZL184 was given before immediate extinction occurring 30 min after conditioning and extinction recall was tested drug-free the next day. We also examined the effects of propranolol, a beta-adrenoceptor antagonist that can rescue the IED, as a positive control. JZL184 enhanced fear expression and impaired extinction learning but we found no lasting effects of URB597 or JZL184 on cued extinction recall. Propranolol reduced fear expression but, unexpectedly, had no enduring effect on extinction recall. The results are discussed in relation to various methodological differences between previous studies examining endocannabinoid and adrenergic regulation of fear extinction.
Collapse
Affiliation(s)
- William G. Warren
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, United Kingdom
| | - Eleni P. Papagianni
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, United Kingdom
| | - Ed Hale
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, United Kingdom
| | - Rebecca A. Brociek
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Helen J. Cassaday
- School of Psychology, University Park, University of Nottingham, Nottingham, United Kingdom
| | - Carl W. Stevenson
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, United Kingdom,*Correspondence: Carl W. Stevenson,
| |
Collapse
|
4
|
Shade RD, Ross JA, Van Bockstaele EJ. Targeting the cannabinoid system to counteract the deleterious effects of stress in Alzheimer’s disease. Front Aging Neurosci 2022; 14:949361. [PMID: 36268196 PMCID: PMC9577232 DOI: 10.3389/fnagi.2022.949361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/01/2022] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease is a progressive neurodegenerative disorder characterized histologically in postmortem human brains by the presence of dense protein accumulations known as amyloid plaques and tau tangles. Plaques and tangles develop over decades of aberrant protein processing, post-translational modification, and misfolding throughout an individual’s lifetime. We present a foundation of evidence from the literature that suggests chronic stress is associated with increased disease severity in Alzheimer’s patient populations. Taken together with preclinical evidence that chronic stress signaling can precipitate cellular distress, we argue that chronic psychological stress renders select circuits more vulnerable to amyloid- and tau- related abnormalities. We discuss the ongoing investigation of systemic and cellular processes that maintain the integrity of protein homeostasis in health and in degenerative conditions such as Alzheimer’s disease that have revealed multiple potential therapeutic avenues. For example, the endogenous cannabinoid system traverses the central and peripheral neural systems while simultaneously exerting anti-inflammatory influence over the immune response in the brain and throughout the body. Moreover, the cannabinoid system converges on several stress-integrative neuronal circuits and critical regions of the hypothalamic-pituitary-adrenal axis, with the capacity to dampen responses to psychological and cellular stress. Targeting the cannabinoid system by influencing endogenous processes or exogenously stimulating cannabinoid receptors with natural or synthetic cannabis compounds has been identified as a promising route for Alzheimer’s Disease intervention. We build on our foundational framework focusing on the significance of chronic psychological and cellular stress on the development of Alzheimer’s neuropathology by integrating literature on cannabinoid function and dysfunction within Alzheimer’s Disease and conclude with remarks on optimal strategies for treatment potential.
Collapse
Affiliation(s)
- Ronnie D. Shade
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Jennifer A. Ross
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, United States
- *Correspondence: Jennifer A. Ross,
| | - Elisabeth J. Van Bockstaele
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
5
|
Cannabidiol Prevents Spontaneous Fear Recovery after Extinction and Ameliorates Stress-Induced Extinction Resistance. Int J Mol Sci 2022; 23:ijms23169333. [PMID: 36012600 PMCID: PMC9409311 DOI: 10.3390/ijms23169333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 12/15/2022] Open
Abstract
Cannabidiol, the main non-psychotropic constituent of cannabis, has potential as a treatment for anxiety-related disorders since it reduces learned fear expression and enhances fear extinction. The return of fear over time after successful extinction and stress-induced extinction resistance are potential barriers to the treatment of these disorders with extinction-based psychological therapy. In two experiments using rats subjected to auditory fear conditioning, we determined the effects of systemic cannabidiol treatment on (1) delayed extinction and later spontaneous fear recovery, and (2) extinction resistance caused by immediate extinction (the immediate extinction deficit (IED)). In Experiment 1, cannabidiol was given before delayed extinction occurring 24 h after conditioning, with extinction recall and spontaneous fear recovery tested drug-free 1 and 21 days after extinction, respectively. We found that cannabidiol had no effect on extinction recall but it prevented spontaneous fear recovery. In Experiment 2, the IED procedure was first validated, with immediate extinction occurring 30 min after conditioning. We confirmed that immediate extinction impaired extinction recall, compared to delayed extinction. Next, cannabidiol was given before immediate or no extinction, with extinction recall tested drug-free the next day. We found that cannabidiol rescued the IED, which did not involve effects on fear memory consolidation. In summary, cannabidiol prevented spontaneous fear recovery after delayed extinction and ameliorated extinction resistance caused by immediate extinction. Although the pharmacological mechanisms underlying these effects remain to be determined, our results add to evidence indicating that cannabidiol might prove useful as an adjunct for potentiating the psychological treatment of anxiety-related disorders.
Collapse
|
6
|
Role of noradrenergic arousal for fear extinction processes in rodents and humans. Neurobiol Learn Mem 2022; 194:107660. [PMID: 35870717 DOI: 10.1016/j.nlm.2022.107660] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/29/2022] [Accepted: 07/17/2022] [Indexed: 01/22/2023]
Abstract
Fear extinction is a learning mechanism that is pivotal for the inhibition of fear responses towards cues or contexts that no longer predict the occurrence of a threat. Failure of fear extinction leads to fear expression under safe conditions and is regarded to be a cardinal characteristic of many anxiety-related disorders and posttraumatic stress disorder. Importantly, the neurotransmitter noradrenaline was shown to be a potent modulator of fear extinction. Rodent studies demonstrated that excessive noradrenaline transmission after acute stress opens a time window of vulnerability, in which fear extinction learning results in attenuated long-term extinction success. In contrast, when excessive noradrenergic transmission subsides, well-coordinated noradrenaline transmission is necessary for the formation of a long-lasting extinction memory. In addition, emerging evidence suggests that the neuropeptide corticotropin releasing hormone (CRF), which strongly regulates noradrenaline transmission under conditions of acute stress, also impedes long-term extinction success. Recent rodent work - using sophisticated methods - provides evidence for a hypothetical mechanistic framework of how noradrenaline and CRF dynamically orchestrate the neural fear and extinction circuitry to attenuate or to improve fear extinction and extinction recall. Accordingly, we review the evidence from rodent studies linking noradrenaline and CRF to fear extinction learning and recall and derive the hypothetical mechanistic framework of how different levels of noradrenaline and CRF may create a time window of vulnerability which impedes successful long-term fear extinction. We also address evidence from human studies linking noradrenaline and fear extinction success. Moreover, we accumulate emerging approaches to non-invasively measure and manipulate the noradrenergic system in healthy humans. Finally, we emphasize the importance of future studies to account for sex (hormone) differences when examining the interaction between fear extinction, noradrenaline, and CRF. To conclude, NA's effects on fear extinction recall strongly depend on the arousal levels at the onset of fear extinction learning. Our review aimed at compiling the available (mainly rodent) data in a neurobiological framework, suited to derive testable hypotheses for future work in humans.
Collapse
|
7
|
Maren S. Unrelenting Fear Under Stress: Neural Circuits and Mechanisms for the Immediate Extinction Deficit. Front Syst Neurosci 2022; 16:888461. [PMID: 35520882 PMCID: PMC9062589 DOI: 10.3389/fnsys.2022.888461] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Therapeutic interventions for disorders of fear and anxiety rely on behavioral approaches that reduce pathological fear memories. For example, learning that threat-predictive stimuli are no longer associated with aversive outcomes is central to the extinction of conditioned fear responses. Unfortunately, fear memories are durable, long-lasting, and resistant to extinction, particularly under high levels of stress. This is illustrated by the "immediate extinction deficit," which is characterized by a poor long-term reduction of conditioned fear when extinction procedures are attempted within hours of fear conditioning. Here, I will review recent work that has provided new insight into the neural mechanisms underlying resistance to fear extinction. Emerging studies reveal that locus coeruleus norepinephrine modulates amygdala-prefrontal cortical circuits that are critical for extinction learning. These data suggest that stress-induced activation of brain neuromodulatory systems biases fear memory at the expense of extinction learning. Behavioral and pharmacological strategies to reduce stress in patients undergoing exposure therapy might improve therapeutic outcomes.
Collapse
Affiliation(s)
- Stephen Maren
- Department of Psychological and Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| |
Collapse
|
8
|
Zhu J, Wang C, Wang Y, Guo C, Lu P, Mou F, Shao S. Electroacupuncture alleviates anxiety and modulates amygdala CRH/CRHR1 signaling in single prolonged stress mice. Acupunct Med 2022; 40:369-378. [PMID: 35044840 DOI: 10.1177/09645284211056352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Post-traumatic stress disorder (PTSD) is an anxiety-related psychiatric disorder, manifesting high comorbidity with anxiety disorders. Its underlying neurobiological mechanisms have been associated with hypothalamic-pituitary-adrenal (HPA) axis dysfunction and stress hormones. Corticotropin-releasing hormone (CRH) is a primary stress hormone, expressed in the hypothalamus and amygdala. Electroacupuncture (EA) can improve mood disorders, but its mechanisms have not been fully elucidated. The aim of this study was to observe the effect of EA on PTSD and explore the related mechanisms. METHODS We used single prolonged stress (SPS) mice to establish a PTSD model, and EA was performed after SPS or 7 days later for a week. Then we observed their fear and anxiety-like behavior through cue-induced fear condition tests, open field test and the elevated zero maze. CRH and CRH receptor 1 (CRHR1) protein levels in the amygdala were measured in SPS mice after EA intervention. RESULTS We found that EA at ST36 and GV20 improved fear and anxiety behavior in SPS mice. The amygdala CRH and CRHR1 protein levels increased in the SPS mice, and this effect was reversed by the EA intervention. CRHR1 inhibition by the CRHR1 antagonist NBI 27914 alleviated anxiety behavior in SPS mice. CONCLUSION CRH/CRHR1 signaling in the amygdala may contribute to the anxiolytic effect of EA in SPS mice.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chang Wang
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Wang
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine of Fudan University, Fudan University, Shanghai, China
| | - Chunxia Guo
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pingping Lu
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fangfang Mou
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuijin Shao
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
An S, Wang J, Zhang X, Duan Y, Xu Y, Lv J, Wang D, Zhang H, Richter-Levin G, Klavir O, Yu B, Cao X. αCaMKII in the lateral amygdala mediates PTSD-Like behaviors and NMDAR-Dependent LTD. Neurobiol Stress 2021; 15:100359. [PMID: 34258335 PMCID: PMC8252123 DOI: 10.1016/j.ynstr.2021.100359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/30/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric disorder that afflicts many individuals. However, its molecular and cellular mechanisms remain largely unexplored. Here, we found PTSD susceptible mice exhibited significant up-regulation of alpha-Ca2+/calmodulin-dependent kinase II (αCaMKII) in the lateral amygdala (LA). Consistently, increasing αCaMKII in the LA not only caused PTSD-like behaviors such as impaired fear extinction and anxiety-like behaviors, but also attenuated N-methyl-D-aspartate receptor (NMDAR)-dependent long-term depression (LTD) at thalamo-lateral amygdala (T-LA) synapses, and reduced GluA1-Ser845/Ser831 dephosphorylation and a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) internalization. Suppressing the elevated αCaMKII to normal levels completely rescued both PTSD-like behaviors and the impairments in LTD, GluA1-Ser845/Ser831 dephosphorylation, and AMPAR internalization. Intriguingly, deficits in GluA1-Ser845/Ser831 dephosphorylation and AMPAR internalization were detected not only after impaired fear extinction, but also after attenuated LTD. Our results suggest that αCaMKII in the LA may be a potential molecular determinant of PTSD. We further demonstrate for the first time that GluA1-Ser845/Ser831 dephosphorylation and AMPAR internalization are molecular links between fear extinction and LTD.
Collapse
Affiliation(s)
- Shuming An
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Jiayue Wang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Xuliang Zhang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Yanhong Duan
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Yiqiong Xu
- Department of Anesthesiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Junyan Lv
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Dasheng Wang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Huan Zhang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Gal Richter-Levin
- “Sagol” Department of Neurobiology, University of Haifa, Haifa, 31905, Israel
| | - Oded Klavir
- Department of Psychology, Brain and Psychopathology Division, University of Haifa, Haifa, 31905, Israel
| | - Buwei Yu
- Department of Anesthesiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
- Corresponding author.
| | - Xiaohua Cao
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
- Corresponding author.
| |
Collapse
|
10
|
Rosinger ZJ, De Guzman RM, Jacobskind JS, Saglimbeni B, Malone M, Fico D, Justice NJ, Forni PE, Zuloaga DG. Sex-dependent effects of chronic variable stress on discrete corticotropin-releasing factor receptor 1 cell populations. Physiol Behav 2020; 219:112847. [PMID: 32081812 DOI: 10.1016/j.physbeh.2020.112847] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/25/2020] [Accepted: 02/13/2020] [Indexed: 12/19/2022]
Abstract
Anxiety and depression are strikingly more prevalent in women compared with men. Dysregulation of corticotropin-releasing factor (CRF) binding to its cognate receptor (CRFR1) is thought to play a critical role in the etiology of these disorders. In the present study, we investigated whether there were sex differences in the effects of chronic variable stress (CVS) on CRFR1 cells using CRFR1-GFP reporter mice experiencing a 9-day CVS paradigm. Brains were collected from CVS and stress naïve female and male mice following exposure to the open field test. This CVS paradigm effectively increased anxiety-like behavior in female and male mice. In addition, we assessed changes in activation of CRFR1 cells (co-localization with c-Fos and phosphorylated CREB (pCREB)) in stress associated brain structures, including two sexually dimorphic CRFR1 cell groups in the anteroventral periventricular nucleus (AVPV/PeN; F>M) and paraventricular hypothalamus (PVN; M>F). CVS increased CRFR1-GFP cell number as well as the number of CRFR1/pCREB co-expressing cells in the female but not male AVPV/PeN. In the PVN, the number of CRFR1/pCREB co-expressing cells was overall greater in males regardless of treatment and CVS resulted in a male-specific reduction of CRFR1/c-Fos cells. In addition, CVS induced a female-specific reduction in CRFR1/c-Fos cells within the anteroventral bed nucleus of the stria terminalis and both sexes exhibited a reduction in CRFR1/c-Fos co-expressing cells following CVS within the ventral basolateral amygdala. Overall, these sex-specific effects of CVS on CRFR1 populations may have implications for sex differences in stress-induction of mood disorders.
Collapse
Affiliation(s)
- Zachary J Rosinger
- Department of Psychology, University at Albany, Albany, NY 12222, United States
| | - Rose M De Guzman
- Department of Psychology, University at Albany, Albany, NY 12222, United States
| | - Jason S Jacobskind
- Department of Psychology, University at Albany, Albany, NY 12222, United States
| | - Brianna Saglimbeni
- Department of Psychology, University at Albany, Albany, NY 12222, United States
| | - Margaret Malone
- Department of Psychology, University at Albany, Albany, NY 12222, United States
| | - Danielle Fico
- Department of Psychology, University at Albany, Albany, NY 12222, United States
| | - Nicholas J Justice
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Sciences Center, Houston, TX, United States
| | - Paolo E Forni
- Department of Biological Sciences, The RNA Institute, and the Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY 12222, United States
| | - Damian G Zuloaga
- Department of Psychology, University at Albany, Albany, NY 12222, United States.
| |
Collapse
|
11
|
Jo YS, Namboodiri VMK, Stuber GD, Zweifel LS. Persistent activation of central amygdala CRF neurons helps drive the immediate fear extinction deficit. Nat Commun 2020; 11:422. [PMID: 31969571 PMCID: PMC6976644 DOI: 10.1038/s41467-020-14393-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Fear extinction is an active learning process whereby previously established conditioned responses to a conditioned stimulus are suppressed. Paradoxically, when extinction training is performed immediately following fear acquisition, the extinction memory is weakened. Here, we demonstrate that corticotrophin-releasing factor (CRF)-expressing neurons in the central amygdala (CeA) antagonize the extinction memory following immediate extinction training. CeA-CRF neurons transition from responding to the unconditioned stimulus to the conditioned stimulus during the acquisition of a fear memory that persists during immediate extinction training, but diminishes during delayed extinction training. Inhibition of CeA-CRF neurons during immediate extinction training is sufficient to promote enhanced extinction memories, and activation of these neurons following delay extinction training is sufficient to reinstate a previously extinguished fear memory. These results demonstrate CeA-CRF neurons are an important substrate for the persistence of fear and have broad implications for the neural basis of persistent negative affective behavioral states.
Collapse
Affiliation(s)
- Yong S. Jo
- 0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195 USA ,0000 0001 0840 2678grid.222754.4Department of Psychology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Vijay Mohan K. Namboodiri
- 0000000122986657grid.34477.33Department of Anesthesiology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195 USA
| | - Garret D. Stuber
- 0000000122986657grid.34477.33Department of Anesthesiology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195 USA ,0000000122986657grid.34477.33Department of Pharmacology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195 USA
| | - Larry S. Zweifel
- 0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195 USA ,0000000122986657grid.34477.33Department of Pharmacology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195 USA
| |
Collapse
|
12
|
Locus Coeruleus Norepinephrine Drives Stress-Induced Increases in Basolateral Amygdala Firing and Impairs Extinction Learning. J Neurosci 2019; 40:907-916. [PMID: 31801809 DOI: 10.1523/jneurosci.1092-19.2019] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/08/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
Stress impairs extinction learning, and these deficits depend, in part, on stress-induced norepinephrine (NE) release in the basolateral amygdala (BLA). For example, systemic or intra-BLA administration of propranolol reduces the immediate extinction deficit (IED), an impairment in extinction learning that occurs when extinction trials are administered soon after fear conditioning. Here, we explored whether locus coeruleus (LC)-NE regulates stress-induced changes in spike firing in the BLA and consequent extinction learning impairments. Rats were implanted with recording arrays in the BLA and, after recovery from surgery, underwent a standard auditory fear conditioning procedure. Fear conditioning produced an immediate and dramatic increase in the spontaneous firing of BLA neurons that persisted (and in some units, increased further) up to an hour after conditioning. This stress-induced increase in BLA firing was prevented by systemic administration of propranolol. Conditioning with a weaker footshock caused smaller increases in BLA firing rate, but this could be augmented by chemogenetic activation of the LC. Conditioned freezing in response to a tone paired with a weak footshock was immune to the IED, but chemogenetic activation of the LC before the weak conditioning protocol increased conditioned freezing behavior and induced an IED; this effect was blocked with intra-BLA infusions of propranolol. These data suggest that stress-induced activation of the LC increases BLA spike firing and causes impairments in extinction learning. Stress-induced increases in BLA activity mediated by LC-NE may be a viable therapeutic target for individuals with stress- and trauma-related disorders.SIGNIFICANCE STATEMENT Patients with post-traumatic stress disorder (PTSD) show heightened amygdala activity; elevated levels of stress hormones, including norepinephrine; and are resistant to the extinction of fear memories. Here, we show that stress increases basolateral amygdala (BLA) spike firing. This could be attenuated by systemic propranolol and mimicked by chemogenetic activation of the locus coeruleus (LC), the source of forebrain norepinephrine (NE). Finally, we show that LC-NE activation is sufficient to produce extinction deficits, and this is blocked by intra-BLA propranolol. Stress-induced increases in BLA activity mediated by LC-NE may be a viable therapeutic target for individuals with PTSD and related disorders.
Collapse
|
13
|
Velasco ER, Florido A, Milad MR, Andero R. Sex differences in fear extinction. Neurosci Biobehav Rev 2019; 103:81-108. [PMID: 31129235 PMCID: PMC6692252 DOI: 10.1016/j.neubiorev.2019.05.020] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/08/2019] [Accepted: 05/19/2019] [Indexed: 12/18/2022]
Abstract
Despite the exponential increase in fear research during the last years, few studies have included female subjects in their design. The need to include females arises from the knowledge gap of mechanistic processes underlying the behavioral and neural differences observed in fear extinction. Moreover, the exact contribution of sex and hormones in relation to learning and behavior is still largely unknown. Insights from this field could be beneficial as fear-related disorders are twice as prevalent in women compared to men. Here, we review an up-to-date summary of animal and human studies in adulthood that report sex differences in fear extinction from a structural and functional approach. Furthermore, we describe how these factors could contribute to the observed sex differences in fear extinction during normal and pathological conditions.
Collapse
Affiliation(s)
- E R Velasco
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain
| | - A Florido
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain
| | - M R Milad
- Department of Psychiatry, University of Illinois at Chicago, USA
| | - R Andero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Corporació Sanitaria Parc Taulí, Sabadell, Spain; Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
14
|
Comeras LB, Herzog H, Tasan RO. Neuropeptides at the crossroad of fear and hunger: a special focus on neuropeptide Y. Ann N Y Acad Sci 2019; 1455:59-80. [PMID: 31271235 PMCID: PMC6899945 DOI: 10.1111/nyas.14179] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/15/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022]
Abstract
Survival in a natural environment forces an individual into constantly adapting purposive behavior. Specified interoceptive neurons monitor metabolic and physiological balance and activate dedicated brain circuits to satisfy essential needs, such as hunger, thirst, thermoregulation, fear, or anxiety. Neuropeptides are multifaceted, central components within such life‐sustaining programs. For instance, nutritional depletion results in a drop in glucose levels, release of hormones, and activation of hypothalamic and brainstem neurons. These neurons, in turn, release several neuropeptides that increase food‐seeking behavior and promote food intake. Similarly, internal and external threats activate neuronal pathways of avoidance and defensive behavior. Interestingly, specific nuclei of the hypothalamus and extended amygdala are activated by both hunger and fear. Here, we introduce the relevant neuropeptides and describe their function in feeding and emotional‐affective behaviors. We further highlight specific pathways and microcircuits, where neuropeptides may interact to identify prevailing homeostatic needs and direct respective compensatory behaviors. A specific focus will be on neuropeptide Y, since it is known for its pivotal role in metabolic and emotional pathways. We hypothesize that the orexigenic and anorexigenic properties of specific neuropeptides are related to their ability to inhibit fear and anxiety.
Collapse
Affiliation(s)
- Lucas B Comeras
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ramon O Tasan
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
15
|
Totty MS, Payne MR, Maren S. Event boundaries do not cause the immediate extinction deficit after Pavlovian fear conditioning in rats. Sci Rep 2019; 9:9459. [PMID: 31263140 PMCID: PMC6603014 DOI: 10.1038/s41598-019-46010-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/21/2019] [Indexed: 12/20/2022] Open
Abstract
Recent work reveals that the extinction of conditioned fear depends upon the interval between conditioning and extinction. Extinction training that takes place within minutes to hours after fear conditioning fails to produce a long-term extinction memory, a phenomenon known as the immediate extinction deficit (IED). Neurobiological evidence suggests that the IED results from stress-induced dysregulation of prefrontal cortical circuits involved in extinction learning. However, a recent study in humans suggests that an "event boundary" between fear conditioning and extinction protects the conditioning memory from interference by the extinction memory, resulting in high levels of fear during a retrieval test. Here, we contrast these hypotheses in rats by arranging extinction trials to follow conditioning trials with or without an event boundary; in both cases, extinction trials are delivered in proximity to shock-elicited stress. After fear conditioning, rats either received extinction trials 60-sec after the last conditioning trial (continuous, no event boundary) or 15-minutes after conditioning (segmented, a standard "immediate" extinction procedure associated with an event boundary). Both groups of animals showed decreases in conditional freezing to the auditory conditioned stimulus (CS) during extinction and exhibited an equivalent IED relative to non-extinguished controls when tested 48 hours later. Thus, eliminating the event boundary between conditioning and extinction with the continuous extinction procedure did not prevent the IED. These data suggest that the IED is the result of shock-induced stress, rather than boundary-induced reductions in memory interference.
Collapse
Affiliation(s)
- Michael S Totty
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, Texas, 77843, USA
| | - Martin R Payne
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, Texas, 77843, USA
| | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, Texas, 77843, USA.
| |
Collapse
|
16
|
Règue M, Poilbout C, Martin V, Franc B, Lanfumey L, Mongeau R. Increased 5-HT2C receptor editing predisposes to PTSD-like behaviors and alters BDNF and cytokines signaling. Transl Psychiatry 2019; 9:100. [PMID: 30792491 PMCID: PMC6384909 DOI: 10.1038/s41398-019-0431-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 12/16/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a trauma- and stress-related disorder with dysregulated fear responses and neurobiological impairments, notably at neurotrophic and inflammation levels. Understanding the mechanisms underlying this disease is crucial to develop PTSD models that meet behavioral and neurobiological validity criteria as well as innovative therapeutic approaches. Serotonin 2C receptors (5-HT2CR) are known for their important role in anxiety, and mice having only the fully edited VGV isoform of 5-HT2CR, which thereby overexpressed brain 5-HT2CR, are of special interest to study PTSD predisposition. Innate and conditioned fear-related behaviors were assessed in VGV and wild-type mice. mRNA expression of brain-derived neurotrophic factor (BDNF), tissue-plasminogen activator (tPA), and pro-inflammatory cytokines (IL-6, IL-1β, and calcineurin) were measured by qRT-PCR. The effect of acute and chronic paroxetine was evaluated on both behavior and gene expression. VGV mice displayed greater fear expression, extensive fear extinction deficits, and fear generalization. Paroxetine restored fear extinction in VGV mice when administered acutely and decreased innate fear and fear generalization when administered chronically. In parallel, Bdnf, tPA, and pro-inflammatory cytokines mRNA levels were dysregulated in VGV mice. Bdnf and tPA mRNA expression was decreased in the hippocampus but increased in the amygdala, and chronic paroxetine normalized Bdnf mRNA levels both in the amygdala and the hippocampus. Amygdalar calcineurin mRNA level in VGV mice was also normalized by chronic paroxetine. VGV-transgenic mice displayed behavioral and neurobiological features that could be accessory to the investigation of PTSD and its treatment. Furthermore, these data point out to the role of 5-HT2CR in neuroplasticity and neuroinflammation.
Collapse
MESH Headings
- Amygdala/metabolism
- Animals
- Anxiety/genetics
- Behavior, Animal/drug effects
- Brain-Derived Neurotrophic Factor/genetics
- Brain-Derived Neurotrophic Factor/metabolism
- Cytokines/metabolism
- Disease Models, Animal
- Fear
- Hippocampus/metabolism
- Male
- Maze Learning
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Paroxetine/pharmacology
- RNA Editing
- RNA, Messenger/genetics
- Receptor, Serotonin, 5-HT2C/genetics
- Receptor, Serotonin, 5-HT2C/metabolism
- Signal Transduction
- Stress Disorders, Post-Traumatic/drug therapy
- Stress Disorders, Post-Traumatic/metabolism
Collapse
Affiliation(s)
- Mathilde Règue
- Inserm UMR S894, Centre de Psychiatrie et Neuroscience, Université Paris Descartes, 75014, Paris, France
| | - Corinne Poilbout
- Inserm UMR S894, Centre de Psychiatrie et Neuroscience, Université Paris Descartes, 75014, Paris, France
| | - Vincent Martin
- Inserm UMR S894, Centre de Psychiatrie et Neuroscience, Université Paris Descartes, 75014, Paris, France
| | - Bernard Franc
- Inserm UMR S894, Centre de Psychiatrie et Neuroscience, Université Paris Descartes, 75014, Paris, France
| | - Laurence Lanfumey
- Inserm UMR S894, Centre de Psychiatrie et Neuroscience, Université Paris Descartes, 75014, Paris, France
| | - Raymond Mongeau
- EA 4475, Pharmacologie de la circulation cérébrale, Université Paris Descartes, 75006, Paris, France.
| |
Collapse
|
17
|
Merz CJ, Wolf OT. The immediate extinction deficit occurs in a nonemotional learning paradigm. ACTA ACUST UNITED AC 2019; 26:39-45. [PMID: 30651376 PMCID: PMC6340120 DOI: 10.1101/lm.048223.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/11/2018] [Indexed: 01/16/2023]
Abstract
The immediate extinction deficit describes a higher return of fear when extinction takes place immediately after fear acquisition compared to a delayed extinction design. One explanation for this phenomenon encompasses the remaining emotional arousal evoked by fear acquisition to be still present during immediate, but not delayed extinction. In the present study, the predictive learning task, a learning task not involving arousal or stress, was used testing the hypothesis that no immediate extinction deficit should occur in this neutral task. Twenty-six participants underwent an immediate extinction procedure and were tested in a recall session 24 h later. For the delayed extinction group (n = 26), acquisition, extinction, and recall were realized 24 h apart from each other. Recall performance of a third group (n = 26) was tested 48 h after the immediate extinction procedure. The immediate extinction deficit was indeed observed for a stimulus not subject to a contextual change from acquisition to extinction, but not for other stimuli involving contextual changes or no extinction control stimuli. Even in a neutral learning task and without emotional arousal, the immediate extinction deficit could be detected but was restricted to the specific contextual embedding of stimuli. Thus, contextual processing appears to differentially modulate the emergence of the immediate extinction deficit.
Collapse
Affiliation(s)
- Christian J Merz
- Department of Cognitive Psychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, 44780 Bochum, Germany
| | - Oliver T Wolf
- Department of Cognitive Psychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
18
|
Jurek B, Neumann ID. The Oxytocin Receptor: From Intracellular Signaling to Behavior. Physiol Rev 2018; 98:1805-1908. [DOI: 10.1152/physrev.00031.2017] [Citation(s) in RCA: 408] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The many facets of the oxytocin (OXT) system of the brain and periphery elicited nearly 25,000 publications since 1930 (see FIGURE 1 , as listed in PubMed), which revealed central roles for OXT and its receptor (OXTR) in reproduction, and social and emotional behaviors in animal and human studies focusing on mental and physical health and disease. In this review, we discuss the mechanisms of OXT expression and release, expression and binding of the OXTR in brain and periphery, OXTR-coupled signaling cascades, and their involvement in behavioral outcomes to assemble a comprehensive picture of the central and peripheral OXT system. Traditionally known for its role in milk let-down and uterine contraction during labor, OXT also has implications in physiological, and also behavioral, aspects of reproduction, such as sexual and maternal behaviors and pair bonding, but also anxiety, trust, sociability, food intake, or even drug abuse. The many facets of OXT are, on a molecular basis, brought about by a single receptor. The OXTR, a 7-transmembrane G protein-coupled receptor capable of binding to either Gαior Gαqproteins, activates a set of signaling cascades, such as the MAPK, PKC, PLC, or CaMK pathways, which converge on transcription factors like CREB or MEF-2. The cellular response to OXT includes regulation of neurite outgrowth, cellular viability, and increased survival. OXTergic projections in the brain represent anxiety and stress-regulating circuits connecting the paraventricular nucleus of the hypothalamus, amygdala, bed nucleus of the stria terminalis, or the medial prefrontal cortex. Which OXT-induced patterns finally alter the behavior of an animal or a human being is still poorly understood, and studying those OXTR-coupled signaling cascades is one initial step toward a better understanding of the molecular background of those behavioral effects.
Collapse
Affiliation(s)
- Benjamin Jurek
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Inga D. Neumann
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
19
|
Inoue R, Talukdar G, Takao K, Miyakawa T, Mori H. Dissociated Role of D-Serine in Extinction During Consolidation vs. Reconsolidation of Context Conditioned Fear. Front Mol Neurosci 2018; 11:161. [PMID: 29872376 PMCID: PMC5972189 DOI: 10.3389/fnmol.2018.00161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/30/2018] [Indexed: 01/03/2023] Open
Abstract
Extinction-based exposure therapy is widely used for the treatment of anxiety disorders, such as post-traumatic stress disorder (PTSD). D-serine, an endogenous co-agonist at the glycine-binding site of the N-methyl-D-aspartate-type glutamate receptor (NMDAR), has been shown to be involved in extinction of fear memory. Recent findings suggest that the length of time between the initial learning and an extinction session is a determinant of neural mechanism involved in fear extinction. However, how D-serine is involved in extinction of fear memory at different timings remains unclear. In the present study, we investigated the role of D-serine in immediate, delayed and post-retrieval extinction (P-RE) of contextual fear memory using wild-type (WT) and serine racemase (SRR) knockout (KO) mice that exhibit 90% reduction in D-serine content in the hippocampus. We found that SRR disruption impairs P-RE, facilitates immediate extinction (IE), but has no effect on delayed extinction (DE) of contextual fear memories. The impaired P-RE of contextual fear memory in SRRKO mice was associated with increased expression of the GluA1 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor (AMPAR) in the hippocampal synaptic membrane fraction after P-RE, and this increase of AMPAR and impaired P-RE were rescued by the administration of D-serine to SRRKO mice. Our findings suggest that D-serine is differentially involved in the regulation of contextual fear extinction depending on the timing of behavioral intervention, and that combining D-serine or other drugs, enhancing the NMDAR function, with P-RE may achieve optimal outcomes for the treatment of PTSD.
Collapse
Affiliation(s)
- Ran Inoue
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Gourango Talukdar
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Keizo Takao
- Life Science Research Center, University of Toyama, Toyama, Japan.,Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi, Japan.,Genetic Engineering and Functional Genomics Group, Frontier Technology Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Miyakawa
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi, Japan.,Genetic Engineering and Functional Genomics Group, Frontier Technology Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
20
|
Wellman LL, Fitzpatrick ME, Sutton AM, Williams BL, Machida M, Sanford LD. Antagonism of corticotropin releasing factor in the basolateral amygdala of resilient and vulnerable rats: Effects on fear-conditioned sleep, temperature and freezing. Horm Behav 2018; 100:20-28. [PMID: 29501756 PMCID: PMC5949089 DOI: 10.1016/j.yhbeh.2018.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 10/17/2022]
Abstract
The basolateral nucleus of the amygdala (BLA) plays a significant role in mediating individual differences in the effects of fear memory on sleep. Here, we assessed the effects of antagonizing corticotropin releasing factor receptor 1 (CRFR1) after shock training (ST) on fear-conditioned behaviors and sleep. Outbred Wistar rats were surgically implanted with electrodes for recording EEG and EMG and with bilateral guide cannulae directed at BLA. Data loggers were placed intraperitoneally to record core body temperature. The CRFR1 antagonist, antalarmin (ANT; 4.82 mM) was microinjected into BLA after shock training (ST: 20 footshocks, 0.8 mA, 0.5 s duration, 60 s interstimulus interval), and the effects on sleep, freezing and the stress response (stress-induced hyperthermia, SIH) were examined after ST and fearful context re-exposure alone at 7 days (CTX1) and 21 days (CTX2) post-ST. EEG and EMG recordings were scored for non-rapid eye movement sleep (NREM), rapid eye movement sleep (REM) and wakefulness. The rats were separated into 4 groups: Vehicle-vulnerable (Veh-Vul; n = 10), Veh-resilient (Veh-Res; n = 11), ANT-vulnerable (ANT-Vul; n = 8) and ANT-resilient (ANT-Res; n = 8) based on whether, compared to baseline, the rats showed a decrease or no change/increase in REM during the first 4 h following ST. Post-ST ANT microinjected into BLA attenuated the fear-conditioned reduction in REM in ANT-Vul rats on CTX1, but did not significantly alter REM in ANT-Res rats. However, compared to Veh treated rats, REM was reduced in ANT treated rats on CTX2. There were no group differences in freezing or SIH across conditions. Therefore, CRFR1 in BLA plays a role in mediating individual differences in sleep responses to stress and in the extinction of fear conditioned changes in sleep.
Collapse
Affiliation(s)
- Laurie L Wellman
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Mairen E Fitzpatrick
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Amy M Sutton
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Brook L Williams
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Mayumi Machida
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Larry D Sanford
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA.
| |
Collapse
|
21
|
Giustino TF, Maren S. Noradrenergic Modulation of Fear Conditioning and Extinction. Front Behav Neurosci 2018; 12:43. [PMID: 29593511 PMCID: PMC5859179 DOI: 10.3389/fnbeh.2018.00043] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
The locus coeruleus norepinephrine (LC-NE) system plays a broad role in learning and memory. Here we begin with an overview of the LC-NE system. We then consider how both direct and indirect manipulations of the LC-NE system affect cued and contextual aversive learning and memory. We propose that NE dynamically modulates Pavlovian conditioning and extinction, either promoting or impairing learning aversive processes under different levels of behavioral arousal. We suggest that under high levels of stress (e.g., during/soon after fear conditioning) the locus coeruleus (LC) promotes cued fear learning by enhancing amygdala function while simultaneously blunting prefrontal function. Under low levels of arousal, the LC promotes PFC function to promote downstream inhibition of the amygdala and foster the extinction of cued fear. Thus, LC-NE action on the medial prefrontal cortex (mPFC) might be described by an inverted-U function such that it can either enhance or hinder learning depending on arousal states. In addition, LC-NE seems to be particularly important for the acquisition, consolidation and extinction of contextual fear memories. This may be due to dense adrenoceptor expression in the hippocampus (HPC) which encodes contextual information, and the ability of NE to regulate long-term potentiation (LTP). Moreover, recent work reveals that the diversity of LC-NE functions in aversive learning and memory are mediated by functionally heterogeneous populations of LC neurons that are defined by their projection targets. Hence, LC-NE function in learning and memory is determined by projection-specific neuromodulation that accompanies various states of behavioral arousal.
Collapse
Affiliation(s)
- Thomas F Giustino
- Department of Psychological and Brain Sciences, Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Stephen Maren
- Department of Psychological and Brain Sciences, Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| |
Collapse
|
22
|
β-Adrenoceptor Blockade in the Basolateral Amygdala, But Not the Medial Prefrontal Cortex, Rescues the Immediate Extinction Deficit. Neuropsychopharmacology 2017; 42:2537-2544. [PMID: 28462941 PMCID: PMC5686500 DOI: 10.1038/npp.2017.89] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 01/09/2023]
Abstract
Early psychological interventions, such as exposure therapy, rely on extinction learning to reduce the development of stress- and trauma-related disorders. However, recent research suggests that extinction often fails to reduce fear when administered soon after trauma. This immediate extinction deficit (IED) may be due to stress-induced dysregulation of neural circuits involved in extinction learning. We have shown that systemic β-adrenoceptor blockade with propranolol rescues the IED, but impairs delayed extinction. Here we sought to determine the neural locus of these effects. Rats underwent auditory fear conditioning and then received either immediate (30 min) or delayed (24 h) extinction training. We used bilateral intracranial infusions of propranolol into either the infralimbic division of the medial prefrontal cortex (mPFC) or the basolateral amygdala (BLA) to examine the effects of β-adrenoceptor blockade on immediate and delayed extinction learning. Interestingly, intra-BLA, but not intra-mPFC, propranolol rescued the IED; animals receiving intra-BLA propranolol prior to immediate extinction showed less spontaneous recovery of fear during extinction retrieval. Importantly, this was not due to impaired consolidation of the conditioning memory. In contrast, neither intra-BLA nor intra-mPFC propranolol affected delayed extinction learning. Overall, these data contribute to a growing literature suggesting dissociable roles for key nodes in the fear extinction circuit depending on the timing of extinction relative to conditioning. These data also suggest that heightened noradrenergic activity in the BLA underlies stress-induced extinction deficits. Propranolol may be a useful adjunct to behavioral therapeutic interventions in recently traumatized individuals who are at risk for developing trauma-related disorders.
Collapse
|