1
|
McCarthy CI, Kavalali ET. Nano-organization of synaptic calcium signaling. Biochem Soc Trans 2024; 52:1459-1471. [PMID: 38752834 PMCID: PMC11346461 DOI: 10.1042/bst20231385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 06/27/2024]
Abstract
Recent studies suggest an exquisite structural nano-organization within single synapses, where sites of evoked fusion - marked by clustering of synaptic vesicles, active zone proteins and voltage-gated calcium channels - are directly juxtaposed to postsynaptic receptor clusters within nanocolumns. This direct nanometer scale alignment between presynaptic fusion apparatus and postsynaptic receptors is thought to ensure the fidelity of synaptic signaling and possibly allow multiple distinct signals to occur without interference from each other within a single active zone. The functional specificity of this organization is made possible by the inherent nano-organization of calcium signals, where all the different calcium sources such as voltage-gated calcium channels, intracellular stores and store-operated calcium entry have dedicated local targets within their nanodomain to ensure precision of action. Here, we discuss synaptic nano-organization from the perspective of calcium signals, where some of the principal findings from early work in the 1980s continue to inspire current studies that exploit new genetic tools and super-resolution imaging technologies.
Collapse
Affiliation(s)
- Clara I. McCarthy
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, U.S.A
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, U.S.A
| | - Ege T. Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, U.S.A
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, U.S.A
| |
Collapse
|
2
|
Wang CS, Monteggia LM, Kavalali ET. Spatially non-overlapping Ca 2+ signals drive distinct forms of neurotransmission. Cell Rep 2023; 42:113201. [PMID: 37777959 PMCID: PMC10842353 DOI: 10.1016/j.celrep.2023.113201] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/23/2023] [Accepted: 09/16/2023] [Indexed: 10/03/2023] Open
Abstract
Calcium (Ca2+) signaling is tightly regulated within a presynaptic bouton. Here, we visualize Ca2+ signals within hippocampal presynaptic boutons using GCaMP8s tagged to synaptobrevin, a synaptic vesicle protein. We identify evoked presynaptic Ca2+ transients (ePreCTs) that derive from synchronized voltage-gated Ca2+ channel openings, spontaneous presynaptic Ca2+ transients (sPreCTs) that originate from ryanodine sensitive Ca2+ stores, and a baseline Ca2+ signal that arises from stochastic voltage-gated Ca2+ channel openings. We find that baseline Ca2+, but not sPreCTs, contributes to spontaneous glutamate release. We employ photobleaching as a use-dependent tool to probe nano-organization of Ca2+ signals and observe that all three occur in non-overlapping domains within the synapse at near-resting conditions. However, increased depolarization induces intermixing of these Ca2+ domains via both local and non-local synaptic vesicle turnover. Our findings reveal nanosegregation of Ca2+ signals within a presynaptic terminal that derive from multiple sources and in turn drive specific modes of neurotransmission.
Collapse
Affiliation(s)
- Camille S Wang
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 3729-7933, USA
| | - Lisa M Monteggia
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 3729-7933, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Ege T Kavalali
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 3729-7933, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA.
| |
Collapse
|
3
|
Dai J, Liakath-Ali K, Golf SR, Südhof TC. Distinct neurexin-cerebellin complexes control AMPA- and NMDA-receptor responses in a circuit-dependent manner. eLife 2022; 11:e78649. [PMID: 36205393 PMCID: PMC9586558 DOI: 10.7554/elife.78649] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/06/2022] [Indexed: 01/11/2023] Open
Abstract
At CA1→subiculum synapses, alternatively spliced neurexin-1 (Nrxn1SS4+) and neurexin-3 (Nrxn3SS4+) enhance NMDA-receptors and suppress AMPA-receptors, respectively, without affecting synapse formation. Nrxn1SS4+ and Nrxn3SS4+ act by binding to secreted cerebellin-2 (Cbln2) that in turn activates postsynaptic GluD1 receptors. Whether neurexin-Cbln2-GluD1 signaling has additional functions besides regulating NMDA- and AMPA-receptors, and whether such signaling performs similar roles at other synapses, however, remains unknown. Here, we demonstrate using constitutive Cbln2 deletions in mice that at CA1→subiculum synapses, Cbln2 performs no additional developmental roles besides regulating AMPA- and NMDA-receptors. Moreover, low-level expression of functionally redundant Cbln1 did not compensate for a possible synapse-formation function of Cbln2 at CA1→subiculum synapses. In exploring the generality of these findings, we examined the prefrontal cortex where Cbln2 was recently implicated in spinogenesis, and the cerebellum where Cbln1 is known to regulate parallel-fiber synapses. In the prefrontal cortex, Nrxn1SS4+-Cbln2 signaling selectively controlled NMDA-receptors without affecting spine or synapse numbers, whereas Nrxn3SS4+-Cbln2 signaling had no apparent role. In the cerebellum, conversely, Nrxn3SS4+-Cbln1 signaling regulated AMPA-receptors, whereas now Nrxn1SS4+-Cbln1 signaling had no manifest effect. Thus, Nrxn1SS4+- and Nrxn3SS4+-Cbln1/2 signaling complexes differentially control NMDA- and AMPA-receptors in different synapses in diverse neural circuits without regulating synapse or spine formation.
Collapse
Affiliation(s)
- Jinye Dai
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| | - Kif Liakath-Ali
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| | - Samantha Rose Golf
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| | - Thomas C Südhof
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| |
Collapse
|
4
|
Patzke C, Dai J, Brockmann MM, Sun Z, Fenske P, Rosenmund C, Südhof TC. Cannabinoid receptor activation acutely increases synaptic vesicle numbers by activating synapsins in human synapses. Mol Psychiatry 2021; 26:6253-6268. [PMID: 33931733 DOI: 10.1038/s41380-021-01095-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 03/20/2021] [Accepted: 03/31/2021] [Indexed: 02/03/2023]
Abstract
Cannabis and cannabinoid drugs are central agents that are used widely recreationally and are employed broadly for treating psychiatric conditions. Cannabinoids primarily act by stimulating presynaptic CB1 receptors (CB1Rs), the most abundant G-protein-coupled receptors in brain. CB1R activation decreases neurotransmitter release by inhibiting presynaptic Ca2+ channels and induces long-term plasticity by decreasing cellular cAMP levels. Here we identified an unanticipated additional mechanism of acute cannabinoid signaling in presynaptic terminals that regulates the size of synaptic vesicle pools available for neurotransmitter release. Specifically, we show that activation of CB1Rs in human and mouse neurons rapidly recruits vesicles to nerve terminals by suppressing the cAMP-dependent phosphorylation of synapsins. We confirmed this unanticipated mechanism using conditional deletion of synapsin-1, the predominant synapsin isoform in human neurons, demonstrating that synapsin-1 significantly contributes to the CB1R-dependent regulation of neurotransmission. Interestingly, acute activation of the Gi-DREADD hM4D mimics the effect of CB1R activation in a synapsin-1-dependent manner, suggesting that the control of synaptic vesicle numbers by synapsin-1 phosphorylation is a general presynaptic mechanism of neuromodulation. Thus, we uncovered a CB1R-dependent presynaptic mechanism that rapidly regulates the organization and neurotransmitter release properties of synapses.
Collapse
Affiliation(s)
- Christopher Patzke
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA, 94305, USA. .,Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, 109A Galvin Life Science Center, Notre Dame, IN, 46556, USA.
| | - Jinye Dai
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA, 94305, USA.,Howard Hughes Medical Institute, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA, 94305, USA
| | - Marisa M Brockmann
- Institute of Neurophysiology, Charité Universitätsmedizin, 10117, Berlin, Germany
| | - Zijun Sun
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA, 94305, USA
| | - Pascal Fenske
- Institute of Neurophysiology, Charité Universitätsmedizin, 10117, Berlin, Germany
| | - Christian Rosenmund
- Institute of Neurophysiology, Charité Universitätsmedizin, 10117, Berlin, Germany
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA, 94305, USA.,Howard Hughes Medical Institute, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA, 94305, USA
| |
Collapse
|
5
|
Lee BJ, Yang CH, Lee SY, Lee SH, Kim Y, Ho WK. Voltage-gated calcium channels contribute to spontaneous glutamate release directly via nanodomain coupling or indirectly via calmodulin. Prog Neurobiol 2021; 208:102182. [PMID: 34695543 DOI: 10.1016/j.pneurobio.2021.102182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 11/19/2022]
Abstract
Neurotransmitter release occurs either synchronously with action potentials (evoked release) or spontaneously (spontaneous release). Whether the molecular mechanisms underlying evoked and spontaneous release are identical, especially whether voltage-gated calcium channels (VGCCs) can trigger spontaneous events, is still a matter of debate in glutamatergic synapses. To elucidate this issue, we characterized the VGCC dependence of miniature excitatory postsynaptic currents (mEPSCs) in various synapses with different coupling distances between VGCCs and synaptic vesicles, known as a critical factor in evoked release. We found that most of the extracellular calcium-dependent mEPSCs were attributable to VGCCs in cultured autaptic hippocampal neurons and the mature calyx of Held where VGCCs and vesicles were tightly coupled. Among loosely coupled synapses, mEPSCs were not VGCC-dependent at immature calyx of Held and CA1 pyramidal neuron synapses, whereas VGCCs contribution was significant at CA3 pyramidal neuron synapses. Interestingly, the contribution of VGCCs to spontaneous glutamate release in CA3 pyramidal neurons was abolished by a calmodulin antagonist, calmidazolium. These data suggest that coupling distance between VGCCs and vesicles determines VGCC dependence of spontaneous release at tightly coupled synapses, yet VGCC contribution can be achieved indirectly at loosely coupled synapses.
Collapse
Affiliation(s)
- Byoung Ju Lee
- Department of Biomedical Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea; Department of Physiology, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Che Ho Yang
- Department of Biomedical Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea; Department of Physiology, Seoul National University College of Natural Science, Seoul, Republic of Korea; Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Seung Yeon Lee
- Department of Biomedical Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea; Department of Physiology, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Suk-Ho Lee
- Department of Biomedical Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea; Department of Physiology, Seoul National University College of Natural Science, Seoul, Republic of Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Republic of Korea; Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Yujin Kim
- Department of Physiology, Seoul National University College of Natural Science, Seoul, Republic of Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Republic of Korea; Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Republic of Korea.
| | - Won-Kyung Ho
- Department of Biomedical Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea; Department of Physiology, Seoul National University College of Natural Science, Seoul, Republic of Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Republic of Korea; Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Dai J, Patzke C, Liakath-Ali K, Seigneur E, Südhof TC. GluD1 is a signal transduction device disguised as an ionotropic receptor. Nature 2021; 595:261-265. [PMID: 34135511 DOI: 10.1038/s41586-021-03661-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 05/20/2021] [Indexed: 01/12/2023]
Abstract
Ionotropic glutamate delta receptors 1 (GluD1) and 2 (GluD2) exhibit the molecular architecture of postsynaptic ionotropic glutamate receptors, but assemble into trans-synaptic adhesion complexes by binding to secreted cerebellins that in turn interact with presynaptic neurexins1-4. It is unclear whether neurexin-cerebellin-GluD1/2 assemblies serve an adhesive synapse-formation function or mediate trans-synaptic signalling. Here we show in hippocampal synapses, that binding of presynaptic neurexin-cerebellin complexes to postsynaptic GluD1 controls glutamate receptor activity without affecting synapse numbers. Specifically, neurexin-1-cerebellin-2 and neurexin-3-cerebellin-2 complexes differentially regulate NMDA (N-methyl-D-aspartate) receptors and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors by activating distinct postsynaptic GluD1 effector signals. Of note, minimal GluD1 and GluD2 constructs containing only their N-terminal cerebellin-binding and C-terminal cytoplasmic domains, joined by an unrelated transmembrane region, fully control the levels of NMDA and AMPA receptors. The distinct signalling specificity of presynaptic neurexin-1 and neurexin-35,6 is encoded by their alternatively spliced splice site 4 sequences, whereas the regulatory functions of postsynaptic GluD1 are mediated by conserved cytoplasmic sequence motifs spanning 5-13 residues. Thus, GluDs are signalling molecules that regulate NMDA and AMPA receptors by an unexpected transduction mechanism that bypasses their ionotropic receptor architecture and directly converts extracellular neurexin-cerebellin signals into postsynaptic receptor responses.
Collapse
Affiliation(s)
- Jinye Dai
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA. .,Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.
| | - Christopher Patzke
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.,Boler-Parseghian Center for Rare and Neglected Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Kif Liakath-Ali
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Erica Seigneur
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Thomas C Südhof
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA. .,Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
Chen P, Shen X, Zhao S, Liu Z, Zhu Q, Zhu T, Zhang S, Li Y, Mao L, Sun J. Measurement of intact quantal packet of transmitters released from single nerve terminal by loose-patch amperometry. Biosens Bioelectron 2021; 181:113143. [PMID: 33713952 DOI: 10.1016/j.bios.2021.113143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/01/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022]
Abstract
Neuronal information is majorly encoded chemically at synapses and the elementary unit of synaptic transmission is the contents of neurotransmitter released from single vesicle. However, the contents of quantal neurotransmitter have never been precisely estimated at synapses, which largely prevent our understanding the nature of quantal neurotransmitter release and its impact on neuronal information processing. In order to break through the technical bottleneck of precisely counting quantal neurotransmitter molecules, we developed a new approach in combination of electrophysiology and electrochemistry to measure intact quantal content of single vesicles. An etched submicro-carbon fiber electrode for electrochemical detection was designed to be enclosed in an electrophysiologically used glass pipette. The glass pipette allowed the electrochemical electrode to access the release site, and amperometric recordings were made within the enclosed space at the electrophysiological loose-patch mode. Our study showed that the intact quantal release could be successfully detected at the dopaminergic varicosities by this loose-patch amperometric measurement in real time with negligible leakage.
Collapse
Affiliation(s)
- Peihua Chen
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; State Key Laboratory of Brain and Cognitive Sciences, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing, 100101, China.
| | - Xuefeng Shen
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; State Key Laboratory of Brain and Cognitive Sciences, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing, 100101, China.
| | - Shuainan Zhao
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; State Key Laboratory of Brain and Cognitive Sciences, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing, 100101, China; University of CAS, Beijing, 100049, China
| | - Zili Liu
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; State Key Laboratory of Brain and Cognitive Sciences, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing, 100101, China; University of CAS, Beijing, 100049, China
| | - Qianwen Zhu
- State Key Laboratory of Brain and Cognitive Sciences, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing, 100101, China
| | - Tao Zhu
- School of Microelectronics, MOE Engineering Research Center of Integrated Circuits for Next Generation Communications, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Shuli Zhang
- State Key Laboratory of Brain and Cognitive Sciences, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing, 100101, China; University of CAS, Beijing, 100049, China
| | - Yi Li
- School of Microelectronics, MOE Engineering Research Center of Integrated Circuits for Next Generation Communications, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Lanqun Mao
- Institute of Chemistry, CAS, Beijing, 100190, China
| | - Jianyuan Sun
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; State Key Laboratory of Brain and Cognitive Sciences, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing, 100101, China; University of CAS, Beijing, 100049, China; Center for Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100053, China.
| |
Collapse
|
8
|
Orexin-A differentially modulates inhibitory and excitatory synaptic transmission in rat inner retina. Neuropharmacology 2021; 187:108492. [PMID: 33582153 DOI: 10.1016/j.neuropharm.2021.108492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/08/2021] [Accepted: 02/06/2021] [Indexed: 11/21/2022]
Abstract
In this work, modulation by orexin-A of the release of glutamate and GABA from bipolar and amacrine cells respectively was studied by examining the effects of the neuropeptide on miniature excitatory postsynaptic currents (mEPSCs) and miniature inhibitory postsynaptic currents (mIPSCs) of rat retinal ganglion cells (GCs). Using RNAscope in situ hybridization in combination with immunohistochemistry, we showed positive signals for orexin receptor-1 (OX1R) mRNA in the bipolar cell terminals and those for orexin receptor-2 (OX2R) mRNA in the amacrine cell terminals. With whole-cell patch-clamp recordings in rat retinal slices, we demonstrated that application of orexin-A reduced the interevent interval of mEPSCs of GCs through OX1R. However, it increased the interevent interval of mIPSCs, mediated by GABAA receptors, through OX2R. Furthermore, orexin-A-induced reduction of mEPSC interevent interval was abolished by the application of PI-PLC inhibitors or PKC inhibitors. In contrast, orexin-A-induced increase of GABAergic mIPSC interevent interval was mimicked by 8-Br-cAMP or an adenylyl cyclase activator, but was eliminated by PKA antagonists. Finally, application of nimodipine, an L-type Ca2+ channel blocker, increased both mEPSC and mIPSC interevent interval, and co-application of orexin-A no longer changed the mEPSCs and mIPSCs. We conclude that orexin-A increases presynaptic glutamate release onto GCs by activating L-type Ca2+ channels in bipolar cells, a process that is mediated by an OX1R/PI-PLC/PKC signaling pathway. However, orexin-A decreases presynaptic GABA release onto GCs by inhibiting L-type Ca2+ channels in amacrine cells, a process that is mediated by an OX2R/cAMP-PKA signaling pathway.
Collapse
|
9
|
Wolfes AC, Dean C. The diversity of synaptotagmin isoforms. Curr Opin Neurobiol 2020; 63:198-209. [PMID: 32663762 DOI: 10.1016/j.conb.2020.04.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 12/20/2022]
Abstract
The synaptotagmin family of molecules is known for regulating calcium-dependent membrane fusion events. Mice and humans express 17 synaptotagmin isoforms, where most studies have focused on isoforms 1, 2, and 7, which are involved in synaptic vesicle exocytosis. Recent work has highlighted how brain function relies on additional isoforms, with roles in postsynaptic receptor endocytosis, vesicle trafficking, membrane repair, synaptic plasticity, and protection against neurodegeneration, for example, in addition to the traditional concept of synaptotagmin-mediated neurotransmitter release - in neurons as well as glia, and at different timepoints. In fact, it is not uncommon for the same isoform to feature several splice isoforms, form homo- and heterodimers, and function in different subcellular locations and cell types. This review aims to highlight the diversity of synaptotagmins, offers a concise summary of key findings on all isoforms, and discusses different ways of grouping these.
Collapse
Affiliation(s)
- Anne C Wolfes
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK; UK Dementia Research Institute at Imperial College, London, UK
| | - Camin Dean
- German Center for Neurodegenerative Diseases, Charité University of Medicine - Berlin, 10117 Berlin, Germany.
| |
Collapse
|
10
|
Ge D, Noakes PG, Lavidis NA. What are Neurotransmitter Release Sites and Do They Interact? Neuroscience 2020; 425:157-168. [DOI: 10.1016/j.neuroscience.2019.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/22/2022]
|
11
|
Holahan MR, Tzakis N, Oliveira FA. Developmental Aspects of Glucose and Calcium Availability on the Persistence of Memory Function Over the Lifespan. Front Aging Neurosci 2019; 11:253. [PMID: 31572169 PMCID: PMC6749050 DOI: 10.3389/fnagi.2019.00253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/27/2019] [Indexed: 01/09/2023] Open
Abstract
An important aspect concerning the underlying nature of memory function is an understanding of how memories are acquired and lost. The stability, and ultimate demise, of memory over the lifespan of an organism remains a critical topic in determining the neurobiological mechanisms that mediate memory representations. This has important implications for the elucidation and treatment of neurodegenerative diseases such as Alzheimer's disease (AD). One important question in the context of preserving functional plasticity over the lifespan is the determination of the neurobiological structural and functional changes that contribute to the formation of memory during the juvenile time frame that might provide protection against later memory dysfunction by promoting the establishment of redundant neural pathways. The main question being, if memory formation during the juvenile period does strengthen and preserve memory stability over the lifespan, what are the neurobiological structural or functional substrates that mediate this effect? One neural attribute whose function may be altered with early life experience and provide a mechanism to preserve memory through the lifespan is glucose transport-linked calcium (Ca2+) buffering. Because peak increases in glucose utilization overlap with a timeframe during which spatial training can enhance later memory processing, it might be the case that learning-associated changes in glucose utilization would provide an important neural functional change to preserve memory function throughout the lifespan. The glucose transporters are proteins that are reduced in AD pathology and there is evidence that glucose reductions can impair Ca2+ buffering. In the absence of an appropriate supply of ATP, provided via glucose transport and glycolysis, Ca2+ levels can rise leading to neural vulnerability with ensuing pathological outcomes. In this review, we explore the hypothesis that enhancing glucose utilization with spatial training during the preadolescent period will provide a functional enhancement that regulates glucose-dependent Ca2+ signaling during aging or neurodegeneration and provide essential neural resources to preserve functional plasticity and memory function.
Collapse
Affiliation(s)
- Matthew R. Holahan
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
- Laboratory of Cellular and Molecular Neurobiology (LaNeC), Center for Mathematics, Computing and Cognition, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| | - Niko Tzakis
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Fernando A. Oliveira
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
- Laboratory of Cellular and Molecular Neurobiology (LaNeC), Center for Mathematics, Computing and Cognition, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| |
Collapse
|
12
|
Spontaneous Vesicle Fusion Is Differentially Regulated at Cholinergic and GABAergic Synapses. Cell Rep 2019; 22:2334-2345. [PMID: 29490270 DOI: 10.1016/j.celrep.2018.02.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/11/2018] [Accepted: 02/06/2018] [Indexed: 12/23/2022] Open
Abstract
The locomotion of C. elegans is balanced by excitatory and inhibitory neurotransmitter release at neuromuscular junctions. However, the molecular mechanisms that maintain the balance of synaptic transmission remain enigmatic. Here, we investigated the function of voltage-gated Ca2+ channels in triggering spontaneous release at cholinergic and GABAergic synapses. Recordings of the miniature excitatory/inhibitory postsynaptic currents (mEPSCs and mIPSCs, respectively) showed that UNC-2/CaV2 and EGL-19/CaV1 channels are the two major triggers for spontaneous release. Notably, however, Ca2+-independent spontaneous release was observed at GABAergic but not cholinergic synapses. Functional screening led to the identification of hypomorphic unc-64/Syntaxin-1A and snb-1/VAMP2 mutants in which mEPSCs are severely impaired, whereas mIPSCs remain unaltered, indicating differential regulation of these currents at cholinergic and GABAergic synapses. Moreover, Ca2+-independent spontaneous GABA release was nearly abolished in the hypomorphic unc-64 and snb-1 mutants, suggesting distinct mechanisms for Ca2+-dependent and Ca2+-independent spontaneous release.
Collapse
|
13
|
Dai J, Aoto J, Südhof TC. Alternative Splicing of Presynaptic Neurexins Differentially Controls Postsynaptic NMDA and AMPA Receptor Responses. Neuron 2019; 102:993-1008.e5. [PMID: 31005376 PMCID: PMC6554035 DOI: 10.1016/j.neuron.2019.03.032] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/20/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022]
Abstract
AMPA- and NMDA-type glutamate receptors mediate distinct postsynaptic signals that differ characteristically among synapses. How postsynaptic AMPA- and NMDA-receptor levels are regulated, however, remains unclear. Using newly generated conditional knockin mice that enable genetic control of neurexin alternative splicing, we show that in hippocampal synapses, alternative splicing of presynaptic neurexin-1 at splice site 4 (SS4) dramatically enhanced postsynaptic NMDA-receptor-mediated, but not AMPA-receptor-mediated, synaptic responses without altering synapse density. In contrast, alternative splicing of neurexin-3 at SS4 suppressed AMPA-receptor-mediated, but not NMDA-receptor-mediated, synaptic responses, while alternative splicing of neurexin-2 at SS4 had no effect on NMDA- or AMPA-receptor-mediated responses. Presynaptic overexpression of the neurexin-1β and neurexin-3β SS4+ splice variants, but not of their SS4- splice variants, replicated the respective SS4+ knockin phenotypes. Thus, different neurexins perform distinct nonoverlapping functions at hippocampal synapses that are independently regulated by alternative splicing. These functions transsynaptically control NMDA and AMPA receptors, thereby mediating presynaptic control of postsynaptic responses.
Collapse
Affiliation(s)
- Jinye Dai
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Jason Aoto
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Thomas C Südhof
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
14
|
Guerrier C, Holcman D. The First 100 nm Inside the Pre-synaptic Terminal Where Calcium Diffusion Triggers Vesicular Release. Front Synaptic Neurosci 2018; 10:23. [PMID: 30083101 PMCID: PMC6064743 DOI: 10.3389/fnsyn.2018.00023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/29/2018] [Indexed: 12/04/2022] Open
Abstract
Calcium diffusion in the thin 100 nm layer located between the plasma membrane and docked vesicles in the pre-synaptic terminal of neuronal cells mediates vesicular fusion and synaptic transmission. Accounting for the narrow-cusp geometry located underneath the vesicle is a key ingredient that defines the probability and the time scale of calcium diffusion to bind calcium sensors for the initiation of vesicular release. We review here the time scale, the calcium binding dynamics and the consequences for asynchronous versus synchronous release. To conclude, three-dimensional modeling approaches and the associated coarse-grained simulations can now account efficiently for the precise co-organization of vesicles and Voltage-Gated-Calcium-Channel (VGCC). This co-organization is a key determinant of short-term plasticity and it shapes asynchronous release. Moreover, changing the location of VGCC from few nanometers underneath the vesicle modifies significantly the release probability. Finally, by modifying the calcium buffer concentration, a single synapse can switch from facilitation to depression.
Collapse
Affiliation(s)
- Claire Guerrier
- Department of Mathematics and Brain Research Center, University of British Columbia, Vancouver, BC, Canada
| | - David Holcman
- Group of Applied Mathematics and Computational Biology, IBENS, École Normale Supérieure, Paris, France
- Churchill College, Cambridge University, Cambridge, United Kingdom
| |
Collapse
|
15
|
SNT-1 Functions as the Ca 2+ Sensor for Tonic and Evoked Neurotransmitter Release in Caenorhabditis Elegans. J Neurosci 2018; 38:5313-5324. [PMID: 29760174 DOI: 10.1523/jneurosci.3097-17.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 04/23/2018] [Accepted: 05/03/2018] [Indexed: 12/23/2022] Open
Abstract
Synaptotagmin-1 (Syt1) binds Ca2+ through its tandem C2 domains (C2A and C2B) and triggers Ca2+-dependent neurotransmitter release. Here, we show that snt-1, the homolog of mammalian Syt1, functions as the Ca2+ sensor for both tonic and evoked neurotransmitter release at the Caenorhabditis elegans neuromuscular junction. Mutations that disrupt Ca2+ binding in double C2 domains of SNT-1 significantly impaired tonic release, whereas disrupting Ca2+ binding in a single C2 domain had no effect, indicating that the Ca2+ binding of the two C2 domains is functionally redundant for tonic release. Stimulus-evoked release was significantly reduced in snt-1 mutants, with prolonged release latency as well as faster rise and decay kinetics. Unlike tonic release, evoked release was triggered by Ca2+ binding solely to the C2B domain. Moreover, we showed that SNT-1 plays an essential role in the priming process in different subpopulations of synaptic vesicles with tight or loose coupling to Ca2+ entry.SIGNIFICANCE STATEMENT We showed that SNT-1 in Caenorhabditis elegans regulates evoked neurotransmitter release through Ca2+ binding to its C2B domain in a similar way to Syt1 in the mouse CNS and the fly neuromuscular junction. However, the largely decreased tonic release in snt-1 mutants argues SNT-1 has a clamping function. Indeed, Ca2+-binding mutations in the C2 domains in SNT-1 significantly reduced the frequency of the miniature EPSC, indicating that SNT-1 also acts as a Ca2+ sensor for tonic release. Therefore, revealing the differential mechanisms between invertebrates and vertebrates will provide significant insights into our understanding how synaptic vesicle fusion is regulated.
Collapse
|
16
|
Copine-6 Binds to SNAREs and Selectively Suppresses Spontaneous Neurotransmission. J Neurosci 2018; 38:5888-5899. [PMID: 29802203 DOI: 10.1523/jneurosci.0461-18.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/11/2018] [Accepted: 05/21/2018] [Indexed: 11/21/2022] Open
Abstract
Recent studies suggest that spontaneous and action potential-evoked neurotransmitter release processes are independently regulated. However, the mechanisms that uncouple the two forms of neurotransmission remain unclear. In cultured mouse and rat neurons, we show that the two C2 domain-containing protein copine-6 is localized to presynaptic terminals and binds to synaptobrevin2 as well as other SNARE proteins in a Ca2+-dependent manner. Ca2+-dependent interaction of copine-6 with synaptobrevin2 selectively suppresses spontaneous neurotransmission in a reaction that requires the tandem tryptophan residues at the C-terminal region of synaptobrevin2. Accordingly, copine-6 loss of function augmented presynaptic Ca2+ elevation-mediated neurotransmitter release. Intracellular Ca2+ chelation, on the other hand, occluded copine-6-mediated suppression of release. We also evaluated the molecular specificity of the copine-6-dependent regulation of spontaneous release and found that overexpression of copine-6 did not suppress spontaneous release in synaptobrevin2-deficient neurons. Together, these results suggest that copine-6 acts as a specific Ca2+-dependent suppressor of spontaneous neurotransmission.SIGNIFICANCE STATEMENT Synaptic transmission occurs both in response to presynaptic action potentials and spontaneously, in the absence of stimulation. Currently, much more is understood about the mechanisms underlying action potential-evoked neurotransmission compared with spontaneous release. However, recent studies have shown selective modulation of spontaneous neurotransmission process by several neuromodulators, suggesting specific molecular regulation of spontaneous release. In this study, we identify copine-6 as a specific regulator of spontaneous neurotransmission. By both gain-of-function and loss-of-function experiments, we show that copine-6 functions as a Ca2+-dependent suppressor of spontaneous release. These results further elucidate the mechanisms underlying differential regulation of evoked and spontaneous neurotransmitter release.
Collapse
|
17
|
Williams CL, Smith SM. Calcium dependence of spontaneous neurotransmitter release. J Neurosci Res 2018; 96:335-347. [PMID: 28699241 PMCID: PMC5766384 DOI: 10.1002/jnr.24116] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 01/14/2023]
Abstract
Spontaneous release of neurotransmitters is regulated by extracellular [Ca2+ ] and intracellular [Ca2+ ]. Curiously, some of the mechanisms of Ca2+ signaling at central synapses are different at excitatory and inhibitory synapses. While the stochastic activity of voltage-activated Ca2+ channels triggers a majority of spontaneous release at inhibitory synapses, this is not the case at excitatory nerve terminals. Ca2+ release from intracellular stores regulates spontaneous release at excitatory and inhibitory terminals, as do agonists of the Ca2+ -sensing receptor. Molecular machinery triggering spontaneous vesicle fusion may differ from that underlying evoked release and may be one of the sources of heterogeneity in release mechanisms.
Collapse
Affiliation(s)
- Courtney L. Williams
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, 97239, USA
- Section of Pulmonary & Critical Care Medicine, VA Portland Health Care System, Portland, Oregon, USA
| | - Stephen M. Smith
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, 97239, USA
- Section of Pulmonary & Critical Care Medicine, VA Portland Health Care System, Portland, Oregon, USA
| |
Collapse
|
18
|
Zhang S, Wang X, Wang X, Shen X, Sun J, Hu X, Chen P. Sr2+has low efficiency in regulating spontaneous release at the Calyx of Held synapses. Synapse 2017; 71. [DOI: 10.1002/syn.21983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Shuli Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province; Kunming Institute of Zoology, Chinese Academy of Sciences; Kunming Yunnan 650223 China
- State Key Laboratory of Brain and Cognitive Sciences; CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences; Beijing 100101 China
- Kunming College of Life Science; University of Chinese Academy of Sciences; Kunming 650204 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Xuefeng Wang
- State Key Laboratory of Brain and Cognitive Sciences; CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences; Beijing 100101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Xiaohui Wang
- Department of General Surgery; Xuan Wu Hospital, Capital Medical University; Beijing 100053 China
| | - Xuefeng Shen
- State Key Laboratory of Brain and Cognitive Sciences; CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences; Beijing 100101 China
| | - Jianyuan Sun
- State Key Laboratory of Brain and Cognitive Sciences; CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences; Beijing 100101 China
- Center of Parkinson?s Disease; Beijing Institute for Brain Disorders; Beijing 100053 China
| | - Xintian Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province; Kunming Institute of Zoology, Chinese Academy of Sciences; Kunming Yunnan 650223 China
- Kunming College of Life Science; University of Chinese Academy of Sciences; Kunming 650204 China
| | - Peihua Chen
- State Key Laboratory of Brain and Cognitive Sciences; CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences; Beijing 100101 China
| |
Collapse
|
19
|
Distinct Actions of Voltage-Activated Ca 2+ Channel Block on Spontaneous Release at Excitatory and Inhibitory Central Synapses. J Neurosci 2017; 37:4301-4310. [PMID: 28320843 DOI: 10.1523/jneurosci.3488-16.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/08/2017] [Accepted: 03/13/2017] [Indexed: 11/21/2022] Open
Abstract
At chemical synapses, voltage-activated calcium channels (VACCs) mediate Ca2+ influx to trigger action potential-evoked neurotransmitter release. However, the mechanisms by which Ca2+ regulates spontaneous transmission have not been fully determined. We have shown that VACCs are a major trigger of spontaneous release at neocortical inhibitory synapses but not at excitatory synapses, suggesting fundamental differences in spontaneous neurotransmission at GABAergic and glutamatergic synapses. Recently, VACC blockers were reported to reduce spontaneous release of glutamate and it was proposed that there was conservation of underlying mechanisms of neurotransmission at excitatory and inhibitory synapses. Furthermore, it was hypothesized that the different effects on excitatory and inhibitory synapses may have resulted from off-target actions of Cd2+, a nonselective VACC blocker, or other variations in experimental conditions. Here we report that in mouse neocortical neurons, selective and nonselective VACC blockers inhibit spontaneous release at inhibitory but not at excitatory terminals, and that this pattern is observed in culture and slice preparations as well as in synapses from acute slices of the auditory brainstem. The voltage dependence of Cd2+ block of VACCs accounts for the apparent lower potency of Cd2+ on spontaneous release of GABA than on VACC current amplitudes. Our findings indicate fundamental differences in the regulation of spontaneous release at inhibitory and excitatory synapses by stochastic VACC activity that extend beyond the cortex to the brainstem.SIGNIFICANCE STATEMENT Presynaptic Ca2+ entry via voltage-activated calcium channels (VACCs) is the major trigger of action potential-evoked synaptic release. However, the role of VACCs in the regulation of spontaneous neurotransmitter release (in the absence of a synchronizing action potential) remains controversial. We show that spontaneous release is affected differently by VACCs at excitatory and inhibitory synapses. At inhibitory synapses, stochastic openings of VACCs trigger the majority of spontaneous release, whereas they do not affect spontaneous release at excitatory synapses. We find this pattern to be wide ranging, holding for large and small synapses in the neocortex and brainstem. These findings indicate fundamental differences of the Ca2+ dependence of spontaneous release at excitatory and inhibitory synapses and heterogeneity of the mechanisms of release across the CNS.
Collapse
|
20
|
Zhang X, Wang X, Sun X, Sun X, Zhang Y, Zhang H. Differences in Cognitive Function of Rats with Traumatic Brain Injuries Following Hyperbaric Oxygen Therapy. Med Sci Monit 2016; 22:2608-15. [PMID: 27450528 PMCID: PMC4968614 DOI: 10.12659/msm.899548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Hyperbaric oxygen (HBO) is a historical therapeutic option in the treatment of various types of brain damage. At present, clinical treatment of hypoxic-ischemic injury is giving priority to cognitive training. The effects of HBO on cognitive dysfunction were observed in a controlled cortical impact (CCI) rat model. Material/Methods Seventy male SD rats were randomly divided into control (n=10) and intervention (n=60) groups. All rats underwent baseline water maze testing 1 day before modeling, and were retested 8 weeks after modeling. The percentage of residence time during escape latency in the target quadrant and the total time were recorded. Data were analyzed by SPSS 16.0 software. P<0.05 was considered statistically significant. Results After 8 weeks, no statistical difference (P>0.05) existed in spatial learning ability in the 3-day and 5-day groups when compared with baseline. The other groups were statistically different by auto-comparison (P<0.05). No statistical difference (P>0.05) in spatial memory existed in the 5-day and 1-week groups when compared with baseline, while a significant difference was noted in the other groups by self-comparison (P<0.05). No statistical difference (P>0.05) was noted in the level of expression of growth-associated protein-43 (GAP-43) and synaptophysin (Syn) in the 1-day group compared with the control group. The remaining groups and the control group were statistically different (P<0.05), while the level of expression of GAP-43 and Syn in the 5-day, 1-week, and 2-week groups was significantly different compared with that in the control group (P<0.01). Conclusions If HBO therapy was provided 5–7 days after craniocerebral trauma, there was apparent improvement in cognitive function and neuroplasticity.
Collapse
Affiliation(s)
- Xiaonian Zhang
- China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Capital Medical University, Beijing, China (mainland)
| | - Xiaoyan Wang
- China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Capital Medical University, Beijing, China (mainland)
| | - Xinting Sun
- China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Capital Medical University, Beijing, China (mainland)
| | - Xiaojing Sun
- China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Capital Medical University, Beijing, China (mainland)
| | - Yue Zhang
- China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Capital Medical University, Beijing, China (mainland)
| | - Hao Zhang
- China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Capital Medical University, Beijing, China (mainland)
| |
Collapse
|
21
|
Growth differentiation factor-15 promotes glutamate release in medial prefrontal cortex of mice through upregulation of T-type calcium channels. Sci Rep 2016; 6:28653. [PMID: 27353765 PMCID: PMC4926092 DOI: 10.1038/srep28653] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/07/2016] [Indexed: 01/01/2023] Open
Abstract
Growth differentiation factor-15 (GDF-15) has been implicated in ischemic brain injury and synapse development, but its involvement in modulating neuronal excitability and synaptic transmission remain poorly understood. In this study, we investigated the effects of GDF-15 on non-evoked miniature excitatory post-synaptic currents (mEPSCs) and neurotransmitter release in the medial prefrontal cortex (mPFC) in mice. Incubation of mPFC slices with GDF-15 for 60 min significantly increased the frequency of mEPSCs without effect on their amplitude. GDF-15 also significantly elevated presynaptic glutamate release, as shown by HPLC. These effects were blocked by dual TGF-β type I receptor (TβRI) and TGF-β type II receptor (TβRII) antagonists, but not by a TβRI antagonist alone. Meanwhile, GDF-15 enhanced pERK level, and inhibition of MAPK/ERK activity attenuated the GDF-15-induced increases in mEPSC and glutamate release. Blocking T-type calcium channels reduced the GDF-15 induced up-regulation of synaptic transmission. Membrane-protein extraction and use of an intracellular protein-transport inhibitor showed that GDF-15 promoted CaV3.1 and CaV3.3 α-subunit expression by trafficking to the membrane. These results confirm previous findings in cerebellar granule neurons, in which GDF-15 induces its neurobiological effects via TβRII and activation of the ERK pathway, providing novel insights into the mechanism of GDF-15 function in cortical neurons.
Collapse
|
22
|
Stanley EF. The Nanophysiology of Fast Transmitter Release. Trends Neurosci 2016; 39:183-197. [PMID: 26896416 DOI: 10.1016/j.tins.2016.01.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 01/16/2016] [Accepted: 01/19/2016] [Indexed: 01/26/2023]
Abstract
Action potentials invading the presynaptic terminal trigger discharge of docked synaptic vesicles (SVs) by opening voltage-dependent calcium channels (CaVs) and admitting calcium ions (Ca(2+)), which diffuse to, and activate, SV sensors. At most synapses, SV sensors and CaVs are sufficiently close that release is gated by individual CaV Ca(2+) nanodomains centered on the channel mouth. Other synapses gate SV release with extensive Ca(2+) microdomains summed from many, more distant CaVs. We review the experimental preparations, theories, and methods that provided principles of release nanophysiology and highlight expansion of the field into synaptic diversity and modifications of release gating for specific synaptic demands. Specializations in domain gating may adapt the terminal for roles in development, transmission of rapid impulse frequencies, and modulation of synaptic strength.
Collapse
Affiliation(s)
- Elise F Stanley
- Laboratory of Synaptic Transmission, KD 7-418, The Krembil Institute, 60 Leonard Street, Toronto, ON M5T 2S8, Canada.
| |
Collapse
|