1
|
Murakami T. Spatial dynamics of spontaneous activity in the developing and adult cortices. Neurosci Res 2025; 212:1-10. [PMID: 39653148 DOI: 10.1016/j.neures.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024]
Abstract
Even in the absence of external stimuli, the brain remains remarkably active, with neurons continuously firing and communicating with each other. It is not merely random firing of individual neurons but rather orchestrated patterns of activity that propagate throughout the intricate network. Over two decades, advancements in neuroscience observation tools for hemodynamics, membrane potential, and neural calcium signals, have allowed researchers to analyze the dynamics of spontaneous activity across different spatial scales, from individual neurons to macroscale brain networks. One of the remarkable findings from these studies is that the spatial patterns of spontaneous activity in the developing brain are vastly different from those in the mature adult brain. Spatial patterns of spontaneous activity during development are essential for connection refinement between brain regions, whereas the functional role in the adult brain is still controversial. In this paper, I review the differences in spatial dynamics of spontaneous activity between developing and adult cortices. Then, I delve into the cellular mechanisms underlying spontaneous activity, especially its generation and propagation manner, to contribute to a deeper understanding of brain function and its development.
Collapse
Affiliation(s)
- Tomonari Murakami
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
2
|
Riyahi P, Phillips MA, Boley N, Colonnese MT. Experience Dependence of Alpha Rhythms and Neural Dynamics in the Mouse Visual Cortex. J Neurosci 2024; 44:e2011222024. [PMID: 39151954 PMCID: PMC11411595 DOI: 10.1523/jneurosci.2011-22.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/13/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
The role of experience in the development and maintenance of emergent network properties such as cortical oscillations and states is poorly understood. To define how early-life experience affects cortical dynamics in the visual cortex of adult, head-fixed mice, we examined the effects of two forms of blindness initiated before eye opening and continuing through recording: (1) bilateral loss of retinal input (enucleation) and (2) degradation of visual input (eyelid suture). Neither form of deprivation fundamentally altered the state-dependent regulation of firing rates or local field potentials. However, each deprivation caused unique changes in network behavior. Laminar analysis revealed two different generative mechanisms for low-frequency synchronization: one prevalent during movement and the other during quiet wakefulness. The former was absent in enucleated mice, suggesting a mouse homolog of human alpha oscillations. In addition, neurons in enucleated animals were less correlated and fired more regularly, but no change in mean firing rate. Eyelid suture decreased firing rates during quiet wakefulness, but not during movement, with no effect on neural correlations or regularity. Sutured animals showed a broadband increase in depth EEG power and an increased occurrence, but reduced central frequency, of narrowband gamma oscillations. The complementary-rather than additive-effects of lid suture and enucleation suggest that the development of emergent network properties does not require vision but is plastic to modified input. Our results suggest a complex interaction of internal set points and experience determines mature cortical activity, with low-frequency synchronization being particularly susceptible to early deprivation.
Collapse
Affiliation(s)
- Pouria Riyahi
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia 20052
- Department of Biomedical Engineering, The George Washington University School of Medicine, Washington, District of Columbia 20052
| | - Marnie A Phillips
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia 20052
| | - Nathaniel Boley
- Institute for Biomedical Sciences, The George Washington University School of Medicine, Washington, District of Columbia 20052
| | - Matthew T Colonnese
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia 20052
| |
Collapse
|
3
|
Wu MW, Kourdougli N, Portera-Cailliau C. Network state transitions during cortical development. Nat Rev Neurosci 2024; 25:535-552. [PMID: 38783147 PMCID: PMC11825063 DOI: 10.1038/s41583-024-00824-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Mammalian cortical networks are active before synaptogenesis begins in earnest, before neuronal migration is complete, and well before an animal opens its eyes and begins to actively explore its surroundings. This early activity undergoes several transformations during development. The most important of these is a transition from episodic synchronous network events, which are necessary for patterning the neocortex into functionally related modules, to desynchronized activity that is computationally more powerful and efficient. Network desynchronization is perhaps the most dramatic and abrupt developmental event in an otherwise slow and gradual process of brain maturation. In this Review, we summarize what is known about the phenomenology of developmental synchronous activity in the rodent neocortex and speculate on the mechanisms that drive its eventual desynchronization. We argue that desynchronization of network activity is a fundamental step through which the cortex transitions from passive, bottom-up detection of sensory stimuli to active sensory processing with top-down modulation.
Collapse
Affiliation(s)
- Michelle W Wu
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Neuroscience Interdepartmental Graduate Program, University of California Los Angeles, Los Angeles, CA, USA
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Nazim Kourdougli
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Glanz RM, Sokoloff G, Blumberg MS. Neural decoding reveals specialized kinematic tuning after an abrupt cortical transition. Cell Rep 2023; 42:113119. [PMID: 37690023 PMCID: PMC10591925 DOI: 10.1016/j.celrep.2023.113119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/08/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023] Open
Abstract
The primary motor cortex (M1) exhibits a protracted period of development, including the development of a sensory representation long before motor outflow emerges. In rats, this representation is present by postnatal day (P) 8, when M1 activity is "discontinuous." Here, we ask how the representation changes upon the transition to "continuous" activity at P12. We use neural decoding to predict forelimb movements from M1 activity and show that a linear decoder effectively predicts limb movements at P8 but not at P12; instead, a nonlinear decoder better predicts limb movements at P12. The altered decoder performance reflects increased complexity and uniqueness of kinematic information in M1. We next show that M1's representation at P12 is more susceptible to "lesioning" of inputs and "transplanting" of M1's encoding scheme from one pup to another. Thus, the emergence of continuous M1 activity signals the developmental onset of more complex, informationally sparse, and individualized sensory representations.
Collapse
Affiliation(s)
- Ryan M Glanz
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Greta Sokoloff
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Mark S Blumberg
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
5
|
Tikidji-Hamburyan RA, Govindaiah G, Guido W, Colonnese MT. Synaptic and circuit mechanisms prevent detrimentally precise correlation in the developing mammalian visual system. eLife 2023; 12:e84333. [PMID: 37211984 PMCID: PMC10202458 DOI: 10.7554/elife.84333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/25/2023] [Indexed: 05/23/2023] Open
Abstract
The developing visual thalamus and cortex extract positional information encoded in the correlated activity of retinal ganglion cells by synaptic plasticity, allowing for the refinement of connectivity. Here, we use a biophysical model of the visual thalamus during the initial visual circuit refinement period to explore the role of synaptic and circuit properties in the regulation of such neural correlations. We find that the NMDA receptor dominance, combined with weak recurrent excitation and inhibition characteristic of this age, prevents the emergence of spike-correlations between thalamocortical neurons on the millisecond timescale. Such precise correlations, which would emerge due to the broad, unrefined connections from the retina to the thalamus, reduce the spatial information contained by thalamic spikes, and therefore we term them 'parasitic' correlations. Our results suggest that developing synapses and circuits evolved mechanisms to compensate for such detrimental parasitic correlations arising from the unrefined and immature circuit.
Collapse
Affiliation(s)
| | - Gubbi Govindaiah
- Department of Anatomical Sciences and Neurobiology, University of LouisvilleLouisvilleUnited States
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, University of LouisvilleLouisvilleUnited States
| | - Matthew T Colonnese
- Department of Pharmacology and Physiology, The George Washington UniversityWashingtonUnited States
| |
Collapse
|
6
|
Gómez LJ, Dooley JC, Blumberg MS. Activity in developing prefrontal cortex is shaped by sleep and sensory experience. eLife 2023; 12:e82103. [PMID: 36745108 PMCID: PMC9901933 DOI: 10.7554/elife.82103] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/12/2023] [Indexed: 02/07/2023] Open
Abstract
In developing rats, behavioral state exerts a profound modulatory influence on neural activity throughout the sensorimotor system, including primary motor cortex (M1). We hypothesized that similar state-dependent modulation occurs in prefrontal cortical areas with which M1 forms functional connections. Here, using 8- and 12-day-old rats cycling freely between sleep and wake, we record neural activity in M1, secondary motor cortex (M2), and medial prefrontal cortex (mPFC). At both ages in all three areas, neural activity increased during active sleep (AS) compared with wake. Also, regardless of behavioral state, neural activity in all three areas increased during periods when limbs were moving. The movement-related activity in M2 and mPFC, like that in M1, is driven by sensory feedback. Our results, which diverge from those of previous studies using anesthetized pups, demonstrate that AS-dependent modulation and sensory responsivity extend to prefrontal cortex. These findings expand the range of possible factors shaping the activity-dependent development of higher-order cortical areas.
Collapse
Affiliation(s)
- Lex J Gómez
- Interdisciplinary Graduate Program in Neuroscience, University of IowaIowa CityUnited States
| | - James C Dooley
- Department of Psychological and Brain Sciences, University of IowaIowa CityUnited States
- DeLTA Center, University of IowaIowa CityUnited States
| | - Mark S Blumberg
- Interdisciplinary Graduate Program in Neuroscience, University of IowaIowa CityUnited States
- Department of Psychological and Brain Sciences, University of IowaIowa CityUnited States
- DeLTA Center, University of IowaIowa CityUnited States
- Iowa Neuroscience Institute, University of IowaIowa CityUnited States
| |
Collapse
|
7
|
Glanz R, Sokoloff G, Blumberg MS. Cortical Representation of Movement Across the Developmental Transition to Continuous Neural Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.22.525085. [PMID: 36711887 PMCID: PMC9882351 DOI: 10.1101/2023.01.22.525085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Primary motor cortex (M1) exhibits a protracted period of development that includes the establishment of a somatosensory map long before motor outflow emerges. In rats, the sensory representation is established by postnatal day (P) 8 when cortical activity is still "discontinuous." Here, we ask how the representation survives the sudden transition to noisy "continuous" activity at P12. Using neural decoding to predict forelimb movements based solely on M1 activity, we show that a linear decoder is sufficient to predict limb movements at P8, but not at P12; in contrast, a nonlinear decoder effectively predicts limb movements at P12. The change in decoder performance at P12 reflects an increase in both the complexity and uniqueness of kinematic information available in M1. We next show that the representation at P12 is more susceptible to the deleterious effects of "lesioning" inputs and to "transplanting" M1's encoding scheme from one pup to another. We conclude that the emergence of continuous cortical activity signals the developmental onset in M1 of more complex, informationally sparse, and individualized sensory representations.
Collapse
Affiliation(s)
- Ryan Glanz
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242 USA
| | - Greta Sokoloff
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242 USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242 USA
| | - Mark S. Blumberg
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242 USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242 USA
| |
Collapse
|
8
|
Moreno-Juan V, Aníbal-Martínez M, Herrero-Navarro Á, Valdeolmillos M, Martini FJ, López-Bendito G. Spontaneous Thalamic Activity Modulates the Cortical Innervation of the Primary Visual Nucleus of the Thalamus. Neuroscience 2023; 508:87-97. [PMID: 35878717 DOI: 10.1016/j.neuroscience.2022.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 01/17/2023]
Abstract
Sensory processing relies on the correct development of thalamocortical loops. Visual corticothalamic axons (CTAs) invade the dorsolateral geniculate nucleus (dLGN) of the thalamus in early postnatal mice according to a regulated program that includes activity-dependent mechanisms. Spontaneous retinal activity influences the thalamic incursion of CTAs, yet the perinatal thalamus also generates intrinsic patterns of spontaneous activity whose role in modulating afferent connectivity remains unknown. Here, we found that patterned spontaneous activity in the dLGN contributes to proper spatial and temporal innervation of CTAs. Disrupting patterned spontaneous activity in the dLGN delays corticogeniculate innervation under normal conditions and upon eye enucleation. The delayed innervation was evident throughout the first two postnatal weeks but resumes after eye-opening, suggesting that visual experience is necessary for the homeostatic recovery of corticogeniculate innervation.
Collapse
Affiliation(s)
- Verónica Moreno-Juan
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Mar Aníbal-Martínez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Álvaro Herrero-Navarro
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Miguel Valdeolmillos
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Francisco J Martini
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain.
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain.
| |
Collapse
|
9
|
Tabuena DR, Huynh R, Metcalf J, Richner T, Stroh A, Brunton BW, Moody WJ, Easton CR. Large-scale waves of activity in the neonatal mouse brain in vivo occur almost exclusively during sleep cycles. Dev Neurobiol 2022; 82:596-612. [PMID: 36250606 PMCID: PMC10166374 DOI: 10.1002/dneu.22901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/09/2022] [Accepted: 10/06/2022] [Indexed: 01/30/2023]
Abstract
Spontaneous electrical activity plays major roles in the development of cortical circuitry. This activity can occur highly localized regions or can propagate over the entire cortex. Both types of activity coexist during early development. To investigate how different forms of spontaneous activity might be temporally segregated, we used wide-field trans-cranial calcium imaging over an entire hemisphere in P1-P8 mouse pups. We found that spontaneous waves of activity that propagate to cover the majority of the cortex (large-scale waves; LSWs) are generated at the end of the first postnatal week, along with several other forms of more localized activity. We further found that LSWs are segregated into sleep cycles. In contrast, cortical activity during wake states is more spatially restricted and the few large-scale forms of activity that occur during wake can be distinguished from LSWs in sleep based on their initiation in the motor cortex and their correlation with body movements. This change in functional cortical circuitry to a state that is permissive for large-scale activity may temporally segregate different forms of activity during critical stages when activity-dependent circuit development occurs over many spatial scales. Our data also suggest that LSWs in early development may be a functional precursor to slow sleep waves in the adult, which play critical roles in memory consolidation and synaptic rescaling.
Collapse
Affiliation(s)
- Dennis R Tabuena
- Department of Biology, University of Washington, Seattle, Washington, USA.,Graduate Program in Neuroscience, University of Washington, Seattle, Washington, USA
| | - Randy Huynh
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - Jenna Metcalf
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - Thomas Richner
- Institute for Neuroengineering, University of Washington, Seattle, Washington, USA
| | - Albrecht Stroh
- Institute of Pathophysiology, University Medical Center Mainz, Mainz, Germany.,Leibniz Institute for Resilience Research, University Medical Center Mainz, Mainz, Germany
| | - Bingni W Brunton
- Department of Biology, University of Washington, Seattle, Washington, USA.,Institute for Neuroengineering, University of Washington, Seattle, Washington, USA
| | - William J Moody
- Department of Biology, University of Washington, Seattle, Washington, USA.,Institute for Neuroengineering, University of Washington, Seattle, Washington, USA
| | - Curtis R Easton
- Department of Biology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
10
|
Colonnese MT, Murata Y, Phillips MA. A new role for visual experience in top-down cortical development. Neuron 2021; 109:3400-3401. [PMID: 34735791 DOI: 10.1016/j.neuron.2021.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this issue of Neuron, Ibrahim et al. (2021) examine the rules by which top-down connections are made on visual cortical layer 1 interneurons, discovering activity-dependent cooperative interactions with visual input that are specific to neurogliaform cells and anterior cingulate cortex.
Collapse
Affiliation(s)
- Matthew T Colonnese
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA.
| | - Yasunobu Murata
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Marnie A Phillips
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
11
|
Glanz RM, Dooley JC, Sokoloff G, Blumberg MS. Sensory Coding of Limb Kinematics in Motor Cortex across a Key Developmental Transition. J Neurosci 2021; 41:6905-6918. [PMID: 34281990 PMCID: PMC8360693 DOI: 10.1523/jneurosci.0921-21.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/28/2021] [Accepted: 06/22/2021] [Indexed: 01/03/2023] Open
Abstract
Primary motor cortex (M1) undergoes protracted development in mammals, functioning initially as a sensory structure. Throughout the first postnatal week in rats, M1 is strongly activated by self-generated forelimb movements-especially by the twitches that occur during active sleep. Here, we quantify the kinematic features of forelimb movements to reveal receptive-field properties of individual units within the forelimb region of M1. At postnatal day 8 (P8), nearly all units were strongly modulated by movement amplitude, especially during active sleep. By P12, only a minority of units continued to exhibit amplitude tuning, regardless of behavioral state. At both ages, movement direction also modulated M1 activity, though to a lesser extent. Finally, at P12, M1 population-level activity became more sparse and decorrelated, along with a substantial alteration in the statistical distribution of M1 responses to limb movements. These findings reveal a transition toward a more complex and informationally rich representation of movement long before M1 develops its motor functionality.SIGNIFICANCE STATEMENT Primary motor cortex (M1) plays a fundamental role in the generation of voluntary movements and motor learning in adults. In early development, however, M1 functions as a prototypical sensory structure. Here, we demonstrate in infant rats that M1 codes for the kinematics of self-generated limb movements long before M1 develops its capacity to drive movements themselves. Moreover, we identify a key transition during the second postnatal week in which M1 activity becomes more informationally complex. Together, these findings further delineate the complex developmental path by which M1 develops its sensory functions in support of its later-emerging motor capacities.
Collapse
Affiliation(s)
- Ryan M Glanz
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
| | - James C Dooley
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
| | - Greta Sokoloff
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| | - Mark S Blumberg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa 52245
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|