1
|
Mirdamadi JL, Poorman A, Munter G, Jones K, Ting LH, Borich MR, Payne AM. Excellent test-retest reliability of perturbation-evoked cortical responses supports feasibility of the balance N1 as a clinical biomarker. J Neurophysiol 2025; 133:987-1001. [PMID: 39993029 DOI: 10.1152/jn.00583.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/07/2025] [Accepted: 02/19/2025] [Indexed: 02/26/2025] Open
Abstract
There is a growing interest in measuring cortical activity during balance control for understanding mechanisms of impaired balance with aging and neurological dysfunction. The most well-characterized electrophysiological signal elicited by a balance disturbance is the perturbation-evoked N1 potential. We previously found associations between the N1 and balance ability, suggesting it may be a potential biomarker of balance health. However, a potential biomarker will be limited by its reliability and clinical feasibility, which has yet to be established. Here, we characterized the reliability of the balance N1 within and between sessions over a 1-wk interval in 10 younger and 14 older adults, and over a 1-year interval in a subset of older adults (n = 12). We extracted N1 amplitude and latency from the Cz electrode using an advanced, computationally intensive approach (64 electrodes, many trials). Test-retest reliability was assessed using the intraclass correlation coefficient (ICC). Internal consistency was quantified by split-half reliability using the Spearman correlation coefficient. N1s varied across individuals, yet within individuals, showed excellent test-retest reliability (ICC > 0.9) and internal reliability (r > 0.9). N1 amplitude reliability generally plateaued within six trials, whereas more trials were needed to reliably measure latency. Similar results were obtained using a minimal approach (three electrodes, simple preprocessing) and at the component level (largest contributing N1 source). The N1's stability, reliability, and feasibility make it well suited for potential use as a clinical biomarker. Characterizing N1 reliability in different populations and contexts will be necessary to enhance our understanding, optimize experimental design, and determine its predictive validity (e.g., falls risk).NEW & NOTEWORTHY Prior studies identified associations between the perturbation-evoked N1 potential and behaviors that predict falls, suggesting its potential as a biomarker of balance. We show excellent test-retest reliability of the N1 over a year in older adults, and that a reliable measurement can be obtained within six trials using simplified methods, demonstrating clinical feasibility. This study also guides the design of more powerful N1 experiments, necessary to identify underlying mechanisms and assess clinical utility.
Collapse
Affiliation(s)
- Jasmine L Mirdamadi
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, Georgia, United States
| | - Alex Poorman
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, Georgia, United States
| | - Gaetan Munter
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, Georgia, United States
| | - Kendra Jones
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, Georgia, United States
| | - Lena H Ting
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, Georgia, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| | - Michael R Borich
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, Georgia, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| | - Aiden M Payne
- Department of Psychology, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
2
|
Liu Y, Jia S, Meng Y, Xing M, Guan J, Jiang J, Wang H. Intimate relationships regulate female brain activity in a competitive context: evidence from EEG and functional connectivity analysis. Cereb Cortex 2024; 34:bhae276. [PMID: 38989873 DOI: 10.1093/cercor/bhae276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024] Open
Abstract
Competition is common in life, and intimate relationships are essential. Understanding how intimate relationships impact an individual's competitive process is crucial. This study explored the impact of competitor gender on female competition using electroencephalography analysis. The results revealed that females exhibited a smaller median of the absolute value of reaction time difference (DRT) between their partners and their competitors when their partners were absent compared to when their partners were present. Additionally, females showed greater average amplitudes of N2 posterior contralateral component (N2pc) and Late Positive Potential (LPP), increased activation of the alpha frequency band, and enhanced theta frequency band functional connectivity between the central parietal lobe and occipital lobe. Furthermore, when competing with individuals of the same gender as opposed to individuals of the opposite gender, females exhibited greater average amplitudes of percentage of wins and N2pc. A significant negative correlation was noted between the DRT and the average wave amplitudes of N2pc and LPP. These findings suggest that females are more engaged in competitive tasks when partners are not present and have improved decision-making when competing with same-gender individuals. This study provides evidence for the influence of lovers on female competition, helping females adapt to social competition and promoting healthy relationships.
Collapse
Affiliation(s)
- Yingjie Liu
- School of Public Health, North China University of Science and Technology, Hebei, China
- School of Psychology and Mental Health, North China University of Science and Technology, Hebei, China
| | - Shuyu Jia
- School of Psychology and Mental Health, North China University of Science and Technology, Hebei, China
| | - Yujia Meng
- School of Psychology and Mental Health, North China University of Science and Technology, Hebei, China
| | - Miao Xing
- School of Psychology and Mental Health, North China University of Science and Technology, Hebei, China
| | - Jiaqi Guan
- School of Psychology and Mental Health, North China University of Science and Technology, Hebei, China
| | - Jinru Jiang
- School of Psychology and Mental Health, North China University of Science and Technology, Hebei, China
| | - He Wang
- School of Public Health, North China University of Science and Technology, Hebei, China
- School of Psychology and Mental Health, North China University of Science and Technology, Hebei, China
| |
Collapse
|
3
|
Calcagno A, Coelli S, Corda M, Temporiti F, Gatti R, Galli M, Bianchi AM. EEG connectivity in functional brain networks supporting visuomotor integration processes in dominant and non-dominant hand movements. J Neural Eng 2024; 21:036029. [PMID: 38776897 DOI: 10.1088/1741-2552/ad4f17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Objective.This study explores the changes in the organization of functional brain networks induced by performing a visuomotor integration task, as revealed by noninvasive spontaneous electroencephalographic traces (EEG).Approach.EEG data were acquired during the execution of the Nine Hole Peg Test (NHPT) with the dominant and non-dominant hands in a group of 44 right-handed volunteers. Both spectral analysis and phase-based connectivity analysis were performed in the theta (ϑ), mu (μ) and beta (ß) bands. Graph Theoretical Analysis (GTA) was also performed to investigate the topological reorganization induced by motor task execution.Main results.Spectral analysis revealed an increase of frontoparietal ϑ power and a spatially diffused reduction ofµand ß contribution, regardless of the hand used. GTA showed a significant increase in network integration induced by movement performed with the dominant limb compared to baseline in the ϑ band. Theµand ß bands were associated with a reduction in network integration during the NHPT. In theµrhythm, this result was more evident for the right-hand movement, while in the ß band, results did not show dependence on the laterality. Finally, correlation analysis highlighted an association between frequency-specific topology measures and task performance for both hands.Significance.Our results show that functional brain networks reorganize during visually guided movements in a frequency-dependent manner, differently depending on the hand used (dominant/non dominant).
Collapse
Affiliation(s)
- Alessandra Calcagno
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milan, Italy
| | - Stefania Coelli
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milan, Italy
| | - Martina Corda
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milan, Italy
| | - Federico Temporiti
- Physiotherapy Unit, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | - Roberto Gatti
- Physiotherapy Unit, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | - Manuela Galli
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milan, Italy
| | - Anna Maria Bianchi
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milan, Italy
| |
Collapse
|
4
|
Tamburro G, Bruña R, Fiedler P, De Fano A, Raeisi K, Khazaei M, Zappasodi F, Comani S. An Analytical Approach for Naturalistic Cooperative and Competitive EEG-Hyperscanning Data: A Proof-of-Concept Study. SENSORS (BASEL, SWITZERLAND) 2024; 24:2995. [PMID: 38793851 PMCID: PMC11125252 DOI: 10.3390/s24102995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/03/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024]
Abstract
Investigating the neural mechanisms underlying both cooperative and competitive joint actions may have a wide impact in many social contexts of human daily life. An effective pipeline of analysis for hyperscanning data recorded in a naturalistic context with a cooperative and competitive motor task has been missing. We propose an analytical pipeline for this type of joint action data, which was validated on electroencephalographic (EEG) signals recorded in a proof-of-concept study on two dyads playing cooperative and competitive table tennis. Functional connectivity maps were reconstructed using the corrected imaginary part of the phase locking value (ciPLV), an algorithm suitable in case of EEG signals recorded during turn-based competitive joint actions. Hyperbrain, within-, and between-brain functional connectivity maps were calculated in three frequency bands (i.e., theta, alpha, and beta) relevant during complex motor task execution and were characterized with graph theoretical measures and a clustering approach. The results of the proof-of-concept study are in line with recent findings on the main features of the functional networks sustaining cooperation and competition, hence demonstrating that the proposed pipeline is promising tool for the analysis of joint action EEG data recorded during cooperation and competition using a turn-based motor task.
Collapse
Affiliation(s)
- Gabriella Tamburro
- Behavioral Imaging and Neural Dynamics Center, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.D.F.); (F.Z.); (S.C.)
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti–Pescara, 66100 Chieti, Italy; (K.R.); (M.K.)
| | - Ricardo Bruña
- Center for Cognitive and Computational Neuroscience (C3N), Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Department of Radiology, Rehabilitation and Physiotherapy, School of Medicine, Universidad Complutense de Madrid, IdISSC, 28040 Madrid, Spain
| | - Patrique Fiedler
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693 Ilmenau, Germany
| | - Antonio De Fano
- Behavioral Imaging and Neural Dynamics Center, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.D.F.); (F.Z.); (S.C.)
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti–Pescara, 66100 Chieti, Italy; (K.R.); (M.K.)
| | - Khadijeh Raeisi
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti–Pescara, 66100 Chieti, Italy; (K.R.); (M.K.)
| | - Mohammad Khazaei
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti–Pescara, 66100 Chieti, Italy; (K.R.); (M.K.)
| | - Filippo Zappasodi
- Behavioral Imaging and Neural Dynamics Center, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.D.F.); (F.Z.); (S.C.)
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti–Pescara, 66100 Chieti, Italy; (K.R.); (M.K.)
- Institute for Advanced Biomedical Technologies, University “Gabriele d’Annunzio” of Chieti–Pescara, 66100 Chieti, Italy
| | - Silvia Comani
- Behavioral Imaging and Neural Dynamics Center, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.D.F.); (F.Z.); (S.C.)
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti–Pescara, 66100 Chieti, Italy; (K.R.); (M.K.)
| |
Collapse
|
5
|
Liu C, Downey RJ, Salminen JS, Rojas SA, Richer N, Pliner EM, Hwang J, Cruz-Almeida Y, Manini TM, Hass CJ, Seidler RD, Clark DJ, Ferris DP. Electrical brain activity during human walking with parametric variations in terrain unevenness and walking speed. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:10.1162/imag_a_00097. [PMID: 39989610 PMCID: PMC11845229 DOI: 10.1162/imag_a_00097] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Mobile brain imaging with high-density electroencephalography (EEG) can provide insight into the cortical processes involved in complex human walking tasks. While uneven terrain is common in the natural environment and poses challenges to human balance control, there is limited understanding of the supraspinal processes involved with traversing uneven terrain. The primary objective of this study was to quantify electrocortical activity related to parametric variations in terrain unevenness for neurotypical young adults. We used high-density EEG to measure brain activity when 32 young adults walked on a novel custom-made uneven terrain treadmill surface with four levels of difficulty at a walking speed tailored to each participant. We identified multiple brain regions associated with uneven terrain walking. Alpha (8 - 13 Hz) and beta (13 - 30 Hz) spectral power decreased in the sensorimotor and posterior parietal areas with increasing terrain unevenness while theta (4 - 8 Hz) power increased in the mid/posterior cingulate area with terrain unevenness. We also found that within stride spectral power fluctuations increased with terrain unevenness. Our secondary goal was to investigate the effect of parametric changes in walking speed (0.25 m/s, 0.5 m/s, 0.75 m/s, 1.0 m/s) to differentiate the effects of walking speed from uneven terrain. Our results revealed that electrocortical activities only changed substantially with speed within the sensorimotor area but not in other brain areas. Together, these results indicate there are distinct cortical processes contributing to the control of walking over uneven terrain versus modulation of walking speed on smooth, flat terrain. Our findings increase our understanding of cortical involvement in an ecologically valid walking task and could serve as a benchmark for identifying deficits in cortical dynamics that occur in people with mobility deficits.
Collapse
Affiliation(s)
- Chang Liu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Ryan J. Downey
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Jacob S. Salminen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Sofia Arvelo Rojas
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Natalie Richer
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Erika M. Pliner
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Jungyun Hwang
- Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Yenisel Cruz-Almeida
- Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL, United States
- Pain Research and Intervention Center of Excellence (PRICE), University of Florida, Gainesville, FL, United States
- Department of Epidemiology, University of Florida, Gainesville, FL, United States
| | - Todd M. Manini
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, United States
| | - Chris J. Hass
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Rachael D. Seidler
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - David J. Clark
- Department of Neurology, University of Florida, Gainesville, FL, United States
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
| | - Daniel P. Ferris
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
6
|
Studnicki A, Ferris DP. Dual-layer electroencephalography data during real-world table tennis. Data Brief 2024; 52:110024. [PMID: 38287945 PMCID: PMC10823104 DOI: 10.1016/j.dib.2023.110024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024] Open
Abstract
Real-world settings are necessary to improve the ecological validity of neuroscience research, and electroencephalography (EEG) facilitates mobile electrocortical recordings because of its easy portability and high temporal resolution. Table tennis is a whole-body, goal-directed sport that requires constant visuomotor feedback, anticipation, strategic decision-making, object interception, and performance monitoring - making it an interesting testbed for a variety of neuroscience studies. Although traditionally plagued by artifact contamination, recent advances in signal processing and hardware approaches, such as the dual-layer approach, have allowed high fidelity EEG recordings during whole-body maneuvers. Here, we present a dual-layer EEG dataset from 25 healthy human participants playing table tennis with a human opponent and a ball machine. Our dataset includes synchronized, multivariate time series recordings from 120 scalp electrodes, 120 noise electrodes, 8 neck electromyography electrodes, and inertial measurement units on the participant, paddles, and ball machine to record hit events. We also include de-identified T1 anatomical MR images and digitized electrode locations to create subject-specific head models for source localization. In addition, we provide anonymized video recordings and Adobe Premiere project files with hit events labeled (originally used to mark successful/missed hits). Researchers could use the videos to mark their own events of interest. We formatted our dataset in the Brain Imaging Data Structure (BIDS) format to facilitate data reuse and to adhere to the scientific community's new organization standard.
Collapse
Affiliation(s)
- Amanda Studnicki
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, United States
| | - Daniel P. Ferris
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
7
|
Fooken J, Baltaretu BR, Barany DA, Diaz G, Semrau JA, Singh T, Crawford JD. Perceptual-Cognitive Integration for Goal-Directed Action in Naturalistic Environments. J Neurosci 2023; 43:7511-7522. [PMID: 37940592 PMCID: PMC10634571 DOI: 10.1523/jneurosci.1373-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 11/10/2023] Open
Abstract
Real-world actions require one to simultaneously perceive, think, and act on the surrounding world, requiring the integration of (bottom-up) sensory information and (top-down) cognitive and motor signals. Studying these processes involves the intellectual challenge of cutting across traditional neuroscience silos, and the technical challenge of recording data in uncontrolled natural environments. However, recent advances in techniques, such as neuroimaging, virtual reality, and motion tracking, allow one to address these issues in naturalistic environments for both healthy participants and clinical populations. In this review, we survey six topics in which naturalistic approaches have advanced both our fundamental understanding of brain function and how neurologic deficits influence goal-directed, coordinated action in naturalistic environments. The first part conveys fundamental neuroscience mechanisms related to visuospatial coding for action, adaptive eye-hand coordination, and visuomotor integration for manual interception. The second part discusses applications of such knowledge to neurologic deficits, specifically, steering in the presence of cortical blindness, impact of stroke on visual-proprioceptive integration, and impact of visual search and working memory deficits. This translational approach-extending knowledge from lab to rehab-provides new insights into the complex interplay between perceptual, motor, and cognitive control in naturalistic tasks that are relevant for both basic and clinical research.
Collapse
Affiliation(s)
- Jolande Fooken
- Centre for Neuroscience, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - Bianca R Baltaretu
- Department of Psychology, Justus Liebig University, Giessen, 35394, Germany
| | - Deborah A Barany
- Department of Kinesiology, University of Georgia, and Augusta University/University of Georgia Medical Partnership, Athens, Georgia 30602
| | - Gabriel Diaz
- Center for Imaging Science, Rochester Institute of Technology, Rochester, New York 14623
| | - Jennifer A Semrau
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware 19713
| | - Tarkeshwar Singh
- Department of Kinesiology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - J Douglas Crawford
- Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
8
|
Liu C, Downey RJ, Salminen JS, Rojas SA, Richer N, Pliner EM, Hwang J, Cruz-Almeida Y, Manini TM, Hass CJ, Seidler RD, Clark DJ, Ferris DP. Electrical Brain Activity during Human Walking with Parametric Variations in Terrain Unevenness and Walking Speed. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551289. [PMID: 37577540 PMCID: PMC10418077 DOI: 10.1101/2023.07.31.551289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Mobile brain imaging with high-density electroencephalography (EEG) can provide insight into the cortical processes involved in complex human walking tasks. While uneven terrain is common in the natural environment and poses challenges to human balance control, there is limited understanding of the supraspinal processes involved with traversing uneven terrain. The primary objective of this study was to quantify electrocortical activity related to parametric variations in terrain unevenness for neurotypical young adults. We used high-density EEG to measure brain activity when thirty-two young adults walked on a novel custom-made uneven terrain treadmill surface with four levels of difficulty at a walking speed tailored to each participant. We identified multiple brain regions associated with uneven terrain walking. Alpha (8 - 13 Hz) and beta (13 - 30 Hz) spectral power decreased in the sensorimotor and posterior parietal areas with increasing terrain unevenness while theta (4 - 8 Hz) power increased in the mid/posterior cingulate area with terrain unevenness. We also found that within stride spectral power fluctuations increased with terrain unevenness. Our secondary goal was to investigate the effect of parametric changes in walking speed (0.25 m/s, 0.5m/s, 0.75 m/s, 1.0 m/s) to differentiate the effects of walking speed from uneven terrain. Our results revealed that electrocortical activities only changed substantially with speed within the sensorimotor area but not in other brain areas. Together, these results indicate there are distinct cortical processes contributing to the control of walking over uneven terrain versus modulation of walking speed on smooth, flat terrain. Our findings increase our understanding of cortical involvement in an ecologically valid walking task and could serve as a benchmark for identifying deficits in cortical dynamics that occur in people with mobility deficits.
Collapse
Affiliation(s)
- Chang Liu
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Ryan J. Downey
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Jacob S. Salminen
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Sofia Arvelo Rojas
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Natalie Richer
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Erika M. Pliner
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Jungyun Hwang
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Yenisel Cruz-Almeida
- Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL, USA
- Pain Research and Intervention Center of Excellence (PRICE), University of Florida, Gainesville, FL, USA
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Todd M. Manini
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Chris J. Hass
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Rachael D. Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL
| | - David J. Clark
- Department of Neurology, University of Florida, Gainesville, FL, USA
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, USA
| | - Daniel P. Ferris
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL
| |
Collapse
|