1
|
Effects of gastrointestinal delivery of non-caloric tastants on energy intake: a systematic review and meta-analysis. Eur J Nutr 2021; 60:2923-2947. [PMID: 33559026 PMCID: PMC8354866 DOI: 10.1007/s00394-021-02485-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/08/2021] [Indexed: 12/17/2022]
Abstract
Purpose Taste receptors are expressed throughout the gastrointestinal tract. The activation of post-oral taste receptors using tastants could provide a non-invasive treatment option in combating the obesity epidemic. The aim of this review was to examine the effect of post-oral delivery of non-caloric tastants on eating behavior reflected by primary outcome energy intake and secondary outcomes GI symptoms and perceptions and potential underlying mechanisms. This review was conducted according to the PRISMA guidelines for systematic reviews. Methods A systematic literature search of the Cochrane, PubMed, Embase, and Medline databases was performed. This systematic review and meta-analysis was registered in the PROSPERO database on 26 February 2020 (ID: CRD42020171182). Two researchers independently screened 11,912 articles and extracted information from 19 articles. If at least two studies investigated the effect of the same taste compound on primary outcome energy intake, a meta-analysis was performed to determine pooled effect sizes. Results Nineteen papers including healthy volunteers were included. In the 19 papers analyzed, effects of various tastants were investigated in healthy volunteers. Most extensively investigated were bitter tastants. The meta-analysis of effects of bitter tastants showed a significant reduction in energy intake of 54.62 kcal (95% CI − 78.54 to − 30.69, p = 0.0014). Conclusions Bitter stimuli are most potent to influence eating behavior. Energy intake decreased after post-oral delivery of bitter tastants. This highlights the potential of a preventive role of bitter tastants in battling the obesity epidemic. Supplementary Information The online version contains supplementary material available at 10.1007/s00394-021-02485-4.
Collapse
|
2
|
Al-Najim W, Docherty NG, le Roux CW. Food Intake and Eating Behavior After Bariatric Surgery. Physiol Rev 2018; 98:1113-1141. [PMID: 29717927 DOI: 10.1152/physrev.00021.2017] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Obesity is an escalating global chronic disease. Bariatric surgery is a very efficacious treatment for obesity and its comorbidities. Alterations to gastrointestinal anatomy during bariatric surgery result in neurological and physiological changes affecting hypothalamic signaling, gut hormones, bile acids, and gut microbiota, which coalesce to exert a profound influence on eating behavior. A thorough understanding of the mechanisms underlying eating behavior is essential in the management of patients after bariatric surgery. Studies investigating candidate mechanisms have expanded dramatically in the last decade. Herein we review the proposed mechanisms governing changes in eating behavior, food intake, and body weight after bariatric surgery. Additive or synergistic effects of both conditioned and unconditioned factors likely account for the complete picture of changes in eating behavior. Considered application of strategies designed to support the underlying principles governing changes in eating behavior holds promise as a means of optimizing responses to surgery and long-term outcomes.
Collapse
Affiliation(s)
- Werd Al-Najim
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin , Dublin , Ireland ; Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden ; and Investigative Science, Imperial College London , London , United Kingdom
| | - Neil G Docherty
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin , Dublin , Ireland ; Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden ; and Investigative Science, Imperial College London , London , United Kingdom
| | - Carel W le Roux
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin , Dublin , Ireland ; Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden ; and Investigative Science, Imperial College London , London , United Kingdom
| |
Collapse
|
3
|
Fournel A, Marlin A, Abot A, Pasquio C, Cirillo C, Cani PD, Knauf C. Glucosensing in the gastrointestinal tract: Impact on glucose metabolism. Am J Physiol Gastrointest Liver Physiol 2016; 310:G645-58. [PMID: 26939867 PMCID: PMC4867329 DOI: 10.1152/ajpgi.00015.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/25/2016] [Indexed: 01/31/2023]
Abstract
The gastrointestinal tract is an important interface of exchange between ingested food and the body. Glucose is one of the major dietary sources of energy. All along the gastrointestinal tube, e.g., the oral cavity, small intestine, pancreas, and portal vein, specialized cells referred to as glucosensors detect variations in glucose levels. In response to this glucose detection, these cells send hormonal and neuronal messages to tissues involved in glucose metabolism to regulate glycemia. The gastrointestinal tract continuously communicates with the brain, especially with the hypothalamus, via the gut-brain axis. It is now well established that the cross talk between the gut and the brain is of crucial importance in the control of glucose homeostasis. In addition to receiving glucosensing information from the gut, the hypothalamus may also directly sense glucose. Indeed, the hypothalamus contains glucose-sensitive cells that regulate glucose homeostasis by sending signals to peripheral tissues via the autonomous nervous system. This review summarizes the mechanisms by which glucosensors along the gastrointestinal tract detect glucose, as well as the results of such detection in the whole body, including the hypothalamus. We also highlight how disturbances in the glucosensing process may lead to metabolic disorders such as type 2 diabetes. A better understanding of the pathways regulating glucose homeostasis will further facilitate the development of novel therapeutic strategies for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Audren Fournel
- 1NeuroMicrobiota, European Associated Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) U1220, Institut de Recherche en Santé Digestive (IRSD), Toulouse, France;
| | - Alysson Marlin
- 1NeuroMicrobiota, European Associated Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) U1220, Institut de Recherche en Santé Digestive (IRSD), Toulouse, France;
| | - Anne Abot
- 1NeuroMicrobiota, European Associated Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) U1220, Institut de Recherche en Santé Digestive (IRSD), Toulouse, France;
| | - Charles Pasquio
- 1NeuroMicrobiota, European Associated Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) U1220, Institut de Recherche en Santé Digestive (IRSD), Toulouse, France;
| | - Carla Cirillo
- 2Laboratory for Enteric NeuroScience (LENS), University of Leuven, Leuven, Belgium; and
| | - Patrice D. Cani
- 3NeuroMicrobiota, European Associated Laboratory, Université Catholique de Louvain (UCL), Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Brussels, Belgium
| | - Claude Knauf
- NeuroMicrobiota, European Associated Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) U1220, Institut de Recherche en Santé Digestive (IRSD), Toulouse, France;
| |
Collapse
|
4
|
van Avesaat M, Troost FJ, Ripken D, Peters J, Hendriks HF, Masclee AA. Intraduodenal infusion of a combination of tastants decreases food intake in humans. Am J Clin Nutr 2015; 102:729-35. [PMID: 26289437 DOI: 10.3945/ajcn.115.113266] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/20/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Taste receptors are expressed not only in taste buds but also in the gastrointestinal tract. It has been hypothesized that these receptors may play a role in satiety and food intake. OBJECTIVE This study investigated the effect of intraduodenal tastant infusions (bitter, sweet, and umami) on food intake, hunger and fullness, gastrointestinal symptoms, and gastrointestinal peptide release. DESIGN Fifteen healthy volunteers [6 male; mean ± SEM age: 23.9 ± 2.0 y; mean ± SEM body mass index (in kg/m(2)): 22.4 ± 0.3] received 5 treatments in a double-blind, randomized, placebo-controlled crossover design. Test days started with the insertion of a nasoduodenal catheter followed by a standardized liquid breakfast. Participants received an intraduodenal infusion 150 min after breakfast, containing quinine (bitter), rebaudioside A (sweet), monosodium glutamate (umami), a combination of the 3 tastants, or placebo (tap water) over a period of 60 min. Food intake was measured during an ad libitum meal, and visual analog scales were used to monitor gastrointestinal complaints and hunger and fullness scores. Blood samples were drawn at regular intervals for cholecystokinin, glucagon-like peptide 1 (GLP-1), and peptide YY (PYY) analysis. RESULTS Infusion of the combination of tastants substantially decreased food intake (422 ± 97 compared with 486 ± 104 kcal for placebo, P < 0.05), whereas both a combination of tastants and umami decreased hunger scores compared with placebo. No change in cholecystokinin, GLP-1, or PYY concentrations was observed during the infusions. Intraduodenal infusions of the tastants did not result in gastrointestinal symptoms. CONCLUSIONS Intraduodenal infusion of umami and a combination of tastants inhibits feelings of hunger, but only the latter also reduces food intake. However, these alterations were not accompanied by changes in the plasma concentrations of the gut-derived peptides cholecystokinin, GLP-1, or PYY. This trial was registered at clinicaltrials.gov as NCT01956838.
Collapse
Affiliation(s)
- Mark van Avesaat
- Top Institute of Food and Nutrition, Wageningen, Netherlands; Division of Gastroenterology-Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands;
| | - Freddy J Troost
- Top Institute of Food and Nutrition, Wageningen, Netherlands; Division of Gastroenterology-Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Dina Ripken
- Top Institute of Food and Nutrition, Wageningen, Netherlands; The Netherlands Organization for Applied Scientific Research, Zeist, Netherlands; and Division of Human Nutrition, Wageningen University, Wageningen, Netherlands
| | - Jelmer Peters
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | | | - Ad Am Masclee
- Top Institute of Food and Nutrition, Wageningen, Netherlands; Division of Gastroenterology-Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| |
Collapse
|
5
|
Kurihara K. Umami the Fifth Basic Taste: History of Studies on Receptor Mechanisms and Role as a Food Flavor. BIOMED RESEARCH INTERNATIONAL 2015; 2015:189402. [PMID: 26247011 PMCID: PMC4515277 DOI: 10.1155/2015/189402] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/16/2015] [Indexed: 01/05/2023]
Abstract
Three umami substances (glutamate, 5'-inosinate, and 5'-guanylate) were found by Japanese scientists, but umami has not been recognized in Europe and America for a long time. In the late 1900s, umami was internationally recognized as the fifth basic taste based on psychophysical, electrophysiological, and biochemical studies. Three umami receptors (T1R1 + T1R3, mGluR4, and mGluR1) were identified. There is a synergism between glutamate and the 5'-nucleotides. Among the above receptors, only T1R1 + T1R3 receptor exhibits the synergism. In rats, the response to a mixture of glutamate and 5'-inosinate is about 1.7 times larger than that to glutamate alone. In human, the response to the mixture is about 8 times larger than that to glutamate alone. Since glutamate and 5'-inosinate are contained in various foods, we taste umami induced by the synergism in daily eating. Hence umami taste induced by the synergism is a main umami taste in human.
Collapse
|
6
|
Pepino MY. Metabolic effects of non-nutritive sweeteners. Physiol Behav 2015; 152:450-5. [PMID: 26095119 DOI: 10.1016/j.physbeh.2015.06.024] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/20/2015] [Accepted: 06/17/2015] [Indexed: 12/22/2022]
Abstract
Until recently, the general belief was that non-nutritive sweeteners (NNSs) were healthy sugar substitutes because they provide sweet taste without calories or glycemic effects. However, data from several epidemiological studies have found that consumption of NNSs, mainly in diet sodas, is associated with increased risk to develop obesity, metabolic syndrome, and type 2 diabetes. The main purpose of this article is to review recent scientific evidence supporting potential mechanisms that explain how "metabolically inactive" NNSs, which have few, if any, calories, might promote metabolic dysregulation. Three potential mechanisms, which are not mutually exclusive, are presented: 1) NNSs interfere with learned responses that contribute to control glucose and energy homeostasis, 2) NNSs interfere with gut microbiota and induce glucose intolerance, and 3) NNSs interact with sweet-taste receptors expressed throughout the digestive system that play a role in glucose absorption and trigger insulin secretion. In addition, recent findings from our laboratory showing an association between individual taste sensitivity to detect sucralose and sucralose's acute effects on metabolic response to an oral glucose load are reported. Taken as a whole, data support the notion that NNSs have metabolic effects. More research is needed to elucidate the mechanisms by which NNSs may drive metabolic dysregulation and better understand potential effects of these commonly used food additives.
Collapse
Affiliation(s)
- M Yanina Pepino
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
7
|
Abstract
Levels of obesity have reached epidemic proportions on a global scale, which has led to considerable increases in health problems and increased risk of several diseases, including cardiovascular and pulmonary diseases, cancer and diabetes mellitus. People with obesity consume more food than is needed to maintain an ideal body weight, despite the discrimination that accompanies being overweight and the wealth of available information that overconsumption is detrimental to health. The relationship between energy expenditure and energy intake throughout an individual's lifetime is far more complicated than previously thought. An improved comprehension of the relationships between taste, palatability, taste receptors and hedonic responses to food might lead to increased understanding of the biological underpinnings of energy acquisition, as well as why humans sometimes eat more than is needed and more than we know is healthy. This Review discusses the role of taste receptors in the tongue, gut, pancreas and brain and their hormonal involvement in taste perception, as well as the relationship between taste perception, overeating and the development of obesity.
Collapse
Affiliation(s)
- Sara Santa-Cruz Calvo
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Biomedical Research Center, Room 09B133, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224-6825, USA
| | - Josephine M Egan
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Biomedical Research Center, Room 09B133, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224-6825, USA
| |
Collapse
|
8
|
Takai S, Yasumatsu K, Inoue M, Iwata S, Yoshida R, Shigemura N, Yanagawa Y, Drucker DJ, Margolskee RF, Ninomiya Y. Glucagon-like peptide-1 is specifically involved in sweet taste transmission. FASEB J 2015; 29:2268-80. [PMID: 25678625 DOI: 10.1096/fj.14-265355] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/22/2015] [Indexed: 11/11/2022]
Abstract
Five fundamental taste qualities (sweet, bitter, salty, sour, umami) are sensed by dedicated taste cells (TCs) that relay quality information to gustatory nerve fibers. In peripheral taste signaling pathways, ATP has been identified as a functional neurotransmitter, but it remains to be determined how specificity of different taste qualities is maintained across synapses. Recent studies demonstrated that some gut peptides are released from taste buds by prolonged application of particular taste stimuli, suggesting their potential involvement in taste information coding. In this study, we focused on the function of glucagon-like peptide-1 (GLP-1) in initial responses to taste stimulation. GLP-1 receptor (GLP-1R) null mice had reduced neural and behavioral responses specifically to sweet compounds compared to wild-type (WT) mice. Some sweet responsive TCs expressed GLP-1 and its receptors were expressed in gustatory neurons. GLP-1 was released immediately from taste bud cells in response to sweet compounds but not to other taste stimuli. Intravenous administration of GLP-1 elicited transient responses in a subset of sweet-sensitive gustatory nerve fibers but did not affect other types of fibers, and this response was suppressed by pre-administration of the GLP-1R antagonist Exendin-4(3-39). Thus GLP-1 may be involved in normal sweet taste signal transmission in mice.
Collapse
Affiliation(s)
- Shingo Takai
- *Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, Fukuoka, Japan; Division of Sensory Physiology, Research and Development Center for Taste and Odor Sensing, Kyushu University, Fukuoka, Japan; Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, and JST, CREST, Maebashi, Japan; The Lunenfeld Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada; and Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| | - Keiko Yasumatsu
- *Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, Fukuoka, Japan; Division of Sensory Physiology, Research and Development Center for Taste and Odor Sensing, Kyushu University, Fukuoka, Japan; Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, and JST, CREST, Maebashi, Japan; The Lunenfeld Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada; and Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| | - Mayuko Inoue
- *Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, Fukuoka, Japan; Division of Sensory Physiology, Research and Development Center for Taste and Odor Sensing, Kyushu University, Fukuoka, Japan; Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, and JST, CREST, Maebashi, Japan; The Lunenfeld Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada; and Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| | - Shusuke Iwata
- *Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, Fukuoka, Japan; Division of Sensory Physiology, Research and Development Center for Taste and Odor Sensing, Kyushu University, Fukuoka, Japan; Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, and JST, CREST, Maebashi, Japan; The Lunenfeld Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada; and Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| | - Ryusuke Yoshida
- *Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, Fukuoka, Japan; Division of Sensory Physiology, Research and Development Center for Taste and Odor Sensing, Kyushu University, Fukuoka, Japan; Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, and JST, CREST, Maebashi, Japan; The Lunenfeld Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada; and Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| | - Noriatsu Shigemura
- *Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, Fukuoka, Japan; Division of Sensory Physiology, Research and Development Center for Taste and Odor Sensing, Kyushu University, Fukuoka, Japan; Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, and JST, CREST, Maebashi, Japan; The Lunenfeld Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada; and Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| | - Yuchio Yanagawa
- *Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, Fukuoka, Japan; Division of Sensory Physiology, Research and Development Center for Taste and Odor Sensing, Kyushu University, Fukuoka, Japan; Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, and JST, CREST, Maebashi, Japan; The Lunenfeld Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada; and Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| | - Daniel J Drucker
- *Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, Fukuoka, Japan; Division of Sensory Physiology, Research and Development Center for Taste and Odor Sensing, Kyushu University, Fukuoka, Japan; Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, and JST, CREST, Maebashi, Japan; The Lunenfeld Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada; and Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| | - Robert F Margolskee
- *Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, Fukuoka, Japan; Division of Sensory Physiology, Research and Development Center for Taste and Odor Sensing, Kyushu University, Fukuoka, Japan; Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, and JST, CREST, Maebashi, Japan; The Lunenfeld Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada; and Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| | - Yuzo Ninomiya
- *Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, Fukuoka, Japan; Division of Sensory Physiology, Research and Development Center for Taste and Odor Sensing, Kyushu University, Fukuoka, Japan; Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, and JST, CREST, Maebashi, Japan; The Lunenfeld Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada; and Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Chaudhari N. Synaptic communication and signal processing among sensory cells in taste buds. J Physiol 2014; 592:3387-92. [PMID: 24665098 DOI: 10.1113/jphysiol.2013.269837] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Taste buds (sensory structures embedded in oral epithelium) show a remarkable diversity of transmitters synthesized and secreted locally. The known transmitters accumulate in a cell type selective manner, with 5-HT and noradrenaline being limited to presynaptic cells, GABA being synthesized in both presynaptic and glial-like cells, and acetylcholine and ATP used for signalling by receptor cells. Each of these transmitters participates in local negative or positive feedback circuits that target particular cell types. Overall, the role of ATP is the best elucidated. ATP serves as a principal afferent transmitter, and also is the key trigger for autocrine positive feedback and paracrine circuits that result in potentiation (via adenosine) or inhibition (via GABA or 5-HT). While many of the cellular receptors and mechanisms for these circuits are known, their impact on sensory detection and perception remains to be elaborated in most instances. This brief review examines what is known, and some of the open questions and controversies surrounding the transmitters and circuits of the taste periphery.
Collapse
Affiliation(s)
- Nirupa Chaudhari
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, 33146, USA Program in Neurosciences, Miller School of Medicine, University of Miami, Miami, FL, 33146, USA
| |
Collapse
|
10
|
García-Cáceres C, Tschöp MH. The emerging neurobiology of calorie addiction. eLife 2014; 3:e01928. [PMID: 24399459 PMCID: PMC3882917 DOI: 10.7554/elife.01928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The response of the brain to sugar is determined by specific cell populations in the brain, including neurons that secrete melanin-concentrating hormone, and culminates in the release of dopamine.
Collapse
Affiliation(s)
- Cristina García-Cáceres
- Cristina García-Cáceres is at the Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany
| | | |
Collapse
|
11
|
Abstract
Recent progress in unravelling the nutrient-sensing mechanisms in the taste buds of the tongue has triggered studies on the existence and role of chemosensory cells in the gut. Indeed, the gastrointestinal tract is the key interface between food and the human body and can sense basic tastes in much the same way as the tongue, through the use of similar G-protein-coupled taste receptors. These receptors 'taste' the luminal content and transmit signals that regulate nutrient transporter expression and nutrient uptake, and also the release of gut hormones and neurotransmitters involved in the regulation of energy and glucose homeostasis. Hence, they play a prominent role in the communication between the lumen, epithelium, smooth muscle cells, afferent nerve fibres and the brain to trigger adaptive responses that affect gastrointestinal function, food intake and glucose metabolism. This review summarises how sensing of nutrients by taste receptors along the gut plays a key role in the process of digestion, and how disturbances or adaptations of these chemosensory signalling pathways may contribute to the induction or resolution of a number of pathological conditions related to diabetes, obesity, or diet-induced symptom generation in irritable bowel syndrome. Targeting these receptors may represent a promising novel route for the treatment of a number of these diseases.
Collapse
|
12
|
Zhang XJ, Wang YQ, Long Y, Wang L, Li Y, Gao FB, Tian HM. Alteration of sweet taste in high-fat diet induced obese rats after 4 weeks treatment with exenatide. Peptides 2013; 47:115-23. [PMID: 23891652 DOI: 10.1016/j.peptides.2013.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/12/2013] [Accepted: 07/12/2013] [Indexed: 12/21/2022]
Abstract
Exenatide, a glucagon-like peptide-1 (GLP-1) receptor agonist, is effective in inducing weight loss. The exact mechanisms are not fully understood. Reduced appetite and food intake may play important roles. Sweet taste contributes to food palatability, which promotes appetite. Interestingly, GLP-1 and its receptor are expressed in the taste buds of rodents and their interaction has an effect on mediating sweet taste sensitivity. Our aim was to investigate whether sweet taste will be changed after long term treatment with exenatide. The results showed that high-fat diet induced obese rats (HF-C) presented metabolic disorders in food intake, body weight, blood glucose and lipid metabolism compared with long term exenatide treated obese rats (EX) and normal chow fed control rats (NC). Meanwhile, greater preference for sweet taste was observed in HF-C rats but not in EX rats. Compared with NC rats, brain activities induced by sweet taste stimulation were stronger in HF-C rats, however these stronger activities were not found in EX rats. We further found reduced sweet taste receptor T1R3 in circumvallte taste buds of HF-C rats, while GLP-1 was increased. Besides, serum leptin was evaluated in HF-C rats with decreased leptin receptor expressed in taste buds. These changes were not observed in EX rats, which suggest them to be the underlying hormone and molecular mechanisms responsible for alterations in sweet taste of HF-C rats and EX rats. In summary, our results suggest that long term treatment with exenatide could benefit dietary obese rats partially by reversing sweet taste changes.
Collapse
Affiliation(s)
- Xiao-juan Zhang
- Laboratory of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | | | | | | | | | | | | |
Collapse
|