1
|
Wang XL, Ji YB, Li SX, Serchov T. The crosstalk between CREB and PER2 mediates the transition between mania- and depression-like behavior. Neuropsychopharmacology 2025:10.1038/s41386-025-02076-5. [PMID: 40011706 DOI: 10.1038/s41386-025-02076-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/28/2025]
Abstract
Bipolar disorder (BD) is a severe psychiatric disorder characterized by alternating manic and depressive episodes. The molecular mechanisms underlying the transition between mania and depression remain unclear. Utilizing a mania animal model induced by ouabain, we observed reduced phosphorylated level of cyclic AMP-responsive element-binding protein (pCREB) and Period (PER)2 expression in the cornu ammonis (CA1) region of the hippocampus, which were restored by lithium treatment. shRNA knockdown of CREB or Per2 in CA1 region induced mania-like behavior, while overexpression of both factors resulted in depression-like behavior. Furthermore, our protein analyses revealed that the upregulation or downregulation of CREB or Per2 influenced each other's expression. Co-immunoprecipitation results demonstrated that CREB interacts with PER2. Taken together, our data suggest for potential inter-regulatory crosstalk between CREB-PER2 in hippocampal CA1 region, which mediates the transition between mania- and depression-like behaviors.
Collapse
Affiliation(s)
- Xin-Ling Wang
- Department of Medical Psychology and Ethics, School of Basic Medical Sciences, Shandong University, Ji'nan, 250012, Shandong, China.
- Centre National de La Recherche Scientifque (CNRS), Université de Strasbourg, Institut Des Neurosciences Cellulaires Et Intégratives (INCI) UPR 3212, 67000, Strasbourg, France.
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 5, 79104, Freiburg, Germany.
| | - Yan-Bin Ji
- Department of Neurology, Qilu Hospital of Shandong University, Ji'nan, 250012, Shandong, China
| | - Su-Xia Li
- National Institute on Drug Dependence, Peking University, Beijing, China
- Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Tsvetan Serchov
- Centre National de La Recherche Scientifque (CNRS), Université de Strasbourg, Institut Des Neurosciences Cellulaires Et Intégratives (INCI) UPR 3212, 67000, Strasbourg, France.
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 5, 79104, Freiburg, Germany.
| |
Collapse
|
2
|
Huang S, Liu X, Li Z, Si Y, Yang L, Deng J, Luo Y, Xue YX, Lu L. Memory Reconsolidation Updating in Substance Addiction: Applications, Mechanisms, and Future Prospects for Clinical Therapeutics. Neurosci Bull 2025; 41:289-304. [PMID: 39264570 PMCID: PMC11794923 DOI: 10.1007/s12264-024-01294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/09/2024] [Indexed: 09/13/2024] Open
Abstract
Persistent and maladaptive drug-related memories represent a key component in drug addiction. Converging evidence from both preclinical and clinical studies has demonstrated the potential efficacy of the memory reconsolidation updating procedure (MRUP), a non-pharmacological strategy intertwining two distinct memory processes: reconsolidation and extinction-alternatively termed "the memory retrieval-extinction procedure". This procedure presents a promising approach to attenuate, if not erase, entrenched drug memories and prevent relapse. The present review delineates the applications, molecular underpinnings, and operational boundaries of MRUP in the context of various forms of substance dependence. Furthermore, we critically examine the methodological limitations of MRUP, postulating potential refinement to optimize its therapeutic efficacy. In addition, we also look at the potential integration of MRUP and neurostimulation treatments in the domain of substance addiction. Overall, existing studies underscore the significant potential of MRUP, suggesting that interventions predicated on it could herald a promising avenue to enhance clinical outcomes in substance addiction therapy.
Collapse
Affiliation(s)
- Shihao Huang
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Xiaoxing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, China
| | - Zhonghao Li
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Yue Si
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Liping Yang
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Jiahui Deng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, China
| | - Yixiao Luo
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Yan-Xue Xue
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| | - Lin Lu
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China.
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, China.
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
3
|
Peng L, Zhang J, Feng J, Ge J, Zou Y, Chen Y, Xu L, Zeng Y, Li JX, Liu J. Activation of trace amine-associated receptor 1 ameliorates PTSD-like symptoms. Biochem Pharmacol 2024; 228:116236. [PMID: 38670437 DOI: 10.1016/j.bcp.2024.116236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Trace amine-associated receptor 1 (TAAR1) negatively modulates monoaminergic transmission in the mammalian brain and participates in many psychiatric disorders. Preclinical evidence indicate that selective TAAR1 agonists have anxiolytic effects and anti-stress properties. Post-traumatic stress disorder (PTSD) is an anxiety disorder triggered by experiencing or witnessing traumatic stressors. However, it remains unknown whether TAAR1 is involved in PTSD. Here, we investigated the role of TAAR1 in two PTSD animal models, including single prolonged stress (SPS)-induced impairment of fear extinction and stress-enhanced fear learning (SEFL). SPS decreased TAAR1 mRNA levels in the prefrontal cortex and ventral tegmental area. Acute treatment of the TAAR1 partial agonist RO5263397 attenuated SPS-induced anxiety-like behavior evaluated by the elevated-plus maze test. Compared to non-stressed animals, rats that experienced SPS showed higher freezing levels in the extinction retention test, indicating an impairment of fear extinction retention after SPS exposure. Acute and chronic treatment of RO5263397 ameliorated SPS-induced impairment of fear extinction retention. In the SEFL model, compared to the No-shock group, rats that experienced severe foot shock before fear conditioning showed higher freezing levels during the tests, indicating enhanced fear learning after stress exposure. Chronic treatment of RO5263397 partially attenuated the SEFL. Moreover, chronic treatment with the selective TAAR1 full agonist RO5166017 completely prevented the SEFL. Taken together, these data showed that pharmacological activation of TAAR1 could ameliorate PTSD-like symptoms. The present study thus provides the first evidence that TAAR1 might participate in the development of PTSD, and TAAR1 agonists could be potential pharmacological treatments for this disorder.
Collapse
Affiliation(s)
- Linlin Peng
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Jing Zhang
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Jialu Feng
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Jing Ge
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Yu Zou
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Yun Chen
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Lang Xu
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Yan Zeng
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China.
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York, 955 Main Street, Buffalo, NY 14203, USA.
| | - Jianfeng Liu
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China.
| |
Collapse
|
4
|
Gu T, Dong J, Ge J, Feng J, Liu X, Chen Y, Liu J. Neurotoxic lesions of the anterior claustrum influence cued fear memory in rats. Front Psychiatry 2024; 15:1387507. [PMID: 38707622 PMCID: PMC11066318 DOI: 10.3389/fpsyt.2024.1387507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/02/2024] [Indexed: 05/07/2024] Open
Abstract
Background The claustrum (CLA), a subcortical area between the insular cortex and striatum, innervates almost all cortical regions of the mammalian brain. There is growing evidence that CLA participates in many brain functions, including memory, cognition, and stress response. It is proposed that dysfunction or malfunction of the CLA might be the pathology of some brain diseases, including stress-induced depression and anxiety. However, the role of the CLA in fear memory and anxiety disorders remains largely understudied. Methods We evaluated the influences of neurotoxic lesions of the CLA using auditory-cued fear memory and anxiety-like behaviors in rats. Results We found that lesions of anterior CLA (aCLA) but not posterior CLA (pCLA) before fear conditioning attenuated fear retrieval, facilitated extinction, and reduced freezing levels during the extinction retention test. Post-learning lesions of aCLA but not pCLA facilitated fear extinction and attenuated freezing behavior during the extinction retention test. Lesions of aCLA or pCLA did not affect anxiety-like behaviors evaluated by the open field test and elevated plus-maze test. Conclusion These data suggested that aCLA but not pCLA was involved in fear memory and extinction. Future studies are needed to further investigate the anatomical and functional connections of aCLA subareas that are involved in fear conditioning, which will deepen our understanding of CLA functions.
Collapse
Affiliation(s)
- Tengyu Gu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jing Dong
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jing Ge
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jialu Feng
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoliu Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yun Chen
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jianfeng Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Budriesi P, Tintorelli R, Correa J, Villar ME, Marchal P, Giurfa M, Viola H. A behavioral tagging account of kinase contribution to memory formation after spaced aversive training. iScience 2023; 26:107278. [PMID: 37520708 PMCID: PMC10372744 DOI: 10.1016/j.isci.2023.107278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/14/2022] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
Long-term memory (LTM) can be induced by repeated spaced training trials. Using the weak inhibitory avoidance (wIA) task, we showed that one wIA session does not lead to a 24-h LTM, whereas two identical wIA sessions spaced by 15 min to 6 h induce a 24-h LTM. This LTM promotion depends both on hippocampal protein synthesis and the activity of several kinases. In agreement with the behavioral tagging (BT) hypothesis, our results suggest that the two training sessions induce transient learning tags and lead, via a cooperative effect, to the synthesis of plasticity-related proteins (PRPs) that become available and captured by the tag from the second session. Although ERKs1/2 are needed for PRPs synthesis and CaMKs are required for tag setting, PKA participates in both processes. We conclude that the BT mechanism accounts for the molecular constraints underlying the classic effect of spaced learning on LTM formation.
Collapse
Affiliation(s)
- Pablo Budriesi
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ramiro Tintorelli
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Julieta Correa
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Eugenia Villar
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Biología y Geología, Física y Química Inorgánica, Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Madrid, Spain
| | - Paul Marchal
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
- Poe Lab, Integrative Biology and Physiology department, University of California Los Angeles, Los Angeles, CA, USA
| | - Martin Giurfa
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse cedex 9, France
- Institut Universitaire de France (IUF), Paris, France
| | - Haydee Viola
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular “Dr. Héctor Maldonado” (FBMC), Facultad de Ciencias Exactas y Naturales, UBA, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto Tecnológico de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
6
|
Meamar M, Rashidy-Pour A, Rahmani M, Vafaei AA, Raise-Abdullahi P. Glucocorticoid- β-adrenoceptors interactions in the infralimbic cortex in acquisition and consolidation of auditory fear memory extinction in rats. Pharmacol Biochem Behav 2023; 225:173560. [PMID: 37094708 DOI: 10.1016/j.pbb.2023.173560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/26/2023]
Abstract
This study investigated the interactive effect of glucocorticoid and β-adrenoceptors in the infralimbic (IL) cortex on the acquisition and consolidation of fear extinction in rats' auditory fear conditioning (AFC) task. On day 1, rats underwent habituation for 9 min (12 tonnes, 10 s, 4 kHz, 80 dB, without footshock). On day 2 (conditioning), rats received 3 mild electrical footshocks (US; 2 s, 0.5 mA) paired with the auditory-conditioned stimulus (CS; tone: 30 s, 4 kHz, 80 dB). On days 3-5 (Ext 1-3), rats received 15 tonnes with no footshock in the test box. Intra-IL injection of corticosterone (CORT, 20 ng/0.5 μl per side) before Ext 1 and after Ext 1-2, respectively, facilitated the acquisition and consolidation of fear memory extinction. Intra-IL injection of the β2-adrenoceptor agonist clenbuterol (CLEN, 50 ng/0.5 μl per side) inhibited, but the β-adrenoceptor antagonist propranolol (PROP, 500 ng/0.5 μl per side) enhanced the facilitatory effects of CORT on fear memory extinction. CORT injection before the acquisition of fear extinction increased p-ERK levels in the IL. Co-injection of CORT with CLEN increased, but PROP decreased p-ERK activities. CORT injection after the consolidation of fear extinction increased p-CREB in the IL. Co-injection of CORT with CLEN increased, but PROP reduced p-CREB activities. Our findings show that corticosterone facilitates the acquisition and consolidation of fear memory extinction. GRs and β-adrenoceptors in the IL jointly regulate fear memory extinction via ERK and CREB signaling pathways. This pre-clinical animal study may highlight the effect of GRs and β-adrenoceptors of the IL cortex in regulating fear memory processes in fear-related disorders such as PTSD.
Collapse
Affiliation(s)
- Morvarid Meamar
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mehrnoush Rahmani
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Abbas Ali Vafaei
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | | |
Collapse
|
7
|
Dai Z, Liu Y, Nie L, Chen W, Xu X, Li Y, Zhang J, Shen F, Sui N, Liang J. Locus coeruleus input-modulated reactivation of dentate gyrus opioid-withdrawal engrams promotes extinction. Neuropsychopharmacology 2023; 48:327-340. [PMID: 36302846 PMCID: PMC9751301 DOI: 10.1038/s41386-022-01477-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 12/26/2022]
Abstract
Extinction training during the reconsolidation window following memory recall is an effective behavioral pattern for promoting the extinction of pathological memory. However, promoted extinction by recall-extinction procedure has not been universally replicated in different studies. One potential reason for this may relate to whether initially acquired memory is successfully activated. Thus, the methods for inducing the memory into an active or plastic condition may contribute to promoting its extinction. The aim of this study is to find and demonstrate a manipulatable neural circuit that engages in the memory recall process and where its activation improves the extinction process through recall-extinction procedure. Here, naloxone-precipitated conditioned place aversion (CPA) in morphine-dependent mice was mainly used as a pathological memory model. We found that the locus coeruleus (LC)-dentate gyrus (DG) circuit was necessary for CPA memory recall and that artificial activation of LC inputs to the DG just prior to initiating a recall-extinction procedure significantly promoted extinction learning. We also found that activating this circuit caused an increase in the ensemble size of DG engram cells activated during the extinction, which was confirmed by a cFos targeted strategy to label cells combined with immunohistochemical and in vivo calcium imaging techniques. Collectively, our data uncover that the recall experience is important for updating the memory during the reconsolidation window; they also suggest a promising neural circuit or target based on the recall-extinction procedure for weakening pathological aversion memory, such as opioid withdrawal memory and fear memory.
Collapse
Affiliation(s)
- Zhonghua Dai
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Liu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Lina Nie
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Weiqi Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| | - Xing Xu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yonghui Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| | - Jianjun Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Fang Shen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Nan Sui
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Liang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Zhang Y, Li H, Hu T, Zhao Z, Liu Q, Li H. Disrupting reconsolidation by PKA inhibitor in BLA reduces heroin-seeking behavior. Front Cell Neurosci 2022; 16:996379. [PMID: 36106011 PMCID: PMC9464818 DOI: 10.3389/fncel.2022.996379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Drug abuse is considered a maladaptive pathology of emotional memory and is associated with craving and relapse induced by drug-associated stimuli or drugs. Reconsolidation is an independent memory process with a strict time window followed by the reactivation of drug-associated stimulus depending on the basolateral amygdala (BLA). Pharmacology or behavior treatment that disrupts the reconsolidation can effectively attenuate drug-seeking in addicts. Here, we hypothesized that heroin-memory reconsolidation requires cAMP-dependent protein kinase A (PKA) of BLA based on the fundamental effect of PKA in synaptic plasticity and memory process. After 10 days of acquisition, the rats underwent 11 days of extinction training and then received the intra-BLA infusions of the PKA inhibitor Rp-cAMPS at different time windows with/without a reactivation session. The results show that PKA inhibitor treatment in the reconsolidation time window disrupts the reconsolidation and consequently reduces cue-induced reinstatement, heroin-induced reinstatement, and spontaneous recovery of heroin-seeking behavior in the rats. In contrast, there was no effect on cue-induced reinstatement in the intra-BLA infusion of PKA inhibitor 6 h after reactivation or without reactivation. These data suggest that PKA inhibition disrupts the reconsolidation of heroin-associated memory, reduces subsequent drug seeking, and prevents relapse, which is retrieval-dependent, time-limited, and BLA-dependent.
Collapse
Affiliation(s)
- Yanghui Zhang
- Center of Medical Genetics, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Haoxian Li
- Center of Medical Genetics, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Ting Hu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, China
| | - Zijin Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, China
| | - Haoyu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, China
- *Correspondence: Haoyu Li
| |
Collapse
|
9
|
Correa J, Tintorelli R, Budriesi P, Viola H. Persistence of spatial memory induced by spaced training involves a behavioral-tagging process. Neuroscience 2022; 497:215-227. [PMID: 35276307 DOI: 10.1016/j.neuroscience.2022.02.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/04/2022] [Accepted: 02/26/2022] [Indexed: 11/27/2022]
Abstract
Spaced training, which involves long inter-trial intervals, has positive effects on memories. One of the main attributes of long-term memories (LTM) is persistence. Here, to identify the process that promotes LTM persistence by spaced learning, we used the spatial object recognition (SOR) task. The protocol consisted of a first strong training session that induced LTM formation (tested 1 day after training), but not LTM persistence (tested 7 or 14 days after training); and a second weak training session that promoted memory persistence when applied 1 day, but not 7 days, after the first training. We propose that the promotion of memory persistence is based on the Behavioral Tagging (BT) mechanism operating when the memory trace is retrieved. BT involves the setting of a tag induced by learning which gives rise to input selectivity, and the use of plasticity-related proteins (PRPs) to establish the mnemonic trace. We postulate that retraining will mainly retag the sites initially activated by the original learning, where the PRPs needed for memory expression and/or induced by retrieval would be used to maintain a persistent mnemonic trace. Our results suggest that the mechanism of memory expression, but not those of memory reinforcement or reconsolidation, is necessary to promote memory persistence after retraining. The molecular mechanisms involve ERKs1/2 activity to set the SOR learning tag, and the availability of GluA2-containing AMPA receptor. In conclusion, both the synthesis of PRPs and the setting of a learning tag are key processes triggered by retraining that allow SOR memory persistence.
Collapse
Affiliation(s)
- J Correa
- Facultad de Medicina. Universidad de Buenos Aires. Buenos Aires, Argentina; Laboratorio de Memoria, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Facultad de Medicina, UBA-CONICET, Buenos Aires, Argentina
| | - R Tintorelli
- Facultad de Medicina. Universidad de Buenos Aires. Buenos Aires, Argentina; Laboratorio de Memoria, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Facultad de Medicina, UBA-CONICET, Buenos Aires, Argentina
| | - P Budriesi
- Facultad de Medicina. Universidad de Buenos Aires. Buenos Aires, Argentina; Laboratorio de Memoria, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Facultad de Medicina, UBA-CONICET, Buenos Aires, Argentina
| | - H Viola
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado" (FBMC), Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina; Laboratorio de Memoria, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Facultad de Medicina, UBA-CONICET, Buenos Aires, Argentina; Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina.
| |
Collapse
|
10
|
Wu R, Liu J, Vu J, Huang Y, Dietz DM, Li JX. Interleukin-1 receptor-associated kinase 4 (IRAK4) in the nucleus accumbens regulates opioid-seeking behavior in male rats. Brain Behav Immun 2022; 101:37-48. [PMID: 34958862 PMCID: PMC8885906 DOI: 10.1016/j.bbi.2021.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/09/2021] [Accepted: 12/18/2021] [Indexed: 12/12/2022] Open
Abstract
Opioid addiction remains a severe health problem. While substantial insights underlying opioid addiction have been yielded from neuron-centric studies, the contribution of non-neuronal mechanisms to opioid-related behavioral adaptations has begun to be recognized. Toll-like receptor 4 (TLR4), a pattern recognition receptor, has been widely suggested in opioid-related behaviors. Interleukin-1 receptor-associated kinase 4 (IRAK4) is a kinase essential for TLR4 responses, However, the potential role of IRAK4 in opioid-related responses has not been examined. Here, we explored the role of IRAK4 in cue-induced opioid-seeking behavior in male rats. We found that morphine self-administration increased the phosphorylation level of IRAK4 in the nucleus accumbens (NAc) in rats; the IRAK4 signaling remained activated after morphine extinction and cue-induced reinstatement test. Both systemic and local inhibition of IRAK4 in the NAc core attenuated cue-induced morphine-seeking behavior without affecting the locomotor activity and cue-induced sucrose-seeking. In addition, inhibition of IRAK4 also reduced the cue-induced reinstatement of fentanyl-seeking. Our findings suggest an important role of IRAK4 in opioid relapse-like behaviors and provide novel evidence in the association between innate immunity and drug addiction.
Collapse
Affiliation(s)
- Ruyan Wu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY,Medical College of Yangzhou University, Yangzhou, China
| | - Jianfeng Liu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY
| | - Jimmy Vu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY
| | - Yufei Huang
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY
| | - David M. Dietz
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
11
|
Dai ZH, Xu X, Chen WQ, Nie LN, Liu Y, Sui N, Liang J. The role of hippocampus in memory reactivation: an implication for a therapeutic target against opioid use disorder. CURRENT ADDICTION REPORTS 2022; 9:67-79. [PMID: 35223369 PMCID: PMC8857535 DOI: 10.1007/s40429-022-00407-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2022] [Indexed: 12/29/2022]
Abstract
Purpose of the review The abuse of opioids induces many terrible problems in human health and social stability. For opioid-dependent individuals, withdrawal memory can be reactivated by context, which is then associated with extremely unpleasant physical and emotional feelings during opioid withdrawal. The reactivation of withdrawal memory is considered one of the most important reasons for opioid relapse, and it also allows for memory modulation based on the reconsolidation phenomenon. However, studies exploring withdrawal memory modulation during the reconsolidation window are lacking. By summarizing the previous findings about the reactivation of negative emotional memories, we are going to suggest potential neural regions and systems for modulating opioid withdrawal memory. Recent findings Here, we first present the role of memory reactivation in its modification, discuss how the hippocampus participates in memory reactivation, and discuss the importance of noradrenergic signaling in the hippocampus for memory reactivation. Then, we review the engagement of other limbic regions receiving noradrenergic signaling in memory reactivation. We suggest that noradrenergic signaling targeting hippocampus neurons might play a potential role in strengthening the disruptive effect of withdrawal memory extinction by facilitating the degree of memory reactivation. Summary This review will contribute to a better understanding of the mechanisms underlying reactivation-dependent memory malleability and will provide new therapeutic avenues for treating opioid use disorders.
Collapse
Affiliation(s)
- Zhong-hua Dai
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xing Xu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Wei-qi Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Li-na Nie
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Liu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Nan Sui
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Liang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Huang S, Zhou Y, Wu F, Shi C, Yan H, Chen L, Yang C, Luo Y. Berberine Facilitates Extinction and Prevents the Return of Fear. Front Pharmacol 2022; 12:748995. [PMID: 35185532 PMCID: PMC8851465 DOI: 10.3389/fphar.2021.748995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Exposure to a catastrophic event or intense stimulation can trigger fear memories, and the threatening memories persist even over a lifetime. Exposure therapy is based on extinction learning and is widely used to treat fear-related disorders, but its effect on remote fear memory is modest. Berberine, an isoquinoline alkaloid derived from Coptis chinensis or Berberis spp., has been recently reported to exert a diversity of pharmacological effects on the central nervous system, such as facilitating extinction of drug memory. Here, we explored the effect of berberine on extinction of fear memory using a classical contextual fear conditioning (CFC) paradigm, which is Pavlovian conditioning, can rapidly create fear memories related to contexts. Twenty-four hours or 30 days after CFC training, mice were subjected to context extinction (10 days) to extinguish their behaviors and treated with 12.5 or 25 mg/kg berberine intragastrically 1 or 6 h after each extinction session, followed by reinstatement and spontaneous recovery tests. The results showed that intragastric administration of 25 mg/kg berberine 1 h after extinction significantly promoted the extinction of recent and remote fear memories and prevented reinstatement and spontaneous recovery of extinguished fear in mice. These findings indicate that berberine combined with extinction training could serve as a promising novel avenue for the treatment of fear-related disorders.
Collapse
Affiliation(s)
- Shihao Huang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Yu Zhou
- Yiyang Medical College, Yiyang, China
| | - Feilong Wu
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Cuijie Shi
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - He Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Liangpei Chen
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Chang Yang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- China Hunan Province People’s Hospital, The First-affiliated Hospital of Hunan Normal University, Changsh, China
| | - Yixiao Luo
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- China Hunan Province People’s Hospital, The First-affiliated Hospital of Hunan Normal University, Changsh, China
| |
Collapse
|
13
|
Kuijer EJ, Ferragud A, Milton AL. Retrieval-Extinction and Relapse Prevention: Rewriting Maladaptive Drug Memories? Front Behav Neurosci 2020; 14:23. [PMID: 32153373 PMCID: PMC7044236 DOI: 10.3389/fnbeh.2020.00023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/03/2020] [Indexed: 12/24/2022] Open
Abstract
Addicted individuals are highly susceptible to relapse when exposed to drug-associated conditioned stimuli (CSs; "drug cues") even after extensive periods of abstinence. Until recently, these maladaptive emotional drug memories were believed to be permanent and resistant to change. The rediscovery of the phenomenon of memory reconsolidation-by which retrieval of the memory can, under certain conditions, destabilize the previously stable memory before it restabilizes in its new, updated form-has led to the hypothesis that it may be possible to disrupt the strong maladaptive drug-memories that trigger a relapse. Furthermore, recent work has suggested that extinction training "within the reconsolidation window" may lead to a long-term reduction in relapse without the requirement for pharmacological amnestic agents. However, this so-called "retrieval-extinction" effect has been inconsistently observed in the literature, leading some to speculate that rather than reflecting memory updating, it may be the product of facilitation of extinction. In this mini review article, we will focus on factors that might be responsible for the retrieval-extinction effects on preventing drug-seeking relapse and how inter-individual differences may influence this therapeutically promising effect. A better understanding of the psychological and neurobiological mechanisms underpinning the "retrieval-extinction" paradigm, and individual differences in boundary conditions, should provide insights with the potential to optimize the translation of "retrieval-extinction" to clinical populations.
Collapse
Affiliation(s)
- Eloise J. Kuijer
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Leiden University Medical Centre, Leiden University, Leiden, Netherlands
| | - Antonio Ferragud
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Amy L. Milton
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Spatial-Memory Formation After Spaced Learning Involves ERKs1/2 Activation Through a Behavioral-Tagging Process. Sci Rep 2020; 10:98. [PMID: 31919427 PMCID: PMC6952433 DOI: 10.1038/s41598-019-57007-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/20/2019] [Indexed: 12/25/2022] Open
Abstract
The superiority of spaced over massed learning is an established fact in the formation of long-term memories (LTM). Here we addressed the cellular processes and the temporal demands of this phenomenon using a weak spatial object recognition (wSOR) training, which induces short-term memories (STM) but not LTM. We observed SOR-LTM promotion when two identical wSOR training sessions were spaced by an inter-trial interval (ITI) ranging from 15 min to 7 h, consistently with spaced training. The promoting effect was dependent on neural activity, protein synthesis and ERKs1/2 activity in the hippocampus. Based on the “behavioral tagging” hypothesis, which postulates that learning induces a neural tag that requires proteins to induce LTM formation, we propose that retraining will mainly retag the sites initially labeled by the prior training. Thus, when weak, consecutive training sessions are experienced within an appropriate spacing, the intracellular mechanisms triggered by each session would add, thereby reaching the threshold for protein synthesis required for memory consolidation. Our results suggest in addition that ERKs1/2 kinases play a dual role in SOR-LTM formation after spaced learning, both inducing protein synthesis and setting the SOR learning-tag. Overall, our findings bring new light to the mechanisms underlying the promoting effect of spaced trials on LTM formation.
Collapse
|
15
|
Facilitation of fear extinction by novelty is modulated by β-adrenergic and 5-HT1A serotoninergic receptors in hippocampus. Neurobiol Learn Mem 2019; 166:107101. [DOI: 10.1016/j.nlm.2019.107101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 08/21/2019] [Accepted: 10/16/2019] [Indexed: 01/15/2023]
|
16
|
Cahill EN, Milton AL. Neurochemical and molecular mechanisms underlying the retrieval-extinction effect. Psychopharmacology (Berl) 2019; 236:111-132. [PMID: 30656364 PMCID: PMC6373198 DOI: 10.1007/s00213-018-5121-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/12/2018] [Indexed: 12/26/2022]
Abstract
Extinction within the reconsolidation window, or 'retrieval-extinction', has received much research interest as a possible technique for targeting the reconsolidation of maladaptive memories with a behavioural intervention. However, it remains to be determined whether the retrieval-extinction effect-a long-term reduction in fear behaviour, which appears resistant to spontaneous recovery, renewal and reinstatement-depends specifically on destabilisation of the original memory (the 'reconsolidation-update' account) or represents facilitation of an extinction memory (the 'extinction-facilitation' account). We propose that comparing the neurotransmitter systems, receptors and intracellular signalling pathways recruited by reconsolidation, extinction and retrieval-extinction will provide a way of distinguishing between these accounts.
Collapse
Affiliation(s)
- Emma N Cahill
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK
| | - Amy L Milton
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK.
- Behavioural and Clinical Neuroscience Institute, Cambridge, CB2 3EB, UK.
| |
Collapse
|
17
|
Goode TD, Maren S. Common neurocircuitry mediating drug and fear relapse in preclinical models. Psychopharmacology (Berl) 2019; 236:415-437. [PMID: 30255379 PMCID: PMC6373193 DOI: 10.1007/s00213-018-5024-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/03/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Comorbidity of anxiety disorders, stressor- and trauma-related disorders, and substance use disorders is extremely common. Moreover, therapies that reduce pathological fear and anxiety on the one hand, and drug-seeking on the other, often prove short-lived and are susceptible to relapse. Considerable advances have been made in the study of the neurobiology of both aversive and appetitive extinction, and this work reveals shared neural circuits that contribute to both the suppression and relapse of conditioned responses associated with trauma or drug use. OBJECTIVES The goal of this review is to identify common neural circuits and mechanisms underlying relapse across domains of addiction biology and aversive learning in preclinical animal models. We focus primarily on neural circuits engaged during the expression of relapse. KEY FINDINGS After extinction, brain circuits involving the medial prefrontal cortex and hippocampus come to regulate the expression of conditioned responses by the amygdala, bed nucleus of the stria terminalis, and nucleus accumbens. During relapse, hippocampal projections to the prefrontal cortex inhibit the retrieval of extinction memories resulting in a loss of inhibitory control over fear- and drug-associated conditional responding. CONCLUSIONS The overlapping brain systems for both fear and drug memories may explain the co-occurrence of fear and drug-seeking behaviors.
Collapse
Affiliation(s)
- Travis D Goode
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, 301 Old Main Dr., College Station, TX, 77843-3474, USA
| | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, 301 Old Main Dr., College Station, TX, 77843-3474, USA.
| |
Collapse
|
18
|
Liu JF, Seaman R, Siemian JN, Bhimani R, Johnson B, Zhang Y, Zhu Q, Hoener MC, Park J, Dietz DM, Li JX. Role of trace amine-associated receptor 1 in nicotine's behavioral and neurochemical effects. Neuropsychopharmacology 2018; 43:2435-2444. [PMID: 29472642 PMCID: PMC6180004 DOI: 10.1038/s41386-018-0017-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/18/2018] [Accepted: 01/20/2018] [Indexed: 12/21/2022]
Abstract
Nicotine addiction and abuse remains a global health issue. To date, the fundamental neurobiological mechanism of nicotine addiction remains incompletely understood. Trace amine-associated receptor 1 (TAAR1) is thought to directly modulate dopaminergic system and are thought to be a neural substrate underlying addictive-like behaviors. We aimed to investigate the role of TAAR1 in nicotine addictive-like behaviors. TAAR1 expression after nicotine treatment was evaluated by western blotting. c-Fos immunofluorescence and in vivo fast-scan cyclic voltammetry were used to examine the activation of brain regions and dopamine release, respectively. We then thoroughly and systematically examined the role of TAAR1 in mediating nicotine-induced sensitization, nicotine discrimination, nicotine self-administration, nicotine demand curve, and the reinstatement of nicotine-seeking. Local pharmacological manipulation was conducted to determine the role of TAAR1 in the nucleus accumbens (NAcs) in the reinstatement of nicotine-seeking. We found that the expression of TAAR1 protein was selectively downregulated in the NAc, with no change in either dorsal striatum or prefrontal cortex. TAAR1 activation was sufficient to block nicotine-induced c-Fos expression in the NAc, while also reducing nicotine-induced dopamine release in the NAc. Systemic administration of TAAR1 agonists attenuated the expression and development of nicotine-induced sensitization, nicotine self-administration, the reinstatement of nicotine-seeking, and increased the elasticity of nicotine demand curve, while intra-NAc infusions of a TAAR1 agonist was sufficient to attenuate nicotine reinstatement. Moreover, TAAR1-knockout rats showed augmented cue-induced and drug-induced reinstatement of nicotine-seeking. These results indicated that modulation of TAAR1 activity regulates nicotine addictive-like behaviors and TAAR1 represents a novel target towards the treatment of nicotine addiction.
Collapse
Affiliation(s)
- Jian-Feng Liu
- 0000 0004 1936 9887grid.273335.3Department of Pharmacology and Toxicology; Program in Neuroscience, University at Buffalo, Buffalo, NY 14214 USA ,0000 0000 9530 8833grid.260483.bSchool of Pharmacy, Nantong University, 226001 Nantong, China
| | - Robert Seaman
- 0000 0004 1936 9887grid.273335.3Department of Pharmacology and Toxicology; Program in Neuroscience, University at Buffalo, Buffalo, NY 14214 USA
| | - Justin N. Siemian
- 0000 0004 1936 9887grid.273335.3Department of Pharmacology and Toxicology; Program in Neuroscience, University at Buffalo, Buffalo, NY 14214 USA
| | - Rohan Bhimani
- 0000 0004 1936 9887grid.273335.3Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, Buffalo, NY 14214 USA
| | - Bernard Johnson
- 0000 0004 1936 9887grid.273335.3Department of Pharmacology and Toxicology; Program in Neuroscience, University at Buffalo, Buffalo, NY 14214 USA
| | - Yanan Zhang
- 0000000100301493grid.62562.35Research Triangle Institute, Research Triangle Park, NC 27709 USA
| | - Qing Zhu
- 0000 0004 1936 9887grid.273335.3Department of Pharmacology and Toxicology; Program in Neuroscience, University at Buffalo, Buffalo, NY 14214 USA ,0000 0000 9530 8833grid.260483.bSchool of Pharmacy, Nantong University, 226001 Nantong, China
| | - Marius C. Hoener
- 0000 0004 0374 1269grid.417570.0Neuroscience, Ophthalmology and Rare Disease DTA, pRED, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jinwoo Park
- 0000 0004 1936 9887grid.273335.3Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, Buffalo, NY 14214 USA
| | - David M. Dietz
- 0000 0004 1936 9887grid.273335.3Department of Pharmacology and Toxicology; Program in Neuroscience, University at Buffalo, Buffalo, NY 14214 USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology; Program in Neuroscience, University at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|
19
|
Medina JH, Viola H. ERK1/2: A Key Cellular Component for the Formation, Retrieval, Reconsolidation and Persistence of Memory. Front Mol Neurosci 2018; 11:361. [PMID: 30344477 PMCID: PMC6182090 DOI: 10.3389/fnmol.2018.00361] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/12/2018] [Indexed: 11/26/2022] Open
Abstract
Extracellular regulated kinase 1/2 (ERK1/2) has been strongly implicated in several cellular processes. In the brain ERK1/2 activity has been primarily involved in long-term memory (LTM) formation and expression. Here, we review earlier evidence and describe recent developments of ERK1/2 signaling in memory processing focusing the attention on the role of ERK1/2 in memory retrieval and reconsolidation, and in the maintenance of the memory trace including mechanisms involving the protection of labile memories. In addition, relearning requires ERK1/2 activity in selected brain regions. Its involvement in distinct memory stages points at ERK1/2 as a core element in memory processing and as one likely target to treat memory impairments associated with neurological disorders.
Collapse
Affiliation(s)
- Jorge H Medina
- Instituto de Biología Celular y Neurociencias (IBCN) "Dr Eduardo De Robertis", CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Haydee Viola
- Instituto de Biología Celular y Neurociencias (IBCN) "Dr Eduardo De Robertis", CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular "Dr. Hector Maldonado" (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
20
|
Fang Q, Li Z, Huang GD, Zhang HH, Chen YY, Zhang LB, Ding ZB, Shi J, Lu L, Yang JL. Traumatic Stress Produces Distinct Activations of GABAergic and Glutamatergic Neurons in Amygdala. Front Neurosci 2018; 12:387. [PMID: 30186100 PMCID: PMC6110940 DOI: 10.3389/fnins.2018.00387] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is an anxiety disorder characterized by intrusive recollections of a severe traumatic event and hyperarousal following exposure to the event. Human and animal studies have shown that the change of amygdala activity after traumatic stress may contribute to occurrences of some symptoms or behaviors of the patients or animals with PTSD. However, it is still unknown how the neuronal activation of different sub-regions in amygdala changes during the development of PTSD. In the present study, we used single prolonged stress (SPS) procedure to obtain the animal model of PTSD, and found that 1 day after SPS, there were normal anxiety behavior and extinction of fear memory in rats which were accompanied by a reduced proportion of activated glutamatergic neurons and increased proportion of activated GABAergic neurons in basolateral amygdala (BLA). About 10 days after SPS, we observed enhanced anxiety and impaired extinction of fear memory with increased activated both glutamatergic and GABAergic neurons in BLA and increased activated GABAergic neurons in central amygdala (CeA). These results indicate that during early and late phase after traumatic stress, distinct patterns of activation of glutamatergic neurons and GABAergic neurons are displayed in amygdala, which may be implicated in the development of PTSD.
Collapse
Affiliation(s)
- Qing Fang
- Department of Psychiatry, Tianjin Medical University, Tianjin, China.,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,Psychiatric Department, Tianjin Anding Hospital, Tianjin, China
| | - Zhe Li
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,Cangzhou Medical College, Cangzhou, China
| | - Geng-Di Huang
- Department of Psychiatry, Tianjin Medical University, Tianjin, China.,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Huan-Huan Zhang
- Department of Psychiatry, Tianjin Medical University, Tianjin, China.,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Ya-Yun Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Li-Bo Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Zeng-Bo Ding
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Lin Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,Peking University Sixth Hospital/Peking University Institute of Mental Health, Peking University, Beijing, China
| | - Jian-Li Yang
- Department of Psychiatry, Tianjin Medical University, Tianjin, China.,Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
21
|
Liu JF, Tian J, Li JX. Modulating reconsolidation and extinction to regulate drug reward memory. Eur J Neurosci 2018; 50:2503-2512. [PMID: 30113098 DOI: 10.1111/ejn.14072] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 06/20/2018] [Accepted: 06/28/2018] [Indexed: 01/11/2023]
Abstract
Drug addiction is an aberrant memory that shares the same memory processes as other memories. Brief exposure to drug-associated cues could result in reconsolidation, a hypothetical process during which original memory could be updated. In contrast, longer exposure times to drug-associated cues could trigger extinction, a process that decreases the conditioned responding. In this review, we discuss the pharmacological and non-pharmacological manipulations on the reconsolidation and extinction that could be used to interfere with drug reward memories. Pharmacological agents such as β-adrenergic receptor antagonist propranolol can interfere with reconsolidation to disrupt drug reward memory. Pharmacological agents such as the NMDA receptor glycine site agonists d-cycloserine and d-serine can facilitate extinction and then attenuate the expression of drug reward memory. Besides pharmacological interventions, drug-free behavioral approaches by utilizing the reconsolidation and extinction, such as 'post-retrieval extinction' and 'UCS-retrieval extinction', are also effective to erase or inhibit the recall of drug reward memory. Taken together, pharmacological modulation and non-pharmacological modulation of reconsolidation and extinction are promising approaches to regulate drug reward memory and prevent relapse.
Collapse
Affiliation(s)
- Jian-Feng Liu
- Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York, 955 Main Street, Buffalo, NY, 14203, USA
| | - Jingwei Tian
- Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York, 955 Main Street, Buffalo, NY, 14203, USA.,School of Pharmacy, Yantai University, Yantai, Shandong Province, China
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York, 955 Main Street, Buffalo, NY, 14203, USA
| |
Collapse
|
22
|
Wang X, Li M, Zhu H, Yu Y, Xu Y, Zhang W, Bian C. Transcriptional Regulation Involved in Fear Memory Reconsolidation. J Mol Neurosci 2018; 65:127-140. [PMID: 29796837 DOI: 10.1007/s12031-018-1084-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/09/2018] [Indexed: 11/26/2022]
Abstract
Memory reconsolidation has been demonstrated to offer a potential target period during which the fear memories underlying fear disorders can be disrupted. Reconsolidation is a labile stage that consolidated memories re-enter after memories are reactivated. Reactivated memories, induced by cues related to traumatic events, are susceptible to strengthening and weakening. Gene transcription regulation and protein synthesis have been suggested to be required for fear memory reconsolidation. Investigating the transcriptional regulation mechanisms underlying reconsolidation may provide a therapeutic method for the treatment of fear disorders such as post-traumatic stress disorder (PTSD). However, the therapeutic effect of treating a fear disorder through interfering with reconsolidation is still contradictory. In this review, we summarize several transcription factors that have been linked to fear memory reconsolidation and propose that transcription factors, as well as related signaling pathways can serve as targets for fear memory interventions. Then, we discuss the application of pharmacological and behavioral interventions during reconsolidation that may or not efficiently treat fear disorders.
Collapse
Affiliation(s)
- Xu Wang
- Department of Military Psychology, College of Psychology, Army Medical University, Chongqing, 400038, China
- Forth Battalion of Cadet Brigade, Army Medical University, Chongqing, 400038, China
| | - Min Li
- Department of Military Psychology, College of Psychology, Army Medical University, Chongqing, 400038, China
| | - Haitao Zhu
- Medical Company, Troops 95848 of People's Liberation Army, Xiaogan, 432100, China
| | - Yongju Yu
- Department of Military Psychology, College of Psychology, Army Medical University, Chongqing, 400038, China
| | - Yuanyuan Xu
- Department of Military Psychology, College of Psychology, Army Medical University, Chongqing, 400038, China
| | - Wenmo Zhang
- Department of Fundamental, Army Logistical University of PLA, Chongqing, 401331, China
| | - Chen Bian
- Department of Military Psychology, College of Psychology, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
23
|
Predictable Chronic Mild Stress during Adolescence Promotes Fear Memory Extinction in Adulthood. Sci Rep 2017; 7:7857. [PMID: 28798340 PMCID: PMC5552791 DOI: 10.1038/s41598-017-08017-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/03/2017] [Indexed: 01/16/2023] Open
Abstract
Early-life stress in adolescence has a long-lasting influence on brain function in adulthood, and it is mostly recognized as a predisposing factor for mental illnesses, such as anxiety and posttraumatic stress disorder. Previous studies also indicated that adolescent predictable chronic mild stress (PCMS) in early life promotes resilience to depression- and anxiety-like behaviors in adulthood. However, the role of PCMS in associated memory process is still unclear. In the present study, we found that adolescent PCMS facilitated extinction and inhibited fear response in reinstatement and spontaneous recovery tests in adult rats, and this effect was still present 1 week later. PCMS in adolescence increased the activity of brain-derived neurotrophic factor (BDNF)-extracellular signal-regulated kinase 1/2 (ERK1/2) signaling in infralimbic cortex (IL) but not prelimbic cortex in adulthood. Intra-IL infusion of BDNF antibody and the ERK1/2 inhibitor U0126 reversed PCMS-induced enhancement of fear extinction. Moreover, we found that PCMS decreased DNA methylation of the Bdnf gene at exons IV and VI and elevated the mRNA levels of Bdnf in the IL. Our findings indicate that adolescent PCMS exposure promotes fear memory extinction in adulthood, which reevaluates the traditional notion of adolescent stress.
Collapse
|
24
|
Liu JF, Siemian JN, Seaman R, Zhang Y, Li JX. Role of TAAR1 within the Subregions of the Mesocorticolimbic Dopaminergic System in Cocaine-Seeking Behavior. J Neurosci 2017; 37:882-892. [PMID: 28123023 PMCID: PMC5296782 DOI: 10.1523/jneurosci.2006-16.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/29/2016] [Accepted: 12/10/2016] [Indexed: 01/02/2023] Open
Abstract
A novel G-protein coupled receptor, trace amine-associated receptor 1 (TAAR1), has been shown to be a promising target to prevent stimulant relapse. Our recent studies showed that systemic administration of TAAR1 agonists decreased abuse-related behaviors of cocaine. However, the role of TAAR1 in specific subregions of the reward system in drug addiction is unknown. Here, using a local pharmacological activation method, we assessed the role of TAAR1 within the subregions of the mesocorticolimbic system: that is, the VTA, the prelimbic cortex (PrL), and infralimbic cortex of medial prefrontal cortex, the core and shell of NAc, BLA, and CeA, on cue- and drug-induced cocaine-seeking in the rat cocaine reinstatement model. We first showed that TAAR1 mRNA was expressed throughout these brain regions. Rats underwent cocaine self-administration, followed by extinction training. RO5166017 (1.5 or 5.0 μg/side) or vehicle was microinjected into each brain region immediately before cue- and drug-induced reinstatement of cocaine-seeking. The results showed that microinjection of RO5166017 into the VTA and PrL decreased both cue- and drug priming-induced cocaine-seeking. Microinjection of RO5166017 into the NAc core and shell inhibited cue- and drug-induced cocaine-seeking, respectively. Locomotor activity or food reinforced operant responding was unaffected by microinjection of RO5166017 into these brain regions. Cocaine-seeking behaviors were not affected by RO5166017 when microinjected into the substantia nigra, infralimbic cortex, BLA, and CeA. Together, these results indicate that TAAR1 in different subregions of the mesocorticolimbic system distinctly contributes to cue- and drug-induced reinstatement of cocaine-seeking behavior. SIGNIFICANCE STATEMENT TAAR1 has been indicated as a modulator of the dopaminergic system. Previous research showed that systemic administration of TAAR1 agonists could attenuate cocaine-related behaviors, suggesting that TAAR1 may be a promising drug target for the treatment of cocaine addiction. However, the specific role of TAAR1 in subregions of the mesocorticolimbic system in drug addiction is unknown. Here, we first showed that TAAR1 mRNA is expressed throughout the subregions of the mesocorticolimbic system. Then, by using a local pharmacological activation method, we demonstrated that TAAR1 in different subregions of the mesocorticolimbic system distinctly contributes to cue- and drug-induced reinstatement of cocaine-seeking behavior.
Collapse
Affiliation(s)
- Jian-Feng Liu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York 14214, and
| | - Justin N Siemian
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York 14214, and
| | - Robert Seaman
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York 14214, and
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, North Carolina 27709
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York 14214, and
| |
Collapse
|
25
|
Atzori M, Cuevas-Olguin R, Esquivel-Rendon E, Garcia-Oscos F, Salgado-Delgado RC, Saderi N, Miranda-Morales M, Treviño M, Pineda JC, Salgado H. Locus Ceruleus Norepinephrine Release: A Central Regulator of CNS Spatio-Temporal Activation? Front Synaptic Neurosci 2016; 8:25. [PMID: 27616990 PMCID: PMC4999448 DOI: 10.3389/fnsyn.2016.00025] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 08/05/2016] [Indexed: 12/22/2022] Open
Abstract
Norepinephrine (NE) is synthesized in the Locus Coeruleus (LC) of the brainstem, from where it is released by axonal varicosities throughout the brain via volume transmission. A wealth of data from clinics and from animal models indicates that this catecholamine coordinates the activity of the central nervous system (CNS) and of the whole organism by modulating cell function in a vast number of brain areas in a coordinated manner. The ubiquity of NE receptors, the daunting number of cerebral areas regulated by the catecholamine, as well as the variety of cellular effects and of their timescales have contributed so far to defeat the attempts to integrate central adrenergic function into a unitary and coherent framework. Since three main families of NE receptors are represented-in order of decreasing affinity for the catecholamine-by: α2 adrenoceptors (α2Rs, high affinity), α1 adrenoceptors (α1Rs, intermediate affinity), and β adrenoceptors (βRs, low affinity), on a pharmacological basis, and on the ground of recent studies on cellular and systemic central noradrenergic effects, we propose that an increase in LC tonic activity promotes the emergence of four global states covering the whole spectrum of brain activation: (1) sleep: virtual absence of NE, (2) quiet wake: activation of α2Rs, (3) active wake/physiological stress: activation of α2- and α1-Rs, (4) distress: activation of α2-, α1-, and β-Rs. We postulate that excess intensity and/or duration of states (3) and (4) may lead to maladaptive plasticity, causing-in turn-a variety of neuropsychiatric illnesses including depression, schizophrenic psychoses, anxiety disorders, and attention deficit. The interplay between tonic and phasic LC activity identified in the LC in relationship with behavioral response is of critical importance in defining the short- and long-term biological mechanisms associated with the basic states postulated for the CNS. While the model has the potential to explain a large number of experimental and clinical findings, a major challenge will be to adapt this hypothesis to integrate the role of other neurotransmitters released during stress in a centralized fashion, like serotonin, acetylcholine, and histamine, as well as those released in a non-centralized fashion, like purines and cytokines.
Collapse
Affiliation(s)
- Marco Atzori
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis PotosíSan Luis Potosí, Mexico; School for Behavior and Brain Sciences, University of Texas at DallasRichardson, TX, USA
| | - Roberto Cuevas-Olguin
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | - Eric Esquivel-Rendon
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | | | - Roberto C Salgado-Delgado
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | - Nadia Saderi
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | - Marcela Miranda-Morales
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | - Mario Treviño
- Laboratory of Cortical Plasticity and Learning, Universidad de Guadalajara Guadalajara, Mexico
| | - Juan C Pineda
- Electrophysiology Laboratory, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán Mérida, Mexico
| | - Humberto Salgado
- Electrophysiology Laboratory, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán Mérida, Mexico
| |
Collapse
|
26
|
Wang B, Liang RC, Liu ZS, Luo B, Ding Y, Chen ZX, Liao YS, Wang XG. Hippocampal Src kinase is required for novelty-induced enhancement of contextual fear extinction. Biochem Biophys Res Commun 2016; 472:656-61. [DOI: 10.1016/j.bbrc.2016.02.125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 02/29/2016] [Indexed: 12/22/2022]
|
27
|
Stockhorst U, Antov MI. Modulation of Fear Extinction by Stress, Stress Hormones and Estradiol: A Review. Front Behav Neurosci 2016; 9:359. [PMID: 26858616 PMCID: PMC4726806 DOI: 10.3389/fnbeh.2015.00359] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/14/2015] [Indexed: 12/25/2022] Open
Abstract
Fear acquisition and extinction are valid models for the etiology and treatment of anxiety, trauma- and stressor-related disorders. These disorders are assumed to involve aversive learning under acute and/or chronic stress. Importantly, fear conditioning and stress share common neuronal circuits. The stress response involves multiple changes interacting in a time-dependent manner: (a) the fast first-wave stress response [with central actions of noradrenaline, dopamine, serotonin, corticotropin-releasing hormone (CRH), plus increased sympathetic tone and peripheral catecholamine release] and (b) the second-wave stress response [with peripheral release of glucocorticoids (GCs) after activation of the hypothalamus-pituitary-adrenocortical (HPA) axis]. Control of fear during extinction is also sensitive to these stress-response mediators. In the present review, we will thus examine current animal and human data, addressing the role of stress and single stress-response mediators for successful acquisition, consolidation and recall of fear extinction. We report studies using pharmacological manipulations targeting a number of stress-related neurotransmitters and neuromodulators [monoamines, opioids, endocannabinoids (eCBs), neuropeptide Y, oxytocin, GCs] and behavioral stress induction. As anxiety, trauma- and stressor-related disorders are more common in women, recent research focuses on female sex hormones and identifies a potential role for estradiol in fear extinction. We will thus summarize animal and human data on the role of estradiol and explore possible interactions with stress or stress-response mediators in extinction. This also aims at identifying time-windows of enhanced (or reduced) sensitivity for fear extinction, and thus also for successful exposure therapy.
Collapse
Affiliation(s)
- Ursula Stockhorst
- Experimental Psychology II and Biological Psychology, Institute of Psychology, University of OsnabrückOsnabrück, Germany
| | - Martin I. Antov
- Experimental Psychology II and Biological Psychology, Institute of Psychology, University of OsnabrückOsnabrück, Germany
| |
Collapse
|
28
|
Hagena H, Hansen N, Manahan-Vaughan D. β-Adrenergic Control of Hippocampal Function: Subserving the Choreography of Synaptic Information Storage and Memory. Cereb Cortex 2016; 26:1349-64. [PMID: 26804338 PMCID: PMC4785955 DOI: 10.1093/cercor/bhv330] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Noradrenaline (NA) is a key neuromodulator for the regulation of behavioral state and cognition. It supports learning by increasing arousal and vigilance, whereby new experiences are “earmarked” for encoding. Within the hippocampus, experience-dependent information storage occurs by means of synaptic plasticity. Furthermore, novel spatial, contextual, or associative learning drives changes in synaptic strength, reflected by the strengthening of long-term potentiation (LTP) or long-term depression (LTD). NA acting on β-adrenergic receptors (β-AR) is a key determinant as to whether new experiences result in persistent hippocampal synaptic plasticity. This can even dictate the direction of change of synaptic strength. The different hippocampal subfields play different roles in encoding components of a spatial representation through LTP and LTD. Strikingly, the sensitivity of synaptic plasticity in these subfields to β-adrenergic control is very distinct (dentate gyrus > CA3 > CA1). Moreover, NA released from the locus coeruleus that acts on β-AR leads to hippocampal LTD and an enhancement of LTD-related memory processing. We propose that NA acting on hippocampal β-AR, that is graded according to the novelty or saliency of the experience, determines the content and persistency of synaptic information storage in the hippocampal subfields and therefore of spatial memories.
Collapse
Affiliation(s)
- Hardy Hagena
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Niels Hansen
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
29
|
Psyrdellis M, Pautassi RM, Mustaca A, Justel N. Cholinergic transmission underlies modulation of frustration by open field exposure. Pharmacol Biochem Behav 2016; 140:8-16. [DOI: 10.1016/j.pbb.2015.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 01/11/2023]
|