1
|
Saade-Lemus S, Videnovic A. Sleep Disorders and Circadian Disruption in Huntington's Disease. J Huntingtons Dis 2023; 12:121-131. [PMID: 37424473 PMCID: PMC10473087 DOI: 10.3233/jhd-230576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 07/11/2023]
Abstract
Sleep and circadian alterations are common in patients with Huntington's disease (HD). Understanding the pathophysiology of these alterations and their association with disease progression and morbidity can guide HD management. We provide a narrative review of the clinical and basic-science studies centered on sleep and circadian function on HD. Sleep/wake disturbances among HD patients share many similarities with other neurodegenerative diseases. Overall, HD patients and animal models of the disease present with sleep changes early in the clinical course of the disease, including difficulties with sleep initiation and maintenance leading to decreased sleep efficiency, and progressive deterioration of normal sleep architecture. Despite this, sleep alterations remain frequently under-reported by patients and under-recognized by health professionals. The degree of sleep and circadian alterations has not consistently shown to be CAG dose-dependent. Evidence based treatment recommendations are insufficient due to lack of well-designed intervention trials. Approaches aimed at improving circadian entrainment, such as including light therapy, and time-restricted feeding have demonstrated a potential to delay symptom progression in some basic HD investigations. Larger study cohorts, comprehensive assessment of sleep and circadian function, and reproducibility of findings are needed in future in order to better understand sleep and circadian function in HD and to develop effective treatments.
Collapse
Affiliation(s)
- Sandra Saade-Lemus
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aleksandar Videnovic
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Morton AJ. Sleep and Circadian Rhythm Dysfunction in Animal Models of Huntington's Disease. J Huntingtons Dis 2023; 12:133-148. [PMID: 37334613 PMCID: PMC10473141 DOI: 10.3233/jhd-230574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2023] [Indexed: 06/20/2023]
Abstract
Sleep and circadian disruption affects most individuals with Huntington's disease (HD) at some stage in their lives. Sleep and circadian dysregulation are also present in many mouse and the sheep models of HD. Here I review evidence for sleep and/or circadian dysfunction in HD transgenic animal models and discuss two key questions: 1) How relevant are such findings to people with HD, and 2) Whether or not therapeutic interventions that ameliorate deficits in animal models of HD might translate to meaningful therapies for people with HD.
Collapse
Affiliation(s)
- A. Jennifer Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Cao F, Ralph MR, Stinchcombe AR. A Phenomenological Mouse Circadian Pacemaker Model. J Biol Rhythms 2022; 37:329-342. [PMID: 35485260 PMCID: PMC9160958 DOI: 10.1177/07487304221085455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mathematical models have been used extensively in chronobiology to explore characteristics of biological clocks. In particular, for human circadian studies, the Kronauer model has been modified multiple times to describe rhythm production and responses to sensory input. This phenomenological model comprises a single set of parameters which can simulate circadian responses in humans under a variety of environmental conditions. However, corresponding models for nocturnal rodents commonly used in circadian rhythm studies are not available and may require new parameter values for different species and even strains. Moreover, due to a considerable variation in experimental data collected from mice of the same strain, within and across laboratories, a range of valid parameters is essential. This study develops a Kronauer-like model for mice by re-fitting relevant parameters to published phase response curve and period data using total least squares. Local parameter sensitivity analysis and parameter distributions determine the parameter ranges that give a near-identical model and data distribution of periods. However, the model required further parameter adjustments to match characteristics of other mouse strains, implying that the model itself detects changes in the core processes of rhythm generation and control. The model is a useful tool to understand and interpret future mouse circadian clock experiments.
Collapse
Affiliation(s)
- Federico Cao
- Department of Mathematics, University of Toronto, Toronto, ON, Canada
| | - Martin R Ralph
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
4
|
Abstract
Endogenous biological clocks, orchestrated by the suprachiasmatic nucleus, time the circadian rhythms that synchronize physiological and behavioural functions in humans. The circadian system influences most physiological processes, including sleep, alertness and cognitive performance. Disruption of circadian homeostasis has deleterious effects on human health. Neurodegenerative disorders involve a wide range of symptoms, many of which exhibit diurnal variations in frequency and intensity. These disorders also disrupt circadian homeostasis, which in turn has negative effects on symptoms and quality of life. Emerging evidence points to a bidirectional relationship between circadian homeostasis and neurodegeneration, suggesting that circadian function might have an important role in the progression of neurodegenerative disorders. Therefore, the circadian system has become an attractive target for research and clinical care innovations. Studying circadian disruption in neurodegenerative disorders could expand our understanding of the pathophysiology of neurodegeneration and facilitate the development of novel, circadian-based interventions for these disabling disorders. In this Review, we discuss the alterations to the circadian system that occur in movement (Parkinson disease and Huntington disease) and cognitive (Alzheimer disease and frontotemporal dementia) neurodegenerative disorders and provide directions for future investigations in this field.
Collapse
|
5
|
Chen R, Weitzner AS, McKennon LA, Fonken LK. Chronic circadian phase advance in male mice induces depressive-like responses and suppresses neuroimmune activation. Brain Behav Immun Health 2021; 17:100337. [PMID: 34589820 PMCID: PMC8474595 DOI: 10.1016/j.bbih.2021.100337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 12/26/2022] Open
Abstract
Altered working and sleeping schedules during the COVID-19 pandemic likely impact our circadian systems. At the molecular level, clock genes form feedback inhibition loops that control 24-hr oscillations throughout the body. Importantly, core clock genes also regulate microglia, the brain resident immune cell, suggesting circadian regulation of neuroimmune function. To assess whether circadian disruption induces neuroimmune and associated behavioral changes, we mimicked chronic jetlag with a chronic phase advance (CPA) model. 32 adult male C57BL/6J mice underwent 6-hr light phase advance shifts every 3 light/dark cycles (CPA) 14 times or were maintained in standard light/dark cycles (control). CPA mice showed higher behavioral despair but not anhedonia in forced swim and sucrose preferences tests, respectively. Changes in behavior were accompanied by altered hippocampal circadian genes in CPA mice. Further, CPA suppressed expression of brain-derived neurotrophic factor (BDNF) and pro-inflammatory cytokine interleukin-1 beta in the hippocampus. Plasma corticosterone concentrations were elevated by CPA, suggesting that CPA may suppress neuroimmune pathways via glucocorticoids. These results demonstrate that chronic circadian disruption alters mood and neuroimmune function, which may have implications for shift working populations such as frontline health workers.
Collapse
Affiliation(s)
- Ruizhuo Chen
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Aidan S. Weitzner
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Lara A. McKennon
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Laura K. Fonken
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
6
|
Abstract
Melanopsin retinal ganglion cells (mRGCs) are the third class of retinal photoreceptors with unique anatomical, electrophysiological, and biological features. There are different mRGC subtypes with differential projections to the brain. These cells contribute to many nonimage-forming functions of the eye, the most relevant being the photoentrainment of circadian rhythms through the projections to the suprachiasmatic nucleus of the hypothalamus. Other relevant biological functions include the regulation of the pupillary light reflex, mood, alertness, and sleep, as well as a possible role in formed vision. The relevance of the mRGC-related pathways in the brain is highlighted by the role that the dysfunction and/or loss of these cells may play in affecting circadian rhythms and sleep in many neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's disease and in aging. Moreover, the occurrence of circadian dysfunction is a known risk factor for dementia. In this chapter, the anatomy, physiology, and functions of these cells as well as their resistance to neurodegeneration in mitochondrial optic neuropathies or their predilection to be lost in other neurodegenerative disorders will be discussed.
Collapse
|
7
|
Pilorz V, Kolms B, Oster H. Rapid Jetlag Resetting of Behavioral, Physiological, and Molecular Rhythms in Proestrous Female Mice. J Biol Rhythms 2020; 35:612-627. [PMID: 33140660 DOI: 10.1177/0748730420965291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A gradual adaptation to a shifted light-dark (LD) cycle is a key element of the circadian clock system and believed to be controlled by the central circadian pacemaker, the suprachiasmatic nucleus (SCN). Endocrine factors have a strong influence on the regulation of the circadian clock network and alter acute photic responses of the SCN clock. In females, endocrine function depends on the stage of the ovarian cycle. So far, however, little is known about the effect of the estrous cycle on behavioral and molecular responses to shifts in the LD rhythm. Based on this, we investigated whether estrous state affects the kinetics of phase shift during jetlag in behavior, physiology, and molecular clock rhythms in the SCN and in peripheral tissues. Female mice exposed to an advanced LD phase at proestrous or metestrous showed different phase-shift kinetics, with proestrous females displaying accelerated adaptation in behavior and physiology. Constant darkness release experiments suggest that these fast phase shifts do not reflect resetting of the SCN pacemaker. Explant experiments on SCN, adrenal gland, and uterus confirmed this finding with proestrous females showing significantly faster clock phase shifts in peripheral tissues compared with the SCN. Together, these findings provide strong evidence for an accelerated adaptation of proestrous compared with metestrous females to new LD conditions that is accompanied by rapid behavioral, physiological, and molecular rhythm resetting. Not only do these findings open up a new avenue to understand the effect of estrous cycle on the clock network under changing environmental conditions but also imply a greater susceptibility in proestrous females.
Collapse
Affiliation(s)
- Violetta Pilorz
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Luebeck, Germany
| | - Beke Kolms
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Luebeck, Germany
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Luebeck, Germany
| |
Collapse
|
8
|
Circadian alterations in patients with neurodegenerative diseases: Neuropathological basis of underlying network mechanisms. Neurobiol Dis 2020; 144:105029. [PMID: 32736083 DOI: 10.1016/j.nbd.2020.105029] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/19/2020] [Accepted: 07/23/2020] [Indexed: 01/16/2023] Open
Abstract
Circadian organization of physiology and behavior is an important biological process that allows organisms to anticipate and prepare for daily changes and demands. Disruptions in this system precipitates a wide range of health issues. In patients with neurodegenerative diseases, alterations of circadian rhythms are among the most common and debilitating symptoms. Although a growing awareness of these symptoms has occurred during the last decade, their underlying neuropathophysiological circuitry remains poorly understood and consequently no effective therapeutic strategies are available to alleviate these health issues. Recent studies have examined the neuropathological status of the different neural components of the circuitry governing the generation of circadian rhythms in neurodegenerative diseases. In this review, we will dissect the potential contribution of dysfunctions in the different nodes of this circuitry to circadian alterations in patients with neurodegenerative diseases. A deeper understanding of these mechanisms will provide not only a better understanding of disease neuro-pathophysiology, but also hold the promise for developing effective and mechanisms-based therapies.
Collapse
|