1
|
Frara N, Jawawdeh K, Giaddui D, Tamas IP, Gares RP, McGonagle ER, Hilliard BA, Kolpakov MA, Bright-Rowe L, Braverman AS, Brown JM, Ruggieri MR, Barbe MF. Enhanced BDNF and ROS in Mucosa of Lower Motor Neuron Lesioned Dog Bladder Following Somatic Motor Nerve Transfer. Cells 2025; 14:406. [PMID: 40136655 PMCID: PMC11941061 DOI: 10.3390/cells14060406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
Neurotrophic factors and reactive oxygen species (ROS) modulate neuronal plasticity. In a model of a lower motor neuron lesioned bladder, somatic nerve transfer was used as a reinnervation strategy. Levels of neurotrophins, ROS, and TNF-α in bladder mucosa and muscle layers collected from three groups of adult female dogs: (1) Decentralized, via bilateral transection of coccygeal and sacral spinal roots, lumbar 7 dorsal roots, and hypogastric nerves, then 6-21 mo recovery; (2) reinnervated (ObNT-Reinn), after similar decentralization for 12 mo, then bilateral obturator-to-vesical nerve transfer and 8-12 mo recovery; and (3) Controls. In mucosa, BDNF and ROS levels were highest in ObNT-Reinn bladders, GDNF and TNF-α levels were restored to Control levels in ObNT-Reinn bladders (lowest in Decentralized). NT-3 and ARTN were lower in ObNT-Reinn and Decentralized bladders versus Controls. In muscle, ROS was lower in ObNT-Reinn muscle versus Controls. BDNF mucosa levels correlated with bladder axonal density and detrusor layer thickness; and GDNF mucosal correlated with bladder contraction after vesical or transferred obturator nerve electrical stimulation, as did BDNF and GDNF muscle levels. The increased BDNF and GDNF in bladders that underwent somatic nerve transfer with subsequent recovery suggest that BDNF and GDNF may help promote the reestablishment of bladder innervation.
Collapse
Affiliation(s)
- Nagat Frara
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (I.P.T.); (E.R.M.); (B.A.H.); (M.A.K.); (L.B.-R.); (A.S.B.)
| | - Kais Jawawdeh
- Center for Translational Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19040, USA; (K.J.); (D.G.); (R.P.G.); (M.R.R.S.)
| | - Dania Giaddui
- Center for Translational Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19040, USA; (K.J.); (D.G.); (R.P.G.); (M.R.R.S.)
| | - Istvan P. Tamas
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (I.P.T.); (E.R.M.); (B.A.H.); (M.A.K.); (L.B.-R.); (A.S.B.)
| | - Ryan P. Gares
- Center for Translational Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19040, USA; (K.J.); (D.G.); (R.P.G.); (M.R.R.S.)
| | - Elizabeth R. McGonagle
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (I.P.T.); (E.R.M.); (B.A.H.); (M.A.K.); (L.B.-R.); (A.S.B.)
| | - Brendan A. Hilliard
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (I.P.T.); (E.R.M.); (B.A.H.); (M.A.K.); (L.B.-R.); (A.S.B.)
| | - Mikhail A. Kolpakov
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (I.P.T.); (E.R.M.); (B.A.H.); (M.A.K.); (L.B.-R.); (A.S.B.)
| | - Lewis Bright-Rowe
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (I.P.T.); (E.R.M.); (B.A.H.); (M.A.K.); (L.B.-R.); (A.S.B.)
| | - Alan S. Braverman
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (I.P.T.); (E.R.M.); (B.A.H.); (M.A.K.); (L.B.-R.); (A.S.B.)
| | - Justin M. Brown
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Michael R. Ruggieri
- Center for Translational Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19040, USA; (K.J.); (D.G.); (R.P.G.); (M.R.R.S.)
| | - Mary F. Barbe
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (I.P.T.); (E.R.M.); (B.A.H.); (M.A.K.); (L.B.-R.); (A.S.B.)
| |
Collapse
|
2
|
Chiappini S, Guirguis A, Schifano N, Corkery JM, Semeraro F, Mosca A, D'Andrea G, Duccio Papanti G, Arillotta D, Floresta G, Martinotti G, Schifano F. Comparative safety of prescribed Esketamine and ketamine in relation to renal and urinary disorders: A pharmacovigilance perspective. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111213. [PMID: 39647692 DOI: 10.1016/j.pnpbp.2024.111213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/18/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
Intranasal esketamine, approved with oral antidepressants for adults with treatment-resistant depression (TRD), is the S-enantiomer of ketamine and has higher potency and affinity for N-Methyl-d-Aspartate receptors. Administered intranasally, it offers rapid absorption and onset, essential for severe depressive symptoms or suicidal impulses. Comparative studies on esketamine and ketamine's urological safety profiles show esketamine has lower or comparable risks of renal and urinary disorders. Ketamine, however, has documented cases of nephrotoxicity and severe urological issues in recreational users. The study aims to further evaluate and compare these profiles against other antidepressants and antipsychotics using the Food and Drug Administration (FDA) Adverse Events Reporting System (FAERS) data. ADR cases were reported to the FDA up to May 12, 2024, being drugs listed including esketamine, ketamine, quetiapine, aripiprazole, olanzapine, risperidone, citalopram, escitalopram, paroxetine, fluoxetine, sertraline, duloxetine, venlafaxine, amitriptyline, and clomipramine. Risperidone showed the highest ADRs (107,418) and serious cases (71,515), with significant renal and urinary disorders reported, including acute kidney injury and urinary incontinence. Olanzapine, quetiapine, and aripiprazole also had high serious ADRs. Venlafaxine and fluoxetine were notable among antidepressants for acute kidney injury. Esketamine and ketamine were associated with lower urinary tract symptoms and nephrolithiasis. Disproportionality analysis revealed ketamine had higher odds of renal and urinary disorders compared to other drug classes, while esketamine had lower or comparable odds. The data suggest a relatively favorable tolerability profile for these drugs, especially esketamine. However, the results highlight the necessity for more extensive studies to evaluate long-term safety and optimize treatment protocols.
Collapse
Affiliation(s)
- S Chiappini
- UniCamillus University of Medical Sciences, Via di S. Alessandro 8, Rome, Italy
| | - A Guirguis
- Pharmacy, Swansea University Medical School, The Grove, Swansea University, SA2 8PP, Swansea, Wales, UK.
| | - N Schifano
- Department of Urology, ASST Sette Laghi, Varese, Italy; Circolo & Fondazione Macchi Hospital; University of Insubria, Varese, Italy
| | - J M Corkery
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, AL10 9AB Hertfordshire, UK.
| | - F Semeraro
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University, 66100 Chieti, Italy
| | - A Mosca
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University, 66100 Chieti, Italy
| | - G D'Andrea
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University, 66100 Chieti, Italy
| | - G Duccio Papanti
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, AL10 9AB Hertfordshire, UK; Tolmezzo Community Mental Health Centre, ASUFC Mental Health and Addiction Department, via Bonanni 2, 33028 Tolmezzo, UD, Italy
| | - D Arillotta
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, AL10 9AB Hertfordshire, UK; Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini, 6, 50139 Florence, Italy
| | - G Floresta
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, AL10 9AB Hertfordshire, UK; Department of Drug and Health Sciences, University of Catania, Catania, Italy.
| | - G Martinotti
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, AL10 9AB Hertfordshire, UK; Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University, 66100 Chieti, Italy
| | - F Schifano
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, AL10 9AB Hertfordshire, UK.
| |
Collapse
|
3
|
Salehi-Pourmehr H, Mahmoudi J, Saeedi Vahdat A, Hajebrahimi S, Abolhasanpour N. A comprehensive visual report of urodynamic study in rats with spinal cord injury. Curr Urol 2025; 19:59-63. [PMID: 40313418 PMCID: PMC12042172 DOI: 10.1097/cu9.0000000000000150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/15/2021] [Indexed: 11/26/2022] Open
Abstract
Objectives Spinal cord injury (SCI) is one of the most debilitating and expensive traumatic conditions. Chronic complications after SCI have a particularly negative impact on patients' functional independence and quality of life. Urodynamic study (UDS) provides a quantitative assessment of lower urinary tract function in these patients. In many fields, animal models are considered a precursor to clinical trials, so research using laboratory animals play a major role in knowledge acquisition. Materials and methods Twelve female Wistar rats (13 weeks old, 220-270 g) were divided randomly into 2 groups: sham or SCI. The sham-operated group underwent a laminectomy at T9-T10 without any spinal cord damage, while the SCI group underwent a complete transection at the T9-T10 vertebral level. We performed cystometry in all animals at the end of the fourth week. In this article, we visualize all procedures for catheter implementation and UDS in animals for the first time at Tabriz University of Medical Sciences, Iran, using a locally developed animal UDS device. Results The UDS results showed that the bladders in the SCI group were overactive and that peak and baseline pressures increased significantly in rats with SCI when compared with the sham group (p < 0.05 for all). Conversely, significant reductions in bladder compliance and intercontraction interval were observed in the SCI group (p < 0.05 for both). Conclusions This comprehensive visual report will be very useful to all researchers in the field of urology. Furthermore, the measurable variables of the UDS device have been described in this study.
Collapse
Affiliation(s)
- Hanieh Salehi-Pourmehr
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Evidence-based medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arman Saeedi Vahdat
- Department of Oral and Maxillofacial Radiology, Dentistry Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sakineh Hajebrahimi
- Research Center for Evidence-based medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
- Urology Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrin Abolhasanpour
- Urology Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Morgan M, Nazemian V, Thai J, Lin I, Northfield S, Ivanusic JJ. BDNF sensitizes bone and joint afferent neurons at different stages of MIA-induced osteoarthritis. Bone 2024; 189:117260. [PMID: 39299629 DOI: 10.1016/j.bone.2024.117260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
There is emerging evidence that Brain Derived Neurotrophic Factor (BDNF), and one of its receptors TrkB, play important roles in the pathogenesis of osteoarthritis (OA) pain. Whilst these studies clearly highlight the potential for targeting BDNF/TrkB signaling to treat OA pain, the mechanism for how BDNF/TrkB signaling contributes to OA pain remains unclear. In this study, we used an animal model of mono-iodoacetate (MIA)-induced OA, in combination with electrophysiology, behavioral testing, Western blot analysis, and retrograde tracing and immunohistochemistry, to identify roles for BDNF/TrkB signaling in the pathogenesis of OA pain. We found that: 1) TrkB is expressed in myelinated medium diameter neurons that innervate the knee joint and bone in naïve animals; 2) peripheral application of BDNF increases the sensitivity of Aδ, but not C knee joint and bone afferent neurons, in response to mechanical stimulation, in naïve animals; 3) BDNF expression increases in synovial tissue in early MIA-induced OA, when pathology is confined to the joint, and in the subchondral bone in late MIA-induced OA, when there is additional damage to the surrounding bone; and 4) TrkB inhibition reverses MIA-induced changes in the sensitivity of Aδ but not C knee joint afferent neurons early in MIA-induced OA, and Aδ but not C bone afferent neurons late in MIA-induced OA. Our findings suggest that BDNF/TrkB signaling may have a role to play in the pathogenesis of OA pain, through effects on knee joint afferent neurons early in disease when there is inflammation confined to the joint, and bone afferent neurons late in disease when there is involvement of damage to subchondral bone. Targeted manipulation of BDNF/TrkB signaling may provide therapeutic benefit for the management of OA pain.
Collapse
Affiliation(s)
- Michael Morgan
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia
| | - Vida Nazemian
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia
| | - Jenny Thai
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia
| | - Irene Lin
- Department of Biochemistry and Pharmacology, University of Melbourne, Victoria, Australia
| | - Susan Northfield
- Department of Biochemistry and Pharmacology, University of Melbourne, Victoria, Australia
| | - Jason J Ivanusic
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia.
| |
Collapse
|
5
|
Ferreira A, Sousa Chambel S, Avelino A, Nascimento D, Silva N, Duarte Cruz C. Urinary dysfunction after spinal cord injury: Comparing outcomes after thoracic spinal transection and contusion in the rat. Neuroscience 2024; 557:100-115. [PMID: 39142624 DOI: 10.1016/j.neuroscience.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Spinal cord injury (SCI) above the lumbosacral spinal cord induces loss of voluntary control over micturition. Spinal cord transection (SCT) was the gold standard method to reproduce SCI in rodents, but its translational value is arguable and other experimental SCI methods need to be better investigated, including spinal cord contusion (SCC). At present, it is not fully investigated if urinary impairments arising after transection and contusion are comparable. To explore this, we studied bladder-reflex activity and lower urinary tract (LUT) and spinal cord innervation after SCT and different severities of SCC. Severe-contusion animals presented a longer spinal shock period and the tendency for higher residual volumes, followed by SCT and mild-contusion animals. Urodynamics showed that SCT animals presented higher basal and peak bladder pressures. Immunostaining against growth-associated protein-43 (GAP43) and calcitonin gene-related peptide (CGRP) at the lumbosacral spinal cord demonstrated that afferent sprouting is dependent on the injury model, reflecting the severity of the lesion, with a higher expression in SCT animals. In LUT organs, the expression of GAP43, CGRP cholinergic (vesicular acetylcholine transporter (VAChT)) and noradrenergic (tyrosine hydroxylase (TH)) markers was reduced after SCI in the LUT and lumbosacral cord, but only the lumbosacral expression of VAChT was dependent on the injury model. Overall, our findings demonstrate that changes in LUT innervation and function after contusion and transection are similar but result from distinct neuroplastic processes at the lumbosacral spinal cord. This may impact the development of new therapeutic options for urinary impairment arising after spinal cord insult.
Collapse
Affiliation(s)
- Ana Ferreira
- Department of Biomedicine, Experimental Biology Unit, Faculty of Medicine of Porto, University of Porto, Portugal; Pain Neurobiology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal
| | - Sílvia Sousa Chambel
- Department of Biomedicine, Experimental Biology Unit, Faculty of Medicine of Porto, University of Porto, Portugal; Pain Neurobiology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal
| | - António Avelino
- Department of Biomedicine, Experimental Biology Unit, Faculty of Medicine of Porto, University of Porto, Portugal; Pain Neurobiology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal
| | - Diogo Nascimento
- Department of Biomedicine, Experimental Biology Unit, Faculty of Medicine of Porto, University of Porto, Portugal
| | - Nuno Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal; ICVS/3B's Associate Laboratory, PT Government Associated Laboratory, Braga, Guimarães 4806-909, Portugal
| | - Célia Duarte Cruz
- Department of Biomedicine, Experimental Biology Unit, Faculty of Medicine of Porto, University of Porto, Portugal; Pain Neurobiology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
6
|
Zhang Y, Dong D, Zhang J, Cheng K, Zhen F, Li M, Chen B. Pathology and physiology of acid-sensitive ion channels in the bladder. Heliyon 2024; 10:e38031. [PMID: 39347393 PMCID: PMC11437851 DOI: 10.1016/j.heliyon.2024.e38031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/08/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Acid-sensitive ion channels (ASICs) are sodium-permeable channels activated by extracellular acidification. They can be activated and trigger the inward flow of Na+ when the extracellular environment is acidic, leading to membrane depolarization and thus inducing action potentials in neurons. There are four ASIC genes in mammals (ASIC1-4). ASIC is widely expressed in humans. It is closely associated with pain, neurological disorders, multiple sclerosis, epilepsy, migraines, and many other disorders. Bladder pain syndrome/interstitial cystitis (BPS/IC) is a specific syndrome characterized by bladder pain. Recent studies have shown that ASICs are closely associated with the development of BPS/IC. A study revealed that ASIC levels are significantly elevated in a BPS/IC model. Additionally, researchers have reported differential changes in ASICs in the bladders of patients with neurogenic lower urinary tract dysfunction (NLUTD) caused by spinal cord injury (SCI). In this review, we summarize the structure and physiological functions of ASICs and focus on the mechanisms by which ASICs mediate bladder disease.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Di Dong
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jialong Zhang
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Kang Cheng
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fang Zhen
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mei Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Binghai Chen
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Translational Medicine, Jiangsu University, China
| |
Collapse
|
7
|
Cheng C, Li Q, Lin G, Opara EC, Zhang Y. Neurobiological insights into lower urinary tract dysfunction: evaluating the role of brain-derived neurotrophic factor. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2023; 11:559-577. [PMID: 38148930 PMCID: PMC10749380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/17/2023] [Indexed: 12/28/2023]
Abstract
Lower urinary tract dysfunction (LUTD) encompasses a range of debilitating conditions that affect both sexes and different age groups. Understanding the underlying neurobiological mechanisms contributing to LUTD has emerged as a critical avenue for the development of targeted therapeutic strategies. Brain-derived neurotrophic factor (BDNF), a prominent member of the neurotrophin family, has attracted attention due to its multiple roles in neural development, plasticity, and maintenance. This review examines the intricate interplay between neurobiological factors and LUTD, focusing on the central involvement of BDNF. The review emphasizes the bidirectional relationship between LUTD and BDNF and explores how LUTD-induced neural changes may affect BDNF dynamics and vice versa. Growth factor therapy and the combined administration of controlled release growth factors and stem cells are minimally invasive treatment strategies for neuromuscular injury. Among the many growth factors and cytokines, brain-derived neurotrophic factor (BDNF) plays a prominent role in neuromuscular repair. As an essential neurotrophin, BDNF is involved in the modulation of neuromuscular regeneration through tropomyosin receptor kinase B (TrkB). Increasing BDNF levels facilitates the regeneration of the external urethral sphincter and contributes to the regulation of bladder contraction. Treatments targeting the BDNF pathway and sustained release of BDNF may become novel treatment options for urinary incontinence and other forms of lower urinary tract dysfunction. This review discusses the applications of BDNF and the theoretical basis for its use in the treatment of lower urinary tract dysfunction, including urinary incontinence (UI), overactive bladder (OAB), and benign prostatic hyperplasia (BPH), and in the clinical diagnosis of bladder dysfunction.
Collapse
Affiliation(s)
- Chen Cheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
| | - Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of CaliforniaSan Francisco, CA 94143, USA
| | - Emmanuel C Opara
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health SciencesWinston-Salem, NC 27101, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health SciencesWinston-Salem, NC 27101, USA
| |
Collapse
|
8
|
Chambel SS, Cruz CD. Axonal growth inhibitors and their receptors in spinal cord injury: from biology to clinical translation. Neural Regen Res 2023; 18:2573-2581. [PMID: 37449592 DOI: 10.4103/1673-5374.373674] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Axonal growth inhibitors are released during traumatic injuries to the adult mammalian central nervous system, including after spinal cord injury. These molecules accumulate at the injury site and form a highly inhibitory environment for axonal regeneration. Among these inhibitory molecules, myelin-associated inhibitors, including neurite outgrowth inhibitor A, oligodendrocyte myelin glycoprotein, myelin-associated glycoprotein, chondroitin sulfate proteoglycans and repulsive guidance molecule A are of particular importance. Due to their inhibitory nature, they represent exciting molecular targets to study axonal inhibition and regeneration after central injuries. These molecules are mainly produced by neurons, oligodendrocytes, and astrocytes within the scar and in its immediate vicinity. They exert their effects by binding to specific receptors, localized in the membranes of neurons. Receptors for these inhibitory cues include Nogo receptor 1, leucine-rich repeat, and Ig domain containing 1 and p75 neurotrophin receptor/tumor necrosis factor receptor superfamily member 19 (that form a receptor complex that binds all myelin-associated inhibitors), and also paired immunoglobulin-like receptor B. Chondroitin sulfate proteoglycans and repulsive guidance molecule A bind to Nogo receptor 1, Nogo receptor 3, receptor protein tyrosine phosphatase σ and leucocyte common antigen related phosphatase, and neogenin, respectively. Once activated, these receptors initiate downstream signaling pathways, the most common amongst them being the RhoA/ROCK signaling pathway. These signaling cascades result in actin depolymerization, neurite outgrowth inhibition, and failure to regenerate after spinal cord injury. Currently, there are no approved pharmacological treatments to overcome spinal cord injuries other than physical rehabilitation and management of the array of symptoms brought on by spinal cord injuries. However, several novel therapies aiming to modulate these inhibitory proteins and/or their receptors are under investigation in ongoing clinical trials. Investigation has also been demonstrating that combinatorial therapies of growth inhibitors with other therapies, such as growth factors or stem-cell therapies, produce stronger results and their potential application in the clinics opens new venues in spinal cord injury treatment.
Collapse
Affiliation(s)
- Sílvia Sousa Chambel
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto; Translational NeuroUrology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal
| | - Célia Duarte Cruz
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto; Translational NeuroUrology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal
| |
Collapse
|
9
|
Aitken KJ, Yadav P, Sidler M, Thanabalasingam T, Ahmed T, Aggarwal P, Yip ST, Jeffrey N, Jiang JX, Siebenaller A, Sotiropoulos C, Huang R, Le DMQ, Delgado-Olguin P, Bagli D. Spontaneous urinary bladder regeneration after subtotal cystectomy increases YAP/WWTR1 signaling and downstream BDNF expression: Implications for smooth muscle injury responses. PLoS One 2023; 18:e0287205. [PMID: 37494380 PMCID: PMC10370683 DOI: 10.1371/journal.pone.0287205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/01/2023] [Indexed: 07/28/2023] Open
Abstract
Rodents have the capacity for spontaneous bladder regeneration and bladder smooth muscle cell (BSMC) migration following a subtotal cystectomy (STC). YAP/WWTR1 and BDNF (Brain-derived neurotrophic factor) play crucial roles in development and regeneration. During partial bladder outlet obstruction (PBO), excessive YAP/WWTR1 signaling and BDNF expression increases BSMC hypertrophy and dysfunction. YAP/WWTR1 and expression of BDNF and CYR61 were examined in models of regeneration and wound repair. Live cell microscopy was utilized in an ex vivo model of STC to visualize cell movement and division. In Sprague-Dawley female rats, STC was performed by resection of the bladder dome sparing the trigone, followed by closure of the bladder. Smooth muscle migration and downstream effects on signaling and expression were also examined after scratch wound of BSMC with inhibitors of YAP and BDNF signaling. Sham, PBO and incision (cystotomy) were comparators for the STC model. Scratch wound in vitro increased SMC migration and expression of BDNF, CTGF and CYR61 in a YAP/WWTR1-dependent manner. Inhibition of YAP/WWTR1 and BDNF signaling reduced scratch-induced migration. BDNF and CYR61 expression was elevated during STC and PBO. STC induces discrete genes associated with endogenous de novo cell regeneration downstream of YAP/WWTR1 activation.
Collapse
Affiliation(s)
- Karen J. Aitken
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Priyank Yadav
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Urology and Renal Transplantation, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
- Urology Division, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Martin Sidler
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Urology Division, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
- Division Chief, Paediatric and Neonatal Surgeon, University Hospital Ulm, Ulm, Baden-Württemberg, Germany
| | - Thenuka Thanabalasingam
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Human Biology Programme, Faculty of Arts and Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Tabina Ahmed
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Human Biology Programme, Faculty of Arts and Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Prateek Aggarwal
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Human Biology Programme, Faculty of Arts and Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Shing Tai Yip
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nefateri Jeffrey
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jia-Xin Jiang
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Aliza Siebenaller
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Chris Sotiropoulos
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Human Biology Programme, Faculty of Arts and Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ryan Huang
- Human Biology Programme, Faculty of Arts and Sciences, University of Toronto, Toronto, Ontario, Canada
| | - David Minh Quynh Le
- Human Biology Programme, Faculty of Arts and Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Paul Delgado-Olguin
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Darius Bagli
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Urology Division, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Shimizu N, Saito T, Wada N, Hashimoto M, Shimizu T, Kwon J, Cho KJ, Saito M, Karnup S, de Groat WC, Yoshimura N. Molecular Mechanisms of Neurogenic Lower Urinary Tract Dysfunction after Spinal Cord Injury. Int J Mol Sci 2023; 24:7885. [PMID: 37175592 PMCID: PMC10177842 DOI: 10.3390/ijms24097885] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
This article provides a synopsis of current progress made in fundamental studies of lower urinary tract dysfunction (LUTD) after spinal cord injury (SCI) above the sacral level. Animal models of SCI allowed us to examine the effects of SCI on the micturition control and the underlying neurophysiological processes of SCI-induced LUTD. Urine storage and elimination are the two primary functions of the LUT, which are governed by complicated regulatory mechanisms in the central and peripheral nervous systems. These neural systems control the action of two functional units in the LUT: the urinary bladder and an outlet consisting of the bladder neck, urethral sphincters, and pelvic-floor striated muscles. During the storage phase, the outlet is closed, and the bladder is inactive to maintain a low intravenous pressure and continence. In contrast, during the voiding phase, the outlet relaxes, and the bladder contracts to facilitate adequate urine flow and bladder emptying. SCI disrupts the normal reflex circuits that regulate co-ordinated bladder and urethral sphincter function, leading to involuntary and inefficient voiding. Following SCI, a spinal micturition reflex pathway develops to induce an overactive bladder condition following the initial areflexic phase. In addition, without proper bladder-urethral-sphincter coordination after SCI, the bladder is not emptied as effectively as in the normal condition. Previous studies using animal models of SCI have shown that hyperexcitability of C-fiber bladder afferent pathways is a fundamental pathophysiological mechanism, inducing neurogenic LUTD, especially detrusor overactivity during the storage phase. SCI also induces neurogenic LUTD during the voiding phase, known as detrusor sphincter dyssynergia, likely due to hyperexcitability of Aδ-fiber bladder afferent pathways rather than C-fiber afferents. The molecular mechanisms underlying SCI-induced LUTD are multifactorial; previous studies have identified significant changes in the expression of various molecules in the peripheral organs and afferent nerves projecting to the spinal cord, including growth factors, ion channels, receptors and neurotransmitters. These findings in animal models of SCI and neurogenic LUTD should increase our understanding of pathophysiological mechanisms of LUTD after SCI for the future development of novel therapies for SCI patients with LUTD.
Collapse
Affiliation(s)
- Nobutaka Shimizu
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (N.S.)
- Pelvic Floor Center, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan
| | - Tetsuichi Saito
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (N.S.)
| | - Naoki Wada
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (N.S.)
| | - Mamoru Hashimoto
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (N.S.)
| | - Takahiro Shimizu
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (N.S.)
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan
| | - Joonbeom Kwon
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (N.S.)
| | - Kang Jun Cho
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (N.S.)
| | - Motoaki Saito
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan
| | - Sergei Karnup
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - William C. de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (N.S.)
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
11
|
Ferreira A, Nascimento D, Cruz CD. Molecular Mechanism Operating in Animal Models of Neurogenic Detrusor Overactivity: A Systematic Review Focusing on Bladder Dysfunction of Neurogenic Origin. Int J Mol Sci 2023; 24:ijms24043273. [PMID: 36834694 PMCID: PMC9959149 DOI: 10.3390/ijms24043273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
Neurogenic detrusor overactivity (NDO) is a severe lower urinary tract disorder, characterized by urinary urgency, retention, and incontinence, as a result of a neurologic lesion that results in damage in neuronal pathways controlling micturition. The purpose of this review is to provide a comprehensive framework of the currently used animal models for the investigation of this disorder, focusing on the molecular mechanisms of NDO. An electronic search was performed with PubMed and Scopus for literature describing animal models of NDO used in the last 10 years. The search retrieved 648 articles, of which reviews and non-original articles were excluded. After careful selection, 51 studies were included for analysis. Spinal cord injury (SCI) was the most frequently used model to study NDO, followed by animal models of neurodegenerative disorders, meningomyelocele, and stroke. Rats were the most commonly used animal, particularly females. Most studies evaluated bladder function through urodynamic methods, with awake cystometry being particularly preferred. Several molecular mechanisms have been identified, including changes in inflammatory processes, regulation of cell survival, and neuronal receptors. In the NDO bladder, inflammatory markers, apoptosis-related factors, and ischemia- and fibrosis-related molecules were found to be upregulated. Purinergic, cholinergic, and adrenergic receptors were downregulated, as most neuronal markers. In neuronal tissue, neurotrophic factors, apoptosis-related factors, and ischemia-associated molecules are increased, as well as markers of microglial and astrocytes at lesion sites. Animal models of NDO have been crucial for understanding the pathophysiology of lower urinary tract (LUT) dysfunction. Despite the heterogeneity of animal models for NDO onset, most studies rely on traumatic SCI models rather than other NDO-driven pathologies, which may result in some issues when translating pre-clinical observations to clinical settings other than SCI.
Collapse
Affiliation(s)
- Ana Ferreira
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, 4200-319 Porto, Portugal
| | - Diogo Nascimento
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
| | - Célia Duarte Cruz
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, 4200-319 Porto, Portugal
- Correspondence: ; Tel.: +351-220426740; Fax: +351-225513655
| |
Collapse
|
12
|
Spinal Cord Injury Causes Marked Tissue Rearrangement in the Urethra-Experimental Study in the Rat. Int J Mol Sci 2022; 23:ijms232415951. [PMID: 36555592 PMCID: PMC9783636 DOI: 10.3390/ijms232415951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Traumatic spinal cord injury (SCI) results in the time-dependent development of urinary impairment due to neurogenic detrusor overactivity (NDO) and detrusor-sphincter-dyssynergia (DSD). This is known to be accompanied by massive changes in the bladder wall. It is presently less clear if the urethra wall also undergoes remodelling. To investigate this issue, female rats were submitted to complete spinal transection at the T8/T9 level and left to recover for 1 week and 4 weeks. To confirm the presence of SCI-induced NDO, bladder function was assessed by cystometry under urethane anesthesia before euthanasia. Spinal intact animals were used as controls. Urethras were collected and processed for further analysis. Following thoracic SCI, time-dependent changes in the urethra wall were observed. Histological assessment revealed marked urethral epithelium reorganization in response to SCI, as evidenced by an increase in epithelial thickness. At the muscular layer, SCI resulted in strong atrophy of the smooth muscle present in the urethral sphincter. Innervation was also affected, as evidenced by a pronounced decrease in the expression of markers of general innervation, particularly those present in sensory and sympathetic nerve fibres. The present data show an evident impact of SCI on the urethra, with significant histological rearrangement, accompanied by sensory and sympathetic denervation. It is likely that these changes will affect urethral function and contribute to SCI-induced urinary dysfunction, and they deserve further investigation.
Collapse
|
13
|
Zheng J, Jiao Z, Dai J, Liu T, Shi H. Abnormal cerebral micro-structures in end-stage renal disease patients related to mild cognitive impairment. Eur J Radiol 2022; 157:110597. [DOI: 10.1016/j.ejrad.2022.110597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/20/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
|
14
|
Development of Neurogenic Detrusor Overactivity after Thoracic Spinal Cord Injury Is Accompanied by Time-Dependent Changes in Lumbosacral Expression of Axonal Growth Regulators. Int J Mol Sci 2022; 23:ijms23158667. [PMID: 35955811 PMCID: PMC9368817 DOI: 10.3390/ijms23158667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022] Open
Abstract
Thoracic spinal cord injury (SCI) results in urinary dysfunction, which majorly affects the quality of life of SCI patients. Abnormal sprouting of lumbosacral bladder afferents plays a crucial role in this condition. Underlying mechanisms may include changes in expression of regulators of axonal growth, including chondroitin sulphate proteoglycans (CSPGs), myelin-associated inhibitors (MAIs) and repulsive guidance molecules, known to be upregulated at the injury site post SCI. Here, we confirmed lumbosacral upregulation of the growth-associated protein GAP43 in SCI animals with bladder dysfunction, indicating the occurrence of axonal sprouting. Neurocan and Phosphacan (CSPGs), as well as Nogo-A (MAI), at the same spinal segments were upregulated 7 days post injury (dpi) but returned to baseline values 28 dpi. In turn, qPCR analysis of the mRNA levels for receptors of those repulsive molecules in dorsal root ganglia (DRG) neurons showed a time-dependent decrease in receptor expression. In vitro assays with DRG neurons from SCI rats demonstrated that exposure to high levels of NGF downregulated the expression of some, but not all, receptors for those regulators of axonal growth. The present results, therefore, show significant molecular changes at the lumbosacral cord and DRGs after thoracic lesion, likely critically involved in neuroplastic events leading to urinary impairment.
Collapse
|
15
|
Ikeda Y, Zabbarova I, Tyagi P, Hitchens TK, Wolf-Johnston A, Wipf P, Kanai A. Targeting neurotrophin and nitric oxide signaling to treat spinal cord injury and associated neurogenic bladder overactivity. CONTINENCE (AMSTERDAM, NETHERLANDS) 2022; 1:100014. [PMID: 37207253 PMCID: PMC10194419 DOI: 10.1016/j.cont.2022.100014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Purpose or the research Nearly 300,000 people are affected by spinal cord injury (SCI) with approximately 18,000 new cases annually, according to the National SCI Statistics Center. SCI affects physical mobility and impairs the function of multiple internal organs to cause lower urinary tract (LUT) dysfunctions manifesting as detrusor sphincter dyssynergia (DSD) and neurogenic detrusor overactivity (NDO) with detrimental consequences to the quality of life and increased morbidity. Multiple lines of evidence now support time dependent evolution of the complex SCI pathology which requires a multipronged treatment approach of immediate, specialized care after spinal cord trauma bookended by physical rehabilitation to improve the clinical outcomes. Instead of one size fits all treatment approach, we propose adaptive drug treatment to counter the time dependent evolution of SCI pathology, with three small molecule drugs with distinctive sites of action for the recovery of multiple functions. Principal results Our findings demonstrate the improvement in the recovery of hindlimb mobility and bladder function of spinal cord contused mice following administration of small molecules targeting neurotrophin receptors, LM11A-31 and LM22B-10. While LM11A-31 reduced the cell death in the spinal cord, LM22B-10 promoted cell survival and axonal growth. Moreover, the soluble guanylate cyclase (sGC) activator, cinaciguat, enhanced the revascularization of the SCI injury site to promote vessel formation, dilation, and increased perfusion. Major conclusions Our adaptive three drug cocktail targets different stages of SCI and LUTD pathology: neuroprotective effect of LM11A-31 retards the cell death that occurs in the early stages of SCI; and LM22B-10 and cinaciguat promote neural remodeling and reperfusion at later stages to repair spinal cord scarring, DSD and NDO. LM11A-31 and cinaciguat have passed phase I and IIa clinical trials and possess significant potential for accelerated clinical testing in SCI/LUTD patients.
Collapse
Affiliation(s)
- Youko Ikeda
- University of Pittsburgh, School of Medicine, Department of Medicine, Renal-Electrolyte Division, USA
- University of Pittsburgh, School of Medicine, Department of Pharmacology & Chemical Biology, USA
| | - Irina Zabbarova
- University of Pittsburgh, School of Medicine, Department of Medicine, Renal-Electrolyte Division, USA
| | - Pradeep Tyagi
- University of Pittsburgh, School of Medicine, Department of Urology, USA
| | - T. Kevin Hitchens
- University of Pittsburgh, School of Medicine, Animal Imaging Center, USA
| | - Amanda Wolf-Johnston
- University of Pittsburgh, School of Medicine, Department of Medicine, Renal-Electrolyte Division, USA
| | - Peter Wipf
- University of Pittsburgh, Dietrich School of Arts and Sciences, Department of Chemistry, USA
| | - Anthony Kanai
- University of Pittsburgh, School of Medicine, Department of Medicine, Renal-Electrolyte Division, USA
- University of Pittsburgh, School of Medicine, Department of Pharmacology & Chemical Biology, USA
- Correspondence to: University of Pittsburgh, School of Medicine, Department of Medicine, A1224 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA, 15261, USA. (A. Kanai)
| |
Collapse
|
16
|
Wada N, Karnup S, Kadekawa K, Shimizu N, Kwon J, Shimizu T, Gotoh D, Kakizaki H, de Groat W, Yoshimura N. Current knowledge and novel frontiers in lower urinary tract dysfunction after spinal cord injury: Basic research perspectives. UROLOGICAL SCIENCE 2022; 33:101-113. [PMID: 36177249 PMCID: PMC9518811 DOI: 10.4103/uros.uros_31_22] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
This review article aims to summarize the recent advancement in basic research on lower urinary tract dysfunction (LUTD) following spinal cord injury (SCI) above the sacral level. We particularly focused on the neurophysiologic mechanisms controlling the lower urinary tract (LUT) function and the SCI-induced changes in micturition control in animal models of SCI. The LUT has two main functions, the storage and voiding of urine, that are regulated by a complex neural control system. This neural system coordinates the activity of two functional units in the LUT: the urinary bladder and an outlet including bladder neck, urethra, and striated muscles of the pelvic floor. During the storage phase, the outlet is closed and the bladder is quiescent to maintain a low intravesical pressure and continence, and during the voiding phase, the outlet relaxes and the bladder contracts to promote efficient release of urine. SCI impairs voluntary control of voiding as well as the normal reflex pathways that coordinate bladder and sphincter function. Following SCI, the bladder is initially areflexic but then becomes hyperreflexic due to the emergence of a spinal micturition reflex pathway. However, the bladder does not empty efficiently because coordination between the bladder and urethral sphincter is lost. In animal models of SCI, hyperexcitability of silent C-fiber bladder afferents is a major pathophysiological basis of neurogenic LUTD, especially detrusor overactivity. Reflex plasticity is associated with changes in the properties of neuropeptides, neurotrophic factors, or chemical receptors of afferent neurons. Not only C-fiber but also Aδ-fiber could be involved in the emergence of neurogenic LUTD such as detrusor sphincter dyssynergia following SCI. Animal research using disease models helps us to detect the different contributing factors for LUTD due to SCI and to find potential targets for new treatments.
Collapse
|
17
|
LIU XM, XU M, ZHANG H, AI K, DENG SF, YU YH. Effects of electroacupuncture on urodynamics, intramedullary apoptosis and bidirectional regulation of neurotrophic factors in neurogenic bladder rats after supersacral spinal cord injury. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2021. [DOI: 10.1016/j.wjam.2021.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Ferreira A, Duarte Cruz C. The urethra in continence and sensation: Neural aspects of urethral function. Neurourol Urodyn 2021; 40:744-752. [PMID: 33604909 DOI: 10.1002/nau.24632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/11/2021] [Accepted: 01/30/2021] [Indexed: 11/08/2022]
Abstract
AIMS Traditionally, the urethra has been considered a mere conduit to guide urine from the bladder to the external side of the body. Building evidence indicates that the urethra may directly influence bladder function via mechanisms restricted to the lower urinary tract (LUT). METHODS Here, we discuss the tissue arrangement of the urethra and addressed the contribution of new paraneuronal cells to LUT function. We also briefly reviewed two frequent LUT pathologies associated with urethral dysfunction. RESULTS Continence depends on an intact and functional urethral sphincter, composed of smooth, and striated muscle fibers and regulated by somatic and autonomic fibers. Recent studies suggest the existence of an urethro-vesical reflex that also contributes to normal LUT function. Indeed, the urethral lumen is lined by a specialized epithelium, the urothelium, in the proximal urethra. In this region, recent evidence demonstrates the presence of specific paraneuronal cells, expressing the neurotransmitters acetylcholine and serotonin. These cells are in close proximity of nerve fibers coursing in the lamina propria and are able to release neurotransmitters and rapidly induce detrusor contractions, supporting the existence of an urethro-vesical crosstalk. CONCLUSION The mechanism underlying the fast communication between the urethra and thebladder are beginning to be understood and should involve the interaction between specificepithelial cells and fibres innervating the urethral wall. It is likely that this reflex should bealtered in pathological conditions, becoming an attractive therapeutic target.
Collapse
Affiliation(s)
- Ana Ferreira
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Porto, Portugal.,Translational Neuro-Urology, Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Porto, Portugal
| | - Célia Duarte Cruz
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Porto, Portugal.,Translational Neuro-Urology, Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Porto, Portugal
| |
Collapse
|
19
|
Sachdeva R, Jia M, Wang S, Yung A, Zheng MMZ, Lee AHX, Monga A, Leong S, Kozlowski P, Fan F, Roman RJ, Phillips AA, Krassioukov AV. Vascular-Cognitive Impairment following High-Thoracic Spinal Cord Injury Is Associated with Structural and Functional Maladaptations in Cerebrovasculature. J Neurotrauma 2020; 37:1963-1970. [PMID: 32394805 DOI: 10.1089/neu.2019.6913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Individuals living with chronic spinal cord injury (SCI) often exhibit impairments in cognitive function, which impede their rehabilitation and transition into the community. Although a number of clinical studies have demonstrated the impact of impaired cardiovascular control on cognitive impairment, the mechanistic understanding of this deleterious relationship is still lacking. The present study investigates whether chronic disruption of cardiovascular control following experimental SCI results in cerebrovascular decline and vascular cognitive impairment. Fourteen weeks following a high thoracic SCI (at the third thoracic segment), rats were subjected to a battery of in vivo and in vitro physiological assessments, cognitive-behavioral tests, and immunohistochemical approaches to investigate changes in cerebrovascular structure and function in the middle cerebral artery (MCA). We show that in the MCA of rats with SCI, there is a 55% (SCI vs. control: 13.4 ± 1.9% vs. 29.63 ± 2.8%, respectively) reduction in the maximal vasodilator response to carbachol, which is associated with reduced expression of endothelial marker cluster of differentiation 31 (CD31) and transient receptor potential cation channel 4 (TRPV 4) channels. Compared with controls, MCAs in rats with SCI were found to have 50% (SCI vs. control: 1.5 ± 0.2 vs. 1 ± 0.1 a.u., respectively) more collagen 1 in the media of vascular wall and 37% (SCI vs. control: 30.5 ± 2.9% vs. 42.0 ± 4.0%, respectively) less distensibility at physiological intraluminal pressure. Further, the cerebral blood flow (CBF) in the hippocampus was reduced by 32% in the SCI group (SCI vs. control: 44.3 ± 4.5 mL/100 g/min vs. 65.0 ± 7.2 mL/100 g/min, respectively) in association with impairment of short-term memory based on a novel object recognition test. There were no changes in the sympathetic innervation of the vasculature and passive structure in the SCI group. Chronic experimental SCI is associated with structural alterations and endothelial dysfunction in cerebral arteries that likely contribute to significantly reduced CBF and vascular cognitive impairment.
Collapse
Affiliation(s)
- Rahul Sachdeva
- International Collaboration on Repair Discoveries, Vancouver, British Columbia, Canada.,University of British Columbia, Vancouver, British Columbia, Canada
| | - Mengyao Jia
- International Collaboration on Repair Discoveries, Vancouver, British Columbia, Canada.,University of British Columbia, Vancouver, British Columbia, Canada
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, The University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Andrew Yung
- International Collaboration on Repair Discoveries, Vancouver, British Columbia, Canada.,University of British Columbia, Vancouver, British Columbia, Canada
| | - Mei Mu Zi Zheng
- International Collaboration on Repair Discoveries, Vancouver, British Columbia, Canada.,University of British Columbia, Vancouver, British Columbia, Canada
| | - Amanda H X Lee
- International Collaboration on Repair Discoveries, Vancouver, British Columbia, Canada.,University of British Columbia, Vancouver, British Columbia, Canada
| | - Aaron Monga
- International Collaboration on Repair Discoveries, Vancouver, British Columbia, Canada.,University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah Leong
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Piotr Kozlowski
- International Collaboration on Repair Discoveries, Vancouver, British Columbia, Canada.,University of British Columbia, Vancouver, British Columbia, Canada
| | - Fan Fan
- Department of Pharmacology and Toxicology, The University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Richard J Roman
- Department of Pharmacology and Toxicology, The University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Aaron A Phillips
- Departments of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries, Vancouver, British Columbia, Canada.,University of British Columbia, Vancouver, British Columbia, Canada.,G.F. Strong Rehabilitation Center, Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
Liang CC, Shaw SWS, Ko YS, Huang YH, Lee TH. Effect of amniotic fluid stem cell transplantation on the recovery of bladder dysfunction in spinal cord-injured rats. Sci Rep 2020; 10:10030. [PMID: 32572272 PMCID: PMC7308393 DOI: 10.1038/s41598-020-67163-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/20/2020] [Indexed: 12/22/2022] Open
Abstract
The effects of human amniotic fluid stem cell (hAFSC) transplantation on bladder function and molecular changes in spinal cord-injured (SCI) rats were investigated. Four groups were studied: sham and SCI plus phosphate-buffered saline (SCI + PBS), human embryonic kidney 293 (HEK293) cells, and hAFSCs transplantation. In SCI + PBS rat bladders, cystometry showed increased peak voiding pressure, voiding volume, bladder capacity, residual volume, and number of non-voiding contractions, and the total elastin/collagen amount was increased but collagen concentration was decreased at days 7 and 28. Immunoreactivity and mRNA levels of IGF-1, TGF-β1, and β3-adrenoceptor were increased at days 7 and/or 28. M2 immunoreactivity and M3 mRNA levels of muscarinic receptor were increased at day 7. M2 immunoreactivity was increased, but M2/M3 mRNA and M3 immunoreactivity levels were decreased at day 28. Brain derived-neurotrophic factor mRNA was increased, but immunoreactivity was decreased at day 7. HEK293 cell transplantation caused no difference compared to SCI + PBS group. hAFSCs co-localized with neural cell markers and expressed BDNF, TGF-β1, GFAP, and IL-6. The present results showed that SCI bladders released IGF-1 and TGF-β1 to stimulate elastin and collagen for bladder wall remodelling, and hAFSC transplantation improved these changes, which involved the mechanisms of BDNF, muscarinic receptors, and β3-adrenoceptor expression.
Collapse
Affiliation(s)
- Ching-Chung Liang
- Female Urology Section, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Sheng-Wen Steven Shaw
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Obstetrics, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan, Taiwan.,Prenatal Cell and Gene Therapy Group, Institute for Women's Health, University College London, London, UK
| | - Yu-Shien Ko
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,The First Cardiovascular Division, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Yung-Hsin Huang
- Female Urology Section, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan, Taiwan
| | - Tsong-Hai Lee
- College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Stroke Center and Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.
| |
Collapse
|
21
|
Wada N, Yoshimura N, Kurobe M, Saito T, Tyagi P, Kakizaki H. The early, long‐term inhibition of brain‐derived neurotrophic factor improves voiding, and storage dysfunctions in mice with spinal cord injury. Neurourol Urodyn 2020; 39:1345-1354. [DOI: 10.1002/nau.24385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/23/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Naoki Wada
- Department of Renal and Urologic SurgeryAsahikawa Medical UniversityAsahikawa Japan
- Department of UrologyUniversity of Pittsburgh School of MedicinePittsburgh Pennsylvania
| | - Naoki Yoshimura
- Department of UrologyUniversity of Pittsburgh School of MedicinePittsburgh Pennsylvania
| | - Masahiro Kurobe
- Department of UrologyUniversity of Pittsburgh School of MedicinePittsburgh Pennsylvania
| | - Tetsuichi Saito
- Department of UrologyUniversity of Pittsburgh School of MedicinePittsburgh Pennsylvania
| | - Pradeep Tyagi
- Department of UrologyUniversity of Pittsburgh School of MedicinePittsburgh Pennsylvania
| | - Hidehiro Kakizaki
- Department of Renal and Urologic SurgeryAsahikawa Medical UniversityAsahikawa Japan
| |
Collapse
|
22
|
Ding H, Chen J, Su M, Lin Z, Zhan H, Yang F, Li W, Xie J, Huang Y, Liu X, Liu B, Zhou X. BDNF promotes activation of astrocytes and microglia contributing to neuroinflammation and mechanical allodynia in cyclophosphamide-induced cystitis. J Neuroinflammation 2020; 17:19. [PMID: 31931832 PMCID: PMC6958761 DOI: 10.1186/s12974-020-1704-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/07/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Patients with interstitial cystitis/bladder pain syndrome (IC/BPS) often grieve over a low quality of life brought about by chronic pain. In our previous studies, we determined that neuroinflammation of the spinal dorsal horn (SDH) was associated with mechanisms of interstitial cystitis. Moreover, it has been shown that brain-derived neurotrophic factor (BDNF) participates in the regulation of neuroinflammation and pathological pain through BDNF-TrkB signaling; however, whether it plays a role in cyclophosphamide (CYP)-induced cystitis remains unclear. This study aimed to confirm whether BDNF-TrkB signaling modulates neuroinflammation and mechanical allodynia in CYP-induced cystitis and determine how it occurs. METHODS Systemic intraperitoneal injection of CYP was performed to establish a rat cystitis model. BDNF-TrkB signaling was modulated by intraperitoneal injection of the TrkB receptor antagonist, ANA-12, or intrathecal injection of exogenous BDNF. Mechanical allodynia in the suprapubic region was assessed using the von Frey filaments test. The expression of BDNF, TrkB, p-TrkB, Iba1, GFAP, p-p38, p-JNK, IL-1β, and TNF-α in the L6-S1 SDH was measured by Western blotting and immunofluorescence analysis. RESULTS BDNF-TrkB signaling was upregulated significantly in the SDH after CYP was injected. Similarly, the expressions of Iba1, GFAP, p-p38, p-JNK, IL-1β, and TNF-α in the SDH were all upregulated. Treatment with ANA-12 could attenuate mechanical allodynia, restrain activation of astrocytes and microglia and alleviate neuroinflammation. Besides, the intrathecal injection of exogenous BDNF further decreased the mechanical withdrawal threshold, promoted activation of astrocytes and microglia, and increased the release of TNF-α and IL-1β in the SDH of our CYP-induced cystitis model. CONCLUSIONS In our CYP-induced cystitis model, BDNF promoted the activation of astrocytes and microglia to release TNF-α and IL-1β, aggravating neuroinflammation and leading to mechanical allodynia through BDNF-TrkB-p38/JNK signaling.
Collapse
Affiliation(s)
- Honglu Ding
- Department of Urology, the Third Affiliated hospital of Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China
| | - Jialiang Chen
- Department of Urology, the Third Affiliated hospital of Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China
| | - Minzhi Su
- Department of Rehabilitation, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Rd, Guangzhou, 510700, China
| | - Zhijun Lin
- Department of Urology, the Third Affiliated hospital of Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China
| | - Hailun Zhan
- Department of Urology, the Third Affiliated hospital of Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China
| | - Fei Yang
- Department of Urology, the Third Affiliated hospital of Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China
| | - Wenbiao Li
- Department of Urology, the Third Affiliated hospital of Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China
| | - Juncong Xie
- Department of Urology, the Third Affiliated hospital of Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China
| | - Yong Huang
- Department of Urology, the Third Affiliated hospital of Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China
| | - Xianguo Liu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, 74 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Bolong Liu
- Department of Urology, the Third Affiliated hospital of Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China.
| | - Xiangfu Zhou
- Department of Urology, the Third Affiliated hospital of Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China.
| |
Collapse
|
23
|
Wada N, Shimizu T, Shimizu N, Kurobe M, de Groat WC, Tyagi P, Kakizaki H, Yoshimura N. Therapeutic effects of inhibition of brain-derived neurotrophic factor on voiding dysfunction in mice with spinal cord injury. Am J Physiol Renal Physiol 2019; 317:F1305-F1310. [PMID: 31566429 DOI: 10.1152/ajprenal.00239.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We investigated the involvement of brain-derived neurotrophic factor (BDNF) in bladder and urethral dysfunction using spinal cord-injured mice. We evaluated bladder and urethral function of female mice with 4-wk spinal cord injury (SCI) by filling cystometry and electromyography (EMG) of the external urethral sphincter (EUS) under a conscious condition. Anti-BDNF antibodies (10 μg·kg-1·h-1) were administered in some mice for 1 wk before the evaluation. Bladder and spinal (L6-S1) BDNF protein levels were examined by ELISA. Transcript levels of transient receptor potential channels or acid-sensing ion channels (Asic) in L6-S1 dorsal root ganglia were evaluated by RT-PCR. Voided volume and voiding efficiency were significantly increased without any changes in nonvoiding contractions, and the duration of reduced EMG activity during the voiding phase was significantly prolonged in anti-BDNF antibody-treated SCI mice. Compared with spinal cord-intact mice, SCI mice showed increased concentrations of bladder and spinal BDNF. Anti-BDNF antibody treatment decreased bladder and spinal BDNF protein concentrations of SCI mice. Asic2 and Asic3 transcripts were significantly increased after SCI but decreased after anti-BDNF antibody administration. These results indicate that upregulated expression of bladder and spinal BDNF is involved in the emergence of inefficient voiding in SCI mice. Thus, BDNF-targeting treatment could be an effective modality for the treatment of voiding problems, including inefficient voiding and detrusor sphincter dyssynergia after SCI.
Collapse
Affiliation(s)
- Naoki Wada
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Renal and Urologic Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Takahiro Shimizu
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nobutaka Shimizu
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Masahiro Kurobe
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - William C de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hidehiro Kakizaki
- Department of Renal and Urologic Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
24
|
Abolhasanpour N, Eidi A, Hajebrahimi S, Reyhani-Rad S, Hashim H. Effect of cerebrolysin on bladder function after spinal cord injury in female Wistar rats. Int J Urol 2019; 26:917-923. [PMID: 31317583 DOI: 10.1111/iju.14059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/12/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To study the effect of cerebrolysin on bladder function after spinal cord injury using functional measurements in rats. METHODS A total of 60 female rats were enrolled in this study. After induction of complete transection at T9-T10 spinal vertebrae, cerebrolysin was injected intraperitoneally, and daily in three dosages until 7 days (1 week) and continued until 28 days (4 weeks) in three groups to show the impact of that on the bladder function. Urodynamic parameters were measured in the different groups. RESULTS Cerebrolysin injection in a dose of 1 mL/kg for 1 week showed a slight improvement in urodynamic parameters. However, infusion of 2.5 and 5 mL/kg cerebrolysin for 1 week caused an elevation in contractions and a decrease in compliance. In long-term 2.5 mL/kg cerebrolysin injection, an improvement in compliance was observed, despite relative contractions. Furthermore, the bladder pressure pattern in the 2.5 mL/kg infused rats for 4 weeks was similar to the control group, but in the group receiving 5 mL/kg cerebrolysin for 4 weeks, reduced bladder contractions and function were observed. CONCLUSIONS Our findings suggest that cerebrolysin might be able to inhibit the emergence of neurogenic detrusor overactivity in spinal cord injured female rats.
Collapse
Affiliation(s)
- Nasrin Abolhasanpour
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sakineh Hajebrahimi
- Research Center for Evidence-Based Medicine, A Joanna Briggs Institute Affiliated Group, Urology Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siamak Reyhani-Rad
- Department of Medical Laboratory Sciences, Islamic Azad University, Marand, Iran
| | - Hashim Hashim
- Bristol Urological Institute, Southmead Hospital, Bristol, UK
| |
Collapse
|
25
|
Oliveira R, Coelho A, Franquinho F, Sousa MM, Cruz F, D Cruz C. Effects of early intravesical administration of resiniferatoxin to spinal cord-injured rats in neurogenic detrusor overactivity. Neurourol Urodyn 2019; 38:1540-1550. [PMID: 31180583 DOI: 10.1002/nau.24032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/29/2019] [Accepted: 03/29/2019] [Indexed: 11/09/2022]
Abstract
OBJECTIVES To investigate if intravesical administration during spinal shock of resiniferatoxin (RTX), an ultrapotent desensitizing agonist of transient receptor potential vanilloid-1 (TRPV1), would silence TRPV1-expressing bladder afferents at an early stage of disease progression and modulate neurogenic detrusor overactivity (NDO) emergence. MATERIALS AND METHODS Rats submitted to largely incomplete spinal cord transection at T8/9 spinal segment were treated with intravesical RTX (50 nM) or its vehicle during spinal shock. Four weeks after spinal lesion, bladder-reflex activity was evaluated by cystometry under urethane anesthesia, after which the bladder, spinal cord, and dorsal root ganglia were collected and processed. RESULTS We found improvements on bladder function several weeks after early intravesical RTX administration, including a marked decrease of intravesical pressures and amplitude of bladder contractions. Such strong long-lasting urodynamic effects resulted from the very potent desensitizing activity of RTX on peripheral terminals of sensory afferents, an effect restricted to the bladder. CONCLUSION Our results support that an early intervention with RTX could potentially attenuate NDO development and ensuing urinary incontinence, with a dramatic impact on the quality of life of spinal cord injury patients.
Collapse
Affiliation(s)
- Raquel Oliveira
- Department of Biomedicine, Experimental Biology Unit, Faculty of Medicine of Porto, University of Porto, Porto, Portugal.,Translational NeuroUrology, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Ana Coelho
- Department of Biomedicine, Experimental Biology Unit, Faculty of Medicine of Porto, University of Porto, Porto, Portugal.,Translational NeuroUrology, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Filipa Franquinho
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Mónica M Sousa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Francisco Cruz
- Translational NeuroUrology, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Department of Urology, Hospital de S. João, Porto, Portugal
| | - Célia D Cruz
- Department of Biomedicine, Experimental Biology Unit, Faculty of Medicine of Porto, University of Porto, Porto, Portugal.,Translational NeuroUrology, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| |
Collapse
|
26
|
Coelho A, Oliveira R, Antunes-Lopes T, Cruz CD. Partners in Crime: NGF and BDNF in Visceral Dysfunction. Curr Neuropharmacol 2019; 17:1021-1038. [PMID: 31204623 PMCID: PMC7052822 DOI: 10.2174/1570159x17666190617095844] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/23/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
Neurotrophins (NTs), particularly Nerve Growth Factor (NGF) and Brain-Derived Neurotrophic Factor (BDNF), have attracted increasing attention in the context of visceral function for some years. Here, we examined the current literature and presented a thorough review of the subject. After initial studies linking of NGF to cystitis, it is now well-established that this neurotrophin (NT) is a key modulator of bladder pathologies, including Bladder Pain Syndrome/Interstitial Cystitis (BPS/IC) and Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS. NGF is upregulated in bladder tissue and its blockade results in major improvements on urodynamic parameters and pain. Further studies expanded showed that NGF is also an intervenient in other visceral dysfunctions such as endometriosis and Irritable Bowel Syndrome (IBS). More recently, BDNF was also shown to play an important role in the same visceral dysfunctions, suggesting that both NTs are determinant factors in visceral pathophysiological mechanisms. Manipulation of NGF and BDNF improves visceral function and reduce pain, suggesting that clinical modulation of these NTs may be important; however, much is still to be investigated before this step is taken. Another active area of research is centered on urinary NGF and BDNF. Several studies show that both NTs can be found in the urine of patients with visceral dysfunction in much higher concentration than in healthy individuals, suggesting that they could be used as potential biomarkers. However, there are still technical difficulties to be overcome, including the lack of a large multicentre placebo-controlled studies to prove the relevance of urinary NTs as clinical biomarkers.
Collapse
Affiliation(s)
| | | | | | - Célia Duarte Cruz
- Address correspondence to this author at the Department of Experimental Biology, Experimental Biology Unit, Faculty of Medicine of the University of Porto, Alameda Hernâni Monteiro; Tel: 351 220426740; Fax: +351 225513655; E-mail:
| |
Collapse
|
27
|
Sidler M, Aitken KJ, Jiang JX, Sotiropoulos C, Aggarwal P, Anees A, Chong C, Siebenaller A, Thanabalasingam T, White JM, Choufani S, Weksberg R, Sangiorgi B, Wrana J, Delgado-Olguin P, Bägli DJ. DNA Methylation Reduces the Yes-Associated Protein 1/WW Domain Containing Transcription Regulator 1 Pathway and Prevents Pathologic Remodeling during Bladder Obstruction by Limiting Expression of BDNF. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2177-2194. [DOI: 10.1016/j.ajpath.2018.06.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 05/25/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
|
28
|
Shimizu T, Majima T, Suzuki T, Shimizu N, Wada N, Kadekawa K, Takai S, Takaoka E, Kwon J, Kanai AJ, de Groat WC, Tyagi P, Saito M, Yoshimura N. Nerve growth factor-dependent hyperexcitability of capsaicin-sensitive bladder afferent neurones in mice with spinal cord injury. Exp Physiol 2018; 103:896-904. [PMID: 29603450 DOI: 10.1113/ep086951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/20/2018] [Indexed: 01/03/2023]
Abstract
NEW FINDINGS What is the central question of this study? Nerve growth factor (NGF) is reportedly a mediator inducing urinary bladder dysfunction. Is NGF directly involved in hyperexcitability of capsaicin-sensitive C-fibre bladder afferent pathways after spinal cord injury (SCI)? What is the main finding and its importance? Neutralization of NGF by anti-NGF antibody treatment reversed the SCI-induced increase in the number of action potentials and the reduction in spike thresholds and A-type K+ current density in mouse capsaicin-sensitive bladder afferent neurones. Thus, NGF plays an important and direct role in hyperexcitability of capsaicin-sensitive C-fibre bladder afferent neurones attributable to the reduction in A-type K+ channel activity in SCI. ABSTRACT Nerve growth factor (NGF) has been implicated as an important mediator in the induction of C-fibre bladder afferent hyperexcitability, which contributes to the emergence of neurogenic lower urinary tract dysfunction after spinal cord injury (SCI). In this study, we determined whether NGF immunoneutralization using an anti-NGF antibody (NGF-Ab) normalizes the SCI-induced changes in electrophysiological properties of capsaicin-sensitive C-fibre bladder afferent neurones in female C57BL/6 mice. The spinal cord was transected at the Th8/Th9 level. Two weeks later, continuous administration of NGF-Ab (10 μg kg-1 h-1 , s.c. for 2 weeks) was started. Bladder afferent neurones were labelled with Fast-Blue (FB), a fluorescent retrograde tracer, injected into the bladder wall 3 weeks after SCI. Four weeks after SCI, freshly dissociated L6-S1 dorsal root ganglion neurones were prepared. Whole-cell patch-clamp recordings were then performed in FB-labelled neurones. After recording action potentials or voltage-gated K+ currents, the sensitivity of each neurone to capsaicin was evaluated. In capsaicin-sensitive FB-labelled neurones, SCI significantly reduced the spike threshold and increased the number of action potentials during membrane depolarization for 800 ms. These SCI-induced changes were reversed by NGF-Ab. Densities of slow-decaying A-type K+ (KA ) and sustained delayed rectifier-type K+ currents were significantly reduced by SCI. The NGF-Ab treatment reversed the SCI-induced reduction in the KA current density. These results indicate that NGF plays an important role in hyperexcitability of mouse capsaicin-sensitive C-fibre bladder afferent neurones attributable to a reduction in KA channel activity. Thus, NGF-targeting therapies could be effective for treatment of afferent hyperexcitability and neurogenic lower urinary tract dysfunction after SCI.
Collapse
Affiliation(s)
- Takahiro Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan.,Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Tsuyoshi Majima
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Takahisa Suzuki
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Nobutaka Shimizu
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Naoki Wada
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Katsumi Kadekawa
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Shun Takai
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Eiichiro Takaoka
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Joonbeom Kwon
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Anthony J Kanai
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - William C de Groat
- Department of Pharmacology & Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Motoaki Saito
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.,Department of Pharmacology & Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| |
Collapse
|
29
|
Drug Targets in Neurotrophin Signaling in the Central and Peripheral Nervous System. Mol Neurobiol 2018; 55:6939-6955. [PMID: 29372544 DOI: 10.1007/s12035-018-0885-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/08/2018] [Indexed: 12/12/2022]
Abstract
Neurotrophins are a family of proteins that play an important role in the regulation of the growth, survival, and differentiation of neurons in the central and peripheral nervous system. Neurotrophins were earlier characterized by their role in early development, growth, maintenance, and the plasticity of the nervous system during development, but recent findings also indicate their complex role during normal physiology in both neuronal and non-neuronal tissues. Therefore, it is important to recognize a deficiency in the expression of neurotrophins, a major factor driving the debilitating features of several neurologic and psychiatric diseases/disorders. On the other hand, overexpression of neurotrophins is well known to play a critical role in pathogenesis of chronic pain and afferent sensitization, underlying conditions such as lower urinary tract symptoms (LUTS)/disorders and osteoarthritis. The existence of a redundant receptor system of high-and low-affinity receptors accounts for the diverse, often antagonistic, effects of neurotrophins in neurons and non-neuronal tissues in a spatial and temporal manner. In addition, studies looking at bladder dysfunction because of conditions such as spinal cord injury and diabetes mellitus have found alterations in the levels of these neurotrophins in the bladder, as well as in sensory afferent neurons, which further opens a new avenue for therapeutic targets. In this review, we will discuss the characteristics and roles of key neurotrophins and their involvement in the central and periphery nervous system in both normal and diseased conditions.
Collapse
|
30
|
Dong J, Ma X, Lin W, Liu M, Fu S, Yang L, Jiang G. Aberrant cortical thickness in neurologically asymptomatic patients with end-stage renal disease. Neuropsychiatr Dis Treat 2018; 14:1929-1939. [PMID: 30122925 PMCID: PMC6080870 DOI: 10.2147/ndt.s170106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The aim of this study is to investigate the morphology of cortical gray matter in patients with end-stage renal disease (ESRD) and the relationship between cortical thickness and kidney function. PATIENTS AND METHODS Three-dimensional high-resolution brain structural magnetic resonance imaging data were collected from 35 patients with ESRD (28 men, 18-61 years old) and 40 age- and gender-matched healthy controls (HCs, 32 men, 22-58 years old). Vertex-wise analysis was then performed to compare the brains of the patients with ESRD with those of HCs to identify abnormalities in the brains of the former. Multiple biochemical measures of renal metabolin, vascular risk factors, general cognitive ability, and dialysis duration were correlated with brain morphometry alterations for the patients. RESULTS Patients with ESRD showed lesser cortical thickness than the HCs. The most significant cluster with decreased cortical thickness was found in the right prefrontal cortex (P<0.05, random-field theory correction). In addition, the four local peak vertices in the prefrontal cluster were lateral prefrontal cortex (Peaks 1 and 2), medial prefrontal cortex (Peak 3), and ventral prefrontal cortex (Peak 4). Significant negative correlations were observed between the cortical thicknesses of all four peak vertices and blood urea nitrogen; a negative correlation, between the cortical thickness in three of four peaks and serum creatinine; and a positive correlation, between cortical thickness in the medial prefrontal cortex (Peak 3) and hemoglobin. CONCLUSION These results provided compelling evidence for cortical abnormality of ESRD patients and suggested that kidney function may be the key factor for predicting changes of brain tissue structure.
Collapse
Affiliation(s)
- Jianwei Dong
- School of Mathematics, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xiaofen Ma
- Department of Medical Imaging, Guangdong No. 2 Provincial People's Hospital, Guangzhou, People's Republic of China,
| | - Wuhong Lin
- School of Mathematics, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Mengchen Liu
- Department of Medical Imaging, Guangdong No. 2 Provincial People's Hospital, Guangzhou, People's Republic of China,
| | - Shishun Fu
- Department of Medical Imaging, Guangdong No. 2 Provincial People's Hospital, Guangzhou, People's Republic of China,
| | - Lihua Yang
- School of Mathematics, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Guihua Jiang
- Department of Medical Imaging, Guangdong No. 2 Provincial People's Hospital, Guangzhou, People's Republic of China,
| |
Collapse
|
31
|
AL-QUDAH M, SHAMMALA DA, AL-DWAIRI A, AL-SHBOUL O, MUSTAFA AG. Dextran Sodium Sulphate (DSS)-Induced Colitis Alters the Expression of Neurotrophins in Smooth Muscle Cells of Rat Colon. Physiol Res 2017; 66:1009-1020. [DOI: 10.33549/physiolres.933465] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neurotrophins are present in the gastrointestinal tract where they participate in the survival and growth of enteric neurons, augmentation of enteric circuits, elevation of colonic myoelectrical activity and also in different aspects of colitis. Previous studies largely focused on the role of neural and mucosal neurotrophins in gut inflammation. The expression of neurotrophins in colonic smooth muscle cells (SMCs) and the interactions of this potential source with colitis has not been studied in the gut. The expression of NGF, BDNF, NT-3 and NT-4 in SMCs from longitudinal and circular muscle layers of rat colon from normal and dextran sodium sulphate (DSS)-induced colitis rats was measured by ELISA. NGF, BDNF, NT-3 and NT-4 are differentially expressed in both longitudinal and circular SMCs, where the expressions of BDNF and NT-4 proteins were greater in SMCs from the longitudinal muscle layer than from the circular muscle layer, while NGF protein expression was greater in circular SMCs and NT-3 expression was equal in cells from both muscle layers. Induction of colitis with DSS significantly alters neurotrophins expression pattern in colonic SMCs. NGF levels upregulated in circular SMCs. BDNF level was increased in DSS-induced colitis in longitudinal SMCs. NGF, NT-3 and NT-4 levels were downregulated in longitudinal SMCs of DSS-induced colitis rats' colon. Disturbances of neurotrophins expression in SMCs resulted from colitis might account for the structural and functional changes in inflammatory bowel disease (IBD) such as loss of innervation and characteristic hypercontractility of longitudinal muscle in IBD.
Collapse
Affiliation(s)
- M. AL-QUDAH
- Department of Physiology, Jordan University of Science and Technology, Irbid, Jordan
| | | | | | | | | |
Collapse
|
32
|
Kashyap MP, Pore SK, de Groat WC, Chermansky CJ, Yoshimura N, Tyagi P. BDNF overexpression in the bladder induces neuronal changes to mediate bladder overactivity. Am J Physiol Renal Physiol 2017; 315:F45-F56. [PMID: 29092846 DOI: 10.1152/ajprenal.00386.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Elevated levels of brain-derived neurotrophic factor (BDNF) in urine of overactive bladder (OAB) patients support the association of BDNF with OAB symptoms, but the causality is not known. Here, we investigated the functionality of BDNF overexpression in rat bladder following bladder wall transfection of either BDNF or luciferase (luciferase) transgenes (10 µg). One week after transfection, BDNF overexpression in bladder tissue and elevation of urine BDNF levels were observed together with increased transcript of BDNF, its cognate receptors (TrkB and p75NTR), and downstream PLCγ isoforms in bladder. BDNF overexpression can induce the bladder overactivity (BO) phenotype which is demonstrated by the increased voiding pressure and reduced intercontractile interval during transurethral open cystometry under urethane anesthesia. A role for BDNF-mediated enhancement of prejunctional cholinergic transmission in BO is supported by the significant increase in the atropine- and neostigmine-sensitive component of nerve-evoked contractions and upregulation of choline acetyltransferase, vesicular acetylcholine transporter, and transporter Oct2 and -α1 receptors. In addition, higher expression of transient receptor channels (TRPV1 and TRPA1) and pannexin-1 channels in conjunction with elevation of ATP and neurotrophins in bladder and also in L6/S1 dorsal root ganglia together support a role for sensitized afferent nerve terminals in BO. Overall, genomic changes in efferent and afferent neurons of bladder induced by the overexpression of BDNF per se establish a mechanistic link between elevated BDNF levels in urine and dysfunctional voiding observed in animal models and in OAB patients.
Collapse
Affiliation(s)
- Mahendra P Kashyap
- Department of Urology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Subrata K Pore
- Department of Urology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - William C de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | | | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| |
Collapse
|
33
|
Miyazato M, Kadekawa K, Kitta T, Wada N, Shimizu N, de Groat WC, Birder LA, Kanai AJ, Saito S, Yoshimura N. New Frontiers of Basic Science Research in Neurogenic Lower Urinary Tract Dysfunction. Urol Clin North Am 2017; 44:491-505. [PMID: 28716328 PMCID: PMC5647782 DOI: 10.1016/j.ucl.2017.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Minoru Miyazato
- Department of Urology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan; Department of Urology, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Katsumi Kadekawa
- Department of Urology, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Takeya Kitta
- Department of Urology, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Naoki Wada
- Department of Urology, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Nobutaka Shimizu
- Department of Urology, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - William C de Groat
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15216, USA
| | - Lori A Birder
- Department of Medicine, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15216, USA
| | - Anthony J Kanai
- Department of Medicine, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15216, USA
| | - Seiichi Saito
- Department of Urology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Pittsburgh, PA 15213, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15216, USA.
| |
Collapse
|
34
|
Urinary Biomarkers for Bladder Outlet Obstruction. CURRENT BLADDER DYSFUNCTION REPORTS 2017. [DOI: 10.1007/s11884-017-0418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Abstract
PURPOSE OF REVIEW This review aims to analyze and discuss all recently published articles associated with neurogenic voiding discussion providing readers with the most updated knowledge and trigger for further research. RECENT FINDINGS They include the proposal of a novel classification system for the pathophysiology of neurogenic lower urinary tract dysfunction (NLUTD) which combines neurological defect in a distinct anatomic location, and data on bowel dysfunction, autonomic dysreflexia and urine biomarkers; review of patient-reported outcome measures in NLUTD; review of the criteria for the diagnosis of clinically significant urinary infections; novel research findings on the pathophysiology of NLUTD; and review of data on minimally and more invasive treatments. SUMMARY Despite the extended evidence base on NLUTD, there is a paucity of high-quality new research concerning voiding dysfunction as opposed to storage problems. The update aims to inform clinicians about new developments in clinical practice, as well as ignite discussion for further clinical and basic research in the aforementioned areas of NLUTD.
Collapse
|
36
|
Matos R, Cordeiro JM, Coelho A, Ferreira S, Silva C, Igawa Y, Cruz F, Charrua A. Bladder pain induced by prolonged peripheral alpha 1A adrenoceptor stimulation involves the enhancement of transient receptor potential vanilloid 1 activity and an increase of urothelial adenosine triphosphate release. Acta Physiol (Oxf) 2016; 218:265-275. [PMID: 27370818 DOI: 10.1111/apha.12744] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/22/2016] [Accepted: 06/28/2016] [Indexed: 12/24/2022]
Abstract
AIM Pathophysiological mechanisms of chronic visceral pain (CVP) are unknown. This study explores the association between the sympathetic system and bladder nociceptors activity by testing the effect of a prolonged adrenergic stimulation on transient receptor potential vanilloid 1 (TRPV1) activity and on urothelial adenosine triphosphate (ATP) release. METHODS Female Wistar rats received saline, phenylephrine (PHE), PHE + silodosin, PHE + naftopidil or PHE + prazosin. TRPV1 knockout and wild-type mice received saline or PHE. Visceral pain behaviour tests were performed before and after treatment. Cystometry was performed, during saline and capsaicin infusion. Fos immunoreactivity was assessed in L6 spinal cord segment. Human urothelial ATP release induced by mechanical and thermal stimulation was evaluated. RESULTS Subcutaneous, but not intrathecal, PHE administration induced pain, which was reversed by silodosin, a selective alpha 1A adrenoceptor antagonist, but not by naftopidil, a relatively selective antagonist for alpha 1D adrenoceptor. Silodosin also reversed PHE-induced bladder hyperactivity and L6 spinal cord Fos expression. Thus, in subsequent experiments, only silodosin was used. Wild-type, but not TRPV1 knockout, mice exhibited phenylephrine-induced pain. Capsaicin induced a greater increase in voiding contractions in PHE-treated rats than in control animals, and silodosin reversed this effect. When treated with PHE, ATP release from human urothelial cells was enhanced either by mechanical stimulation or by lowering the thermal threshold of urothelial TRPV1, which becomes abnormally responsive at body temperature. CONCLUSION This study suggests that the activation of peripheral alpha 1A adrenoceptors induces CVP, probably through its interaction with TRPV1 and ATP release.
Collapse
Affiliation(s)
- R. Matos
- i3S - Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular; University of Porto; Porto Portugal
- Department of Experimental Biology; Faculty of Medicine of University of Porto; Porto Portugal
| | - J. M. Cordeiro
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research; University of Porto; Porto Portugal
| | - A. Coelho
- i3S - Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular; University of Porto; Porto Portugal
- Department of Experimental Biology; Faculty of Medicine of University of Porto; Porto Portugal
- Department of Renal, Urologic and Infectious diseases; Faculty of Medicine of University of Porto; Porto Portugal
| | - S. Ferreira
- Department of Experimental Biology; Faculty of Medicine of University of Porto; Porto Portugal
| | - C. Silva
- i3S - Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular; University of Porto; Porto Portugal
- Department of Renal, Urologic and Infectious diseases; Faculty of Medicine of University of Porto; Porto Portugal
- Department of Urology; Hospital S. João; Porto Portugal
| | - Y. Igawa
- Department of Continence Medicine; The University of Tokyo Graduate School of Medicine; Tokyo Japan
| | - F. Cruz
- i3S - Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular; University of Porto; Porto Portugal
- Department of Renal, Urologic and Infectious diseases; Faculty of Medicine of University of Porto; Porto Portugal
- Department of Urology; Hospital S. João; Porto Portugal
| | - A. Charrua
- i3S - Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular; University of Porto; Porto Portugal
- Department of Experimental Biology; Faculty of Medicine of University of Porto; Porto Portugal
- Department of Renal, Urologic and Infectious diseases; Faculty of Medicine of University of Porto; Porto Portugal
| |
Collapse
|
37
|
Cohn JA, Kaufman MR, Dmochowski RR, Kowalik CG, Milam DF, Reynolds WS. Early Sacral Neuromodulation in Spinal Cord Injury—Can It Regenerate Nerves? CURRENT BLADDER DYSFUNCTION REPORTS 2016. [DOI: 10.1007/s11884-016-0382-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
38
|
Coelho A, Oliveira R, Cruz F, Cruz CD. Impairment of sensory afferents by intrathecal administration of botulinum toxin A improves neurogenic detrusor overactivity in chronic spinal cord injured rats. Exp Neurol 2016; 285:159-166. [PMID: 27235935 DOI: 10.1016/j.expneurol.2016.05.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/13/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
Abstract
Spinal cord injury (SCI) often leads to neurogenic detrusor overactivity (NDO) due to sprouting of sensory afferents on the lumbosacral spinal cord. NDO is characterized by high frequency of voiding contractions and increased intravesical pressure that may lead to urinary incontinence. The latter has been described as one of the consequences of SCI that mostly decreases quality of life. Bladder wall injections of botulinum toxin A (Onabot/A) are an effective option to manage NDO. The toxin strongly impairs parasympathetic and sensory fibres coursing the bladder wall. However the robust parasympathetic inhibition may inhibit voiding contractions and cause urinary retention in patients that retain voluntary voiding. Here, we hypothesised that by restricting the toxin activity to sensory fibres we can improve NDO without impairing voiding contractions. In the present work, we assessed the effect of Onabot/A on sensory neurons in chronic (4weeks) SCI rats by injecting the toxin intrathecally (IT), at lumbosacral spinal cord level. This route of administration was shown before to have an effect on bladder pain and contractility in an animal model of bladder inflammation. We found that IT Onabot/A led to a significant reduction in the frequency of expulsive contractions and a normalization of bladder basal pressure while maintaining voiding contractions of normal amplitude. Cleavage of SNAP-25 protein occurred mainly at the dorsal horn regions where most of the bladder afferents end. Cleaved SNAP-25 was not detected in motor or preganglionic parasympathetic neurons. A significant decrease in CGRP expression, a peptide exclusively present in sensory fibres in the spinal cord, occurred at the L5/L6 segments and associated dorsal root ganglia (DRG) after Onabot/A injection in SCI animals. Onabot/A strongly increased the expression of ATF3, a marker of neuronal stress, in L5/L6 DRG neurons. Taken together, our results suggest that IT Onabot/A has a predominant effect on bladder sensory fibres, and that such effect is enough to control NDO following chronic SCI. The mechanism of action of Onabot/A includes not only the cleavage of SNAP-25 in sensory terminals but also impairment of basic cellular machinery in the cell body of sensory neurons.
Collapse
Affiliation(s)
- Ana Coelho
- Department of Experimental Biology, Faculty of Medicine of Porto, University of Porto, Portugal; Translational NeuroUrology, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal; Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, Portugal.
| | - Raquel Oliveira
- Department of Experimental Biology, Faculty of Medicine of Porto, University of Porto, Portugal; Translational NeuroUrology, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal; Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, Portugal.
| | - Francisco Cruz
- Translational NeuroUrology, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal; Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, Portugal; Department of Urology, Hospital de S. João, Porto, Portugal.
| | - Célia Duarte Cruz
- Department of Experimental Biology, Faculty of Medicine of Porto, University of Porto, Portugal; Translational NeuroUrology, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal; Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, Portugal.
| |
Collapse
|
39
|
Powell CR. Not all neurogenic bladders are the same: a proposal for a new neurogenic bladder classification system. Transl Androl Urol 2016; 5:12-21. [PMID: 26904408 PMCID: PMC4739982 DOI: 10.3978/j.issn.2223-4683.2016.01.02] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Neurogenic bladder (NGB) has long been defined as a clinical entity that describes a heterogeneous collection of syndromes. The common theme is a bladder disorder concomitant with a neurologic disorder. This definition does not give the clinician much information about the bladder disorder, nor how to treat it, or even what the natural history of the disorder is likely to be. It may be time for a new classification scheme to better define the bladder defect and prognosis, as well as inform treatment. We propose a classification system based on seven categories, each having a neurologic defect in a distinct anatomic location. This is termed SALE (Stratify by Anatomic Location and Etiology). In addition, the presence or absence of bowel dysfunction and autonomic dysreflexia will be reported. In the future, as more definite prognostic information can be gleaned from biomarkers, we anticipate adding urinary nerve growth factor (NGF) and urinary brain-derived neurotrophic factor (BDNF) levels to the definition. We expect the SALE system to efficiently describe a patient suffering from NGB and simultaneously inform the most appropriate treatment, follow-up regimen, and long-term prognosis.
Collapse
Affiliation(s)
- Charles R Powell
- Department of Urology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
40
|
Phillips AA, Matin N, Frias B, Zheng MMZ, Jia M, West C, Dorrance AM, Laher I, Krassioukov AV. Rigid and remodelled: cerebrovascular structure and function after experimental high-thoracic spinal cord transection. J Physiol 2016; 594:1677-88. [PMID: 26634420 DOI: 10.1113/jp270925] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 11/18/2015] [Indexed: 12/25/2022] Open
Abstract
High-thoracic or cervical spinal cord injury (SCI) is associated with several critical clinical conditions related to impaired cerebrovascular health, including: 300-400% increased risk of stroke, cognitive decline and diminished cerebral blood flow regulation. The purpose of this study was to examine the influence of high-thoracic (T3 spinal segment) SCI on cerebrovascular structure and function, as well as molecular markers of profibrosis. Seven weeks after complete T3 spinal cord transection (T3-SCI, n = 15) or sham injury (Sham, n = 10), rats were sacrificed for either middle cerebral artery (MCA) structure and function assessments via ex vivo pressure myography, or immunohistochemical analyses. Myogenic tone was unchanged, but over a range of transmural pressures, inward remodelling occurred after T3-SCI with a 40% reduction in distensibility (both P < 0.05), and a 33% reduction in vasoconstrictive reactivity to 5-HT trending toward significance (P = 0.09). After T3-SCI, the MCA had more collagen I (42%), collagen III (24%), transforming growth factor β (47%) and angiotensin II receptor type 2 (132%), 27% less elastin as well as concurrent increased wall thickness and reduced lumen diameter (all P < 0.05). Sympathetic innervation (tyrosine hydroxylase-positive axon density) and endothelium-dependent dilatation (carbachol) of the MCA were not different between groups. This study demonstrates profibrosis and hypertrophic inward remodelling within the largest cerebral artery after high-thoracic SCI, leading to increased stiffness and possibly impaired reactivity. These deleterious adaptations would substantially undermine the capacity for regulation of cerebral blood flow and probably underlie several cerebrovascular clinical conditions in the SCI population.
Collapse
Affiliation(s)
- A A Phillips
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, Canada.,Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, Canada.,Centre for Heart, Lung, and Vascular Health, Faculty of Health and Social Development, University of British Columbia, Vancouver, Canada
| | - N Matin
- Pharmacology, Michigan State University, East Lansing, MI, USA
| | - B Frias
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - M M Z Zheng
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, Canada.,Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - M Jia
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - C West
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - A M Dorrance
- Pharmacology, Michigan State University, East Lansing, MI, USA
| | - I Laher
- Deptartment of Pharmacology and Therapeutic, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - A V Krassioukov
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, Canada.,GF Strong Rehabilitation Center, Vancouver Coastal Health, Vancouver, Canada.,Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
41
|
Khaing ZZ, Agrawal NK, Park JH, Xin S, Plumton GC, Lee KH, Huang YJ, Niemerski AL, Schmidt CE, Grau JW. Localized and sustained release of brain-derived neurotrophic factor from injectable hydrogel/microparticle composites fosters spinal learning after spinal cord injury. J Mater Chem B 2016; 4:7560-7571. [DOI: 10.1039/c6tb01602b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Injectable hydrogel allows for sustained delivery of growth factor resulting in spinal mediated learning after injury.
Collapse
Affiliation(s)
- Zin Z. Khaing
- Department of Biomedical Engineering
- University of Florida
- Gainesville
- USA
| | - Nikunj K. Agrawal
- Department of Biomedical Engineering
- University of Florida
- Gainesville
- USA
| | - James H. Park
- College of Medicine
- University of Florida
- Gainesville
- USA
| | - Shangjing Xin
- Department of Materials Science and Engineering
- University of Florida
- Gainesville
- USA
| | | | - Kuan H. Lee
- Department of Neurobiology
- University of Pittsburgh School of Medicine
- Pittsburgh
- USA
| | - Yung-Jen Huang
- Department of Psychology
- Texas A&M University
- College Station
- USA
| | | | | | - James W. Grau
- Department of Psychology
- Texas A&M University
- College Station
- USA
| |
Collapse
|
42
|
Tyagi P, Kadekawa K, Kashyap M, Pore S, Yoshimura N. Spontaneous Recovery of Reflex Voiding Following Spinal Cord Injury Mediated by Anti-inflammatory and Neuroprotective Factors. Urology 2015; 88:57-65. [PMID: 26522973 DOI: 10.1016/j.urology.2015.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To investigate the time-dependent changes in expression of cytokines that characterizes the spontaneous recovery of reflex voiding after spinal cord injury (SCI). SCI is known to reorganize the neural circuitry of micturition reflex after injury. METHODS Under isoflurane anesthesia, spinal cord of 18 adult female Sprague-Dawley rats was completely transected at the Th9-10 level. Awake cystometry was performed at each time point on controls and 6 SCI animals, and bladder was then harvested for analysis of 29 proteins Millipore kit or enzyme-linked immunosorbent assay. Prophylactic dose of ampicillin 100 mg/kg was administered periodically to all SCI animals. RESULTS Spontaneous recovery of voiding after SCI at 12 weeks was evident from increased intercontractile interval and voiding efficiency during cystometry. Expression of proinflammatory interleukins ([IL] IL-1α and IL-1β, IL-2, IL-5, IL-6, IL-18, tumor necrosis factor alpha [TNF-α]) and CXC chemokines (CXCL1, CXCL2, CXCL10), CX3CL1, and CCL2 showed significant elevation at 4 and at 8 weeks with slight decrease at 12 weeks. In contrast, expression of anti-inflammatory IL-10 and neuroprotective factors, CXCL-5, and leptin, was elevated at 8 and at 12 weeks (P < .05). In contrast, expression of CCL3, CCL5, and growth factors (vascular endothelial growth factor, nerve growth factor, epidermal growth factor, granulocyte colony-stimulating factor, and granulocyte macrophage colony-stimulating factor) did not show any significant temporal change after SCI. CONCLUSION Spontaneous recovery of reflex voiding at 12 weeks was marked by increased endogenous expression of anti-inflammatory cytokine IL-10 and neuroprotective factors, CXCL-5, and leptin, which suggests that pharmacological suppression of inflammation, can hasten the emergence of reflex voiding after SCI.
Collapse
Affiliation(s)
- Pradeep Tyagi
- Department of Urology, University of Pittsburgh, Pittsburgh, PA.
| | | | | | - Subrata Pore
- Department of Urology, University of Pittsburgh, Pittsburgh, PA
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
43
|
Kadow BT, Tyagi P, Chermansky CJ. Neurogenic Causes of Detrusor Underactivity. CURRENT BLADDER DYSFUNCTION REPORTS 2015; 10:325-331. [PMID: 26715948 DOI: 10.1007/s11884-015-0331-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Detrusor underactivity (DU) is a poorly understood dysfunction of the lower urinary tract which arises from multiple etiologies. Symptoms of DU are non-specific, and a pressure-flow urodynamic study is necessary to differentiate DU from other conditions such as overactive bladder (OAB) or bladder outlet obstruction (BOO). The prevalence of DU ranges from 10-48%, and DU is most prevalent in elderly males. The pathophysiology underlying DU can be from both neurogenic and non-neurogenic causes. In this article, we review the neurogenic causes of detrusor underactivity, including diabetic bladder dysfunction, spinal cord injury, multiple sclerosis, Parkinson's disease, cerebrovascular accident, traumatic brain injury, and Fowler's syndrome. As knowledge about the underlying causes of DU advances, there have been several potential therapeutic approaches proposed to help those who suffer from this condition.
Collapse
Affiliation(s)
- Brian T Kadow
- Department of Urology, University of Pittsburgh Medical Center, Pittsburgh, PA, U.S
| | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh Medical Center, Pittsburgh, PA, U.S
| | | |
Collapse
|
44
|
Association between Val66Met polymorphisms in brain-derived neurotrophic factor gene and asthma risk: a meta-analysis. Inflamm Res 2015; 64:875-83. [PMID: 26289094 DOI: 10.1007/s00011-015-0869-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/03/2015] [Accepted: 08/11/2015] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE The Val66Met polymorphisms in brain-derived neurotrophic factor (BDNF) gene have been reported to be associated with asthma risk, while the results are inconclusive. Considering a single study may lack the power to provide reliable conclusion, we performed a meta-analysis to investigate the association between the Val66Met polymorphisms and asthma susceptibility. METHODS A comprehensive literature search of PubMed, Embase, China National Knowledge Infrastructure (CNKI) and Wanfang databases was conducted before February 12, 2015. The pooled odds ratio (OR) with 95 % confidence intervals (CIs) were calculated. RESULTS Six eligible studies with a total of 3501 subjects were finally included in this meta-analysis. Overall, a significantly increased risk was detected in the Val66Met G allele (G vs. A: OR 1.33, 95 % CI 1.19-1.49, P = 5.61E-07; GG vs. GA + AA: OR 1.48, 95 % CI 1.20-1.83, P = 3.14E-04; GG vs. GA: OR 1.48, 95 % CI 1.17-1.89, P = 0.001; GG vs. AA: OR 1.62, 95 % CI 1.20-2.19, P = 0.002). Moreover, stratification by ethnicity indicated marked association between the Val66Met G allele and asthma risk in Caucasians (G vs. A: OR 1.29, 95 % CI 1.12-1.49, P = 0.001; GG + GA vs. AA: OR 1.59, 95 % CI 1.03-2.46, P = 0.039; GG vs. GA + AA: OR 1.32, 95 % CI 1.11-1.57, P = 0.001; GG vs. GA: OR 1.28, 95 % CI 1.07-1.53, P = 0.007; GG vs. AA: OR 1.72, 95 % CI 1.11-2.68, P = 0.015). CONCLUSION Our present meta-analysis suggests that the Val66Met polymorphisms in BDNF gene are potentially associated with asthma risk in Caucasians. Further well-designed case-control studies with larger sample size and more ethnic groups are needed to confirm these conclusions.
Collapse
|