1
|
Refai O, Aggarwal S, Cheng MH, Gichi Z, Salvino JM, Bahar I, Blakely RD, Mortensen OV. Allosteric Modulator KM822 Attenuates Behavioral Actions of Amphetamine in Caenorhabditis elegans through Interactions with the Dopamine Transporter DAT-1. Mol Pharmacol 2022; 101:123-131. [PMID: 34906999 PMCID: PMC8969146 DOI: 10.1124/molpharm.121.000400] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/03/2021] [Indexed: 11/22/2022] Open
Abstract
Aberrant dopamine (DA) signaling is associated with several psychiatric disorders, such as autism, bipolar disorder, addiction, and Parkinson's disease, and several medications that target the DA transporter (DAT) can induce or treat these disorders. In addition, psychostimulants, such as cocaine and D-amphetamine (AMPH), rely on the competitive interactions with the transporter's substrate binding site to produce their rewarding effects. Agents that exhibit noncompetitive, allosteric modulation of DAT remain an important topic of investigation due to their potential therapeutic applications. We previously identified a novel allosteric modulator of human DAT, KM822, that can decrease the affinity of cocaine for DAT and attenuate cocaine-elicited behaviors; however, whether DAT is the sole mediator of KM822 actions in vivo is unproven given the large number of potential off-target sites. Here, we provide in silico and in vitro evidence that the allosteric site engaged by KM822 is conserved between human DAT and Caenorhabditis elegans DAT-1. KM822 binds to a similar pocket in DAT-1 as previously identified in human DAT. In functional dopamine uptake assays, KM822 affects the interaction between AMPH and DAT-1 by reducing the affinity of AMPH for DAT-1. Finally, through a combination of genetic and pharmacological in vivo approaches we provide evidence that KM822 diminishes the behavioral actions of AMPH on swimming-induced paralysis through a direct allosteric modulation of DAT-1. More broadly, our findings demonstrate allosteric modulation of DAT as a behavior modifying strategy and suggests that Caenorhabditis elegans can be operationalized to identify and investigate the interactions of DAT allosteric modulators. SIGNIFICANCE STATEMENT: We previously demonstrated that the dopamine transporter (DAT) allosteric modulator KM822 decreases cocaine affinity for human DAT. Here, using in silico and in vivo genetic approaches, we extend this finding to interactions with amphetamine, demonstrating evolutionary conservation of the DAT allosteric site. In Caenorhabditis elegans, we report that KM822 suppresses amphetamine behavioral effects via specific interactions with DAT-1. Our findings reveal Caenorhabditis elegans as a new tool to study allosteric modulation of DAT and its behavioral consequences.
Collapse
Affiliation(s)
- Osama Refai
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida (O.R., Z.G., R.D.B.); Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida (O.R., R.D.B.); Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (S.A., O.V.M.); Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (M.H.C., I.B.); and The Wistar Institute, Philadelphia, Pennsylvania (J.M.S.)
| | - Shaili Aggarwal
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida (O.R., Z.G., R.D.B.); Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida (O.R., R.D.B.); Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (S.A., O.V.M.); Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (M.H.C., I.B.); and The Wistar Institute, Philadelphia, Pennsylvania (J.M.S.)
| | - Mary Hongying Cheng
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida (O.R., Z.G., R.D.B.); Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida (O.R., R.D.B.); Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (S.A., O.V.M.); Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (M.H.C., I.B.); and The Wistar Institute, Philadelphia, Pennsylvania (J.M.S.)
| | - Zayna Gichi
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida (O.R., Z.G., R.D.B.); Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida (O.R., R.D.B.); Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (S.A., O.V.M.); Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (M.H.C., I.B.); and The Wistar Institute, Philadelphia, Pennsylvania (J.M.S.)
| | - Joseph M Salvino
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida (O.R., Z.G., R.D.B.); Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida (O.R., R.D.B.); Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (S.A., O.V.M.); Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (M.H.C., I.B.); and The Wistar Institute, Philadelphia, Pennsylvania (J.M.S.)
| | - Ivet Bahar
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida (O.R., Z.G., R.D.B.); Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida (O.R., R.D.B.); Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (S.A., O.V.M.); Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (M.H.C., I.B.); and The Wistar Institute, Philadelphia, Pennsylvania (J.M.S.)
| | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida (O.R., Z.G., R.D.B.); Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida (O.R., R.D.B.); Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (S.A., O.V.M.); Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (M.H.C., I.B.); and The Wistar Institute, Philadelphia, Pennsylvania (J.M.S.)
| | - Ole V Mortensen
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida (O.R., Z.G., R.D.B.); Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida (O.R., R.D.B.); Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (S.A., O.V.M.); Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (M.H.C., I.B.); and The Wistar Institute, Philadelphia, Pennsylvania (J.M.S.)
| |
Collapse
|
2
|
Tomlinson ID, Kovtun O, Torres R, Bellocchio LG, Josephs T, Rosenthal SJ. A Novel Biotinylated Homotryptamine Derivative for Quantum Dot Imaging of Serotonin Transporter in Live Cells. Front Cell Neurosci 2021; 15:667044. [PMID: 34867196 PMCID: PMC8637195 DOI: 10.3389/fncel.2021.667044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 10/19/2021] [Indexed: 11/21/2022] Open
Abstract
The serotonin transporter (SERT) is the primary target for selective serotonin reuptake inhibitor (SSRI) antidepressants that are thought to exert their therapeutic effects by increasing the synaptic concentration of serotonin. Consequently, probes that can be utilized to study cellular trafficking of SERT are valuable research tools. We have developed a novel ligand (IDT785) that is composed of a SERT antagonist (a tetrahydro pyridyl indole derivative) conjugated to a biotinylated poly ethylene glycol (PEG) via a phenethyl linker. This compound was determined to be biologically active and inhibited SERT-mediated reuptake of IDT307 with the half-maximal inhibitory concentration of 7.2 ± 0.3 μM. We demonstrated that IDT785 enabled quantum dot (QD) labeling of membrane SERT in transfected HEK-293 cultures that could be blocked using the high affinity serotonin reuptake inhibitor paroxetine. Molecular docking studies suggested that IDT785 might be binding to the extracellular vestibule binding site rather than the orthosteric substrate binding site, which could be attributable to the hydrophilicity of the PEG chain and the increased loss of degrees of freedom that would be required to penetrate into the orthosteric binding site. Using IDT785, we were able to study the membrane localization and membrane dynamics of YFP-SERT heterologously expressed in HEK-293 cells and demonstrated that SERT expression was enriched in the membrane edge and in thin cellular protrusions.
Collapse
Affiliation(s)
- Ian D. Tomlinson
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Oleg Kovtun
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Ruben Torres
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States
| | | | - Travis Josephs
- Neuroscience Program, Vanderbilt University, Nashville, TN, United States
| | - Sandra J. Rosenthal
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
3
|
Walters SH, Shu Z, Michael AC, Levitan ES. Regional Variation in Striatal Dopamine Spillover and Release Plasticity. ACS Chem Neurosci 2020; 11:888-899. [PMID: 32073248 DOI: 10.1021/acschemneuro.9b00577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent optical observations of dopamine at axon terminals and kinetic modeling of evoked dopamine responses measured by fast scan cyclic voltammetry (FSCV) support local restriction of dopamine diffusion at synaptic release sites. Yet, how this diffusion barrier affects synaptic and volume transmission is unknown. Here, a deficiency in a previous kinetic model's fitting of stimulus trains is remedied by replacing an earlier assumption that dopamine transporters (DATs) are present only on the outer side of the diffusion barrier with the assumption that they are present on both sides. This is consistent with the known distribution of DATs, which does not show obvious DAT-free zones proximal to dopamine release sites. A simultaneous multifitting strategy is then shown to enable unique model fits to sets of evoked dopamine FSCV responses acquired in vivo or in brain slices. This data analysis technique permits, for the first time, the calculation of the fraction of dopamine which spills over from what appears to be the perisynaptic space, as well as other parameters such as dopamine release, release plasticity, and uptake. This analysis shows that dopamine's diffusion away from its release sites is remarkably hindered (τ = 5 s), but dopamine responses are rapid because of DAT activity. Furthermore, the new analysis reveals that uptake inhibitors can inhibit dopamine release during a stimulus train, apparently by depleting the releasable pool. It is suggested that ongoing uptake is critical for maintaining ongoing synaptic dopamine release and that the previously reported and also herein claimed increase of the initial dopamine release of some uptake inhibitors might be an important mechanism in addiction. Finally, brain mapping data reveal that the diffusion barrier is conserved, but there are variations in perisynaptic uptake, volume transmission, and release plasticity within the rat striatum. Therefore, an analysis paradigm is developed to quantify previously unmeasured features of brain dopaminergic transmission and to reveal regional functional differences among dopamine synapses.
Collapse
|
4
|
Kovtun O, Tomlinson ID, Ferguson RS, Rosenthal SJ. Quantum dots reveal heterogeneous membrane diffusivity and dynamic surface density polarization of dopamine transporter. PLoS One 2019; 14:e0225339. [PMID: 31751387 PMCID: PMC6872175 DOI: 10.1371/journal.pone.0225339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
The presynaptic dopamine transporter mediates rapid reuptake of synaptic dopamine. Although cell surface DAT trafficking recently emerged as an important component of DAT regulation, it has not been systematically investigated. Here, we apply our single quantum dot (Qdot) tracking approach to monitor DAT plasma membrane dynamics in several heterologous expression cell hosts with nanometer localization accuracy. We demonstrate that Qdot-tagged DAT proteins exhibited highly heterogeneous membrane diffusivity dependent on the local membrane topography. We also show that Qdot-tagged DATs were localized away from the flat membrane regions and were dynamically retained in the membrane protrusions and cell edges for the duration of imaging. Single quantum dot tracking of wildtype DAT and its conformation-defective coding variants (R60A and W63A) revealed a significantly accelerated rate of dysfunctional DAT membrane diffusion. We believe our results warrant an in-depth investigation as to whether compromised membrane dynamics is a common feature of brain disorder-derived DAT mutants.
Collapse
Affiliation(s)
- Oleg Kovtun
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Ian D. Tomlinson
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Riley S. Ferguson
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Sandra J. Rosenthal
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
5
|
Cheng MH, Ponzoni L, Sorkina T, Lee JY, Zhang S, Sorkin A, Bahar I. Trimerization of dopamine transporter triggered by AIM-100 binding: Molecular mechanism and effect of mutations. Neuropharmacology 2019; 161:107676. [PMID: 31228486 DOI: 10.1016/j.neuropharm.2019.107676] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 10/26/2022]
Abstract
Recent work demonstrated the propensity of dopamine transporters (DATs) to form trimers or higher oligomers, enhanced upon binding a furopyrimidine, AIM-100. AIM-100 binding promotes DAT endocytosis and thereby moderates dopaminergic transmission. Despite the neurobiological significance of these events, the molecular mechanisms that underlie the stabilization of DAT trimer and the key interactions that modulate the trimerization of DAT, and not serotonin transporter SERT, remain unclear. In the present study, we determined three structural models, termed trimer-W238, -C306 and -Y303, for possible trimerization of DATs . To this aim, we used structural data resolved for DAT and its structural homologs that share the LeuT fold, advanced computational modeling and simulations, site-directed mutagenesis experiments and live-cell imaging assays. The models are in accord with the versatility of LeuT fold to stabilize dimeric or higher order constructs. Selected residues show a high propensity to occupy interfacial regions. Among them, D231-W238 in the extracellular loop EL2, including the intersubunit salt-bridge forming pair D231/D232-R237 (not present in SERT) (in trimer-W238), the loop EL3 (trimers-C306 and -Y303), and W497 on the intracellularly exposed IL5 loop (trimer-C306) and its spatial neighbors (e.g. K525) near the C-terminus are computationally predicted and experimentally confirmed to play important roles in enabling the correct folding and/or oligomerization of DATs in the presence of AIM-100. The study suggests the possibility of controlling the effective transport of dopamine by altering the oligomerization state of DAT upon small molecule binding, as a possible intervention strategy to modulate dopaminergic signaling. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Mary Hongying Cheng
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Luca Ponzoni
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tatiana Sorkina
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ji Young Lee
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - She Zhang
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexander Sorkin
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Time-dependent assessment of stimulus-evoked regional dopamine release. Nat Commun 2019; 10:336. [PMID: 30659189 PMCID: PMC6338792 DOI: 10.1038/s41467-018-08143-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 12/18/2018] [Indexed: 11/09/2022] Open
Abstract
To date, the spatiotemporal release of specific neurotransmitters at physiological levels in the human brain cannot be detected. Here, we present a method that relates minute-by-minute fluctuations of the positron emission tomography (PET) radioligand [11C]raclopride directly to subsecond dopamine release events. We show theoretically that synaptic dopamine release induces low frequency temporal variations of extrasynaptic extracellular dopamine levels, at time scales of one minute, that can evoke detectable temporal variations in the [11C]raclopride signal. Hence, dopaminergic activity can be monitored via temporal fluctuations in the [11C]raclopride PET signal. We validate this theory using fast-scan cyclic voltammetry and [11C]raclopride PET in mice during chemogenetic activation of dopaminergic neurons. We then apply the method to data from human subjects given a palatable milkshake and discover immediate and-for the first time-delayed food-induced dopamine release. This method enables time-dependent regional monitoring of stimulus-evoked dopamine release at physiological levels.
Collapse
|
7
|
Tardiff N, Graves KN, Thompson-Schill SL. The Role of Frontostriatal Systems in Instructed Reinforcement Learning: Evidence From Genetic and Experimentally-Induced Variation. Front Hum Neurosci 2019; 12:472. [PMID: 30618672 PMCID: PMC6304395 DOI: 10.3389/fnhum.2018.00472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/12/2018] [Indexed: 01/16/2023] Open
Abstract
Instructions have a powerful effect on learning and decision-making, biasing choice even in the face of disconfirming feedback. Detrimental biasing effects have been reported in a number of studies in which instruction was given prior to trial-and-error learning. Previous work has attributed individual differences in instructional bias to variations in prefrontal and striatal dopaminergic genes, suggesting a role for prefrontally-mediated cognitive control processes in biasing learning. The current study replicates and extends these findings. Human subjects performed a probabilistic reinforcement learning task after receiving inaccurate instructions about the quality of one of the options. In order to establish a causal relationship between prefrontal cortical mechanisms and instructional bias, we applied transcranial direct current stimulation over dorsolateral prefrontal cortex (anodal, cathodal, or sham) while subjects performed the task. We additionally genotyped subjects for the COMT Val158Met genetic polymorphism, which influences the breakdown of prefrontal dopamine, and for the DAT1/SLC6A3 variable number tandem repeat, which affects expression of striatal dopamine transporter. We replicated the finding that the COMT Met allele is associated with increased instructional bias and further demonstrated that variation in DAT1 has similar effects to variation in COMT, with 9-repeat carriers demonstrating increased bias relative to 10-repeat homozygotes. Consistent with increased top-down regulation of reinforcement learning, anodal subjects demonstrated greater bias relative to sham, though this effect was present only early in training. In contrast, there was no effect of cathodal stimulation. Finally, we fit computational models to subjects' data to better characterize the mechanisms underlying instruction bias. A novel choice bias model, in which instructions influence decision-making rather than learning, was found to best account for subjects' behavior. Overall, these data provide further evidence for the role of frontostriatal interactions in biasing instructed reinforcement learning, which adds to the growing literature documenting both costs and benefits of cognitive control.
Collapse
Affiliation(s)
- Nathan Tardiff
- Department of Psychology, University of Pennsylvania Philadelphia, PA, United States
| | - Kathryn N Graves
- Department of Psychology, University of Pennsylvania Philadelphia, PA, United States
| | | |
Collapse
|
8
|
Taylor DL, Gough A, Schurdak ME, Vernetti L, Chennubhotla CS, Lefever D, Pei F, Faeder JR, Lezon TR, Stern AM, Bahar I. Harnessing Human Microphysiology Systems as Key Experimental Models for Quantitative Systems Pharmacology. Handb Exp Pharmacol 2019; 260:327-367. [PMID: 31201557 PMCID: PMC6911651 DOI: 10.1007/164_2019_239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two technologies that have emerged in the last decade offer a new paradigm for modern pharmacology, as well as drug discovery and development. Quantitative systems pharmacology (QSP) is a complementary approach to traditional, target-centric pharmacology and drug discovery and is based on an iterative application of computational and systems biology methods with multiscale experimental methods, both of which include models of ADME-Tox and disease. QSP has emerged as a new approach due to the low efficiency of success in developing therapeutics based on the existing target-centric paradigm. Likewise, human microphysiology systems (MPS) are experimental models complementary to existing animal models and are based on the use of human primary cells, adult stem cells, and/or induced pluripotent stem cells (iPSCs) to mimic human tissues and organ functions/structures involved in disease and ADME-Tox. Human MPS experimental models have been developed to address the relatively low concordance of human disease and ADME-Tox with engineered, experimental animal models of disease. The integration of the QSP paradigm with the use of human MPS has the potential to enhance the process of drug discovery and development.
Collapse
Affiliation(s)
- D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Albert Gough
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark E Schurdak
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lawrence Vernetti
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chakra S Chennubhotla
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel Lefever
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Fen Pei
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - James R Faeder
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothy R Lezon
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew M Stern
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ivet Bahar
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|