1
|
Duque DH, Yang PF, Gore JC, Chen LM. AI-assisted 3D analysis of grasping and reaching behavior of squirrel monkeys during recovery from cervical spinal cord injury. Behav Brain Res 2025; 476:115265. [PMID: 39307286 DOI: 10.1016/j.bbr.2024.115265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/29/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
We have previously demonstrated that machine learning-based video analysis, conducted via DeepLabCut, is more sensitive for detecting subtle deficits in hand grasping behavior than traditional end-point performance assessments. This superiority was observed in a nonhuman primate (NHP) model of cervical spinal cord injury, specifically a dorsal column lesion (DCL). The current study aims to further characterize the kinematic aspects of the deficits in hand reaching, grasping, and retrieving behavior from a 3D perspective following a DCL. Squirrel monkeys were trained to retrieve sugar pellets from eight wells, which were located either on a flat plate or a raised tube with varying well depths. This setup was designed to require coordinated finger movements during the task. Immediately after the DCL, the animals exhibited measurable behavioral deficits. These were characterized by significant increases in grasping speed squared and trial completion time, markedly widened movement trajectories of individual fingers, and abnormalities in inter-finger distance and orientation. Increased task difficulty was associated with more pronounced behavioral deficits. By three months post-DCL, video-based measurements indicated no significant recovery, even though global end-point performance had returned to baseline levels. Our findings demonstrate that deprivation of tactile information results in impaired dexterous hand behavior involving coordinated finger movements, and the impairment is sustained for 20 weeks. This spinal cord injury (SCI) model, along with DeepLapCut analysis, provides a valuable platform for separately evaluating sensory and motor functions and their contributions to dexterous hand behavior and may be used for evaluating therapeutic interventions using more sensitive behavioral outcome readouts.
Collapse
Affiliation(s)
- Daniela Hernandez Duque
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute of Surgery and Engineering (VISE), Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pai-Feng Yang
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
2
|
Poulen G, Perrin FE. Advances in spinal cord injury: insights from non-human primates. Neural Regen Res 2024; 19:2354-2364. [PMID: 38526271 PMCID: PMC11090432 DOI: 10.4103/nrr.nrr-d-23-01505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/13/2023] [Accepted: 12/22/2023] [Indexed: 03/26/2024] Open
Abstract
Spinal cord injury results in significant sensorimotor deficits, currently, there is no curative treatment for the symptoms induced by spinal cord injury. Basic and pre-clinical research on spinal cord injury relies on the development and characterization of appropriate animal models. These models should replicate the symptoms observed in human, allowing for the exploration of functional deficits and investigation into various aspects of physiopathology of spinal cord injury. Non-human primates, due to their close phylogenetic association with humans, share more neuroanatomical, genetic, and physiological similarities with humans than rodents. Therefore, the responses to spinal cord injury in nonhuman primates most likely resemble the responses to traumatism in humans. In this review, we will discuss nonhuman primate models of spinal cord injury, focusing on in vivo assessments, including behavioral tests, magnetic resonance imaging, and electrical activity recordings, as well as ex vivo histological analyses. Additionally, we will present therapeutic strategies developed in non-human primates and discuss the unique specificities of non-human primate models of spinal cord injury.
Collapse
Affiliation(s)
- Gaetan Poulen
- University of Montpellier, INSERM, EPHE, Montpellier, France
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| | - Florence E. Perrin
- University of Montpellier, INSERM, EPHE, Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
3
|
Wu Z, Feng K, Huang J, Ye X, Yang R, Huang Q, Jiang Q. Brain region changes following a spinal cord injury. Neurochem Int 2024; 174:105696. [PMID: 38354751 DOI: 10.1016/j.neuint.2024.105696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/16/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Brain-related complications are common in clinical practice after spinal cord injury (SCI); however, the molecular mechanisms of these complications are still unclear. Here, we reviewed the changes in the brain regions caused by SCI from three perspectives: imaging, molecular analysis, and electrophysiology. Imaging studies revealed abnormal functional connectivity, gray matter volume atrophy, and metabolic abnormalities in brain regions after SCI, leading to changes in the structure and function of brain regions. At the molecular level, chemokines, inflammatory factors, and damage-associated molecular patterns produced in the injured area were retrogradely transmitted through the corticospinal tract, cerebrospinal fluid, or blood circulation to the specific brain area to cause pathologic changes. Electrophysiologic recordings also suggested abnormal changes in brain electrical activity after SCI. Transcranial magnetic stimulation, transcranial direct current stimulation, and deep brain stimulation alleviated pain and improved motor function in patients with SCI; therefore, transcranial therapy may be a new strategy for the treatment of patients with SCI.
Collapse
Affiliation(s)
- Zhiwu Wu
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China
| | - Kaiming Feng
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China
| | - Jinqing Huang
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China
| | - Xinyun Ye
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China
| | - Ruijin Yang
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China
| | - Qianliang Huang
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China.
| | - Qiuhua Jiang
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China.
| |
Collapse
|
4
|
Chen LM, Wang F, Mishra A, Yang PF, Sengupta A, Reed JL, Gore JC. Longitudinal multiparametric MRI of traumatic spinal cord injury in animal models. Magn Reson Imaging 2023; 102:184-200. [PMID: 37343904 PMCID: PMC10528214 DOI: 10.1016/j.mri.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Multi-parametric MRI (mpMRI) technology enables non-invasive and quantitative assessments of the structural, molecular, and functional characteristics of various neurological diseases. Despite the recognized importance of studying spinal cord pathology, mpMRI applications in spinal cord research have been somewhat limited, partly due to technical challenges associated with spine imaging. However, advances in imaging techniques and improved image quality now allow longitudinal investigations of a comprehensive range of spinal cord pathological features by exploiting different endogenous MRI contrasts. This review summarizes the use of mpMRI techniques including blood oxygenation level-dependent (BOLD) functional MRI (fMRI), diffusion tensor imaging (DTI), quantitative magnetization transfer (qMT), and chemical exchange saturation transfer (CEST) MRI in monitoring different aspects of spinal cord pathology. These aspects include cyst formation and axonal disruption, demyelination and remyelination, changes in the excitability of spinal grey matter and the integrity of intrinsic functional circuits, and non-specific molecular changes associated with secondary injury and neuroinflammation. These approaches are illustrated with reference to a nonhuman primate (NHP) model of traumatic cervical spinal cord injuries (SCI). We highlight the benefits of using NHP SCI models to guide future studies of human spinal cord pathology, and demonstrate how mpMRI can capture distinctive features of spinal cord pathology that were previously inaccessible. Furthermore, the development of mechanism-based MRI biomarkers from mpMRI studies can provide clinically useful imaging indices for understanding the mechanisms by which injured spinal cords progress and repair. These biomarkers can assist in the diagnosis, prognosis, and evaluation of therapies for SCI patients, potentially leading to improved outcomes.
Collapse
Affiliation(s)
- Li Min Chen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Arabinda Mishra
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pai-Feng Yang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anirban Sengupta
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jamie L Reed
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
5
|
Duque DH, Racca JM, Manzanera Esteve IV, Yang PF, Gore JC, Chen LM. Machine-learning-based video analysis of grasping behavior during recovery from cervical spinal cord injury. Behav Brain Res 2023; 443:114150. [PMID: 36216141 PMCID: PMC10733977 DOI: 10.1016/j.bbr.2022.114150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022]
Abstract
Comprehensive characterizations of hand grasping behaviors after cervical spinal cord injuries are fundamental for developing rehabilitation strategies to promote recovery in spinal-cord-injured primates. We used the machine-learning-based video analysis software, DeepLabCut, to sensitively quantify kinematic aspects of grasping behavioral deficits in squirrel monkeys with C5-level spinal cord injuries. Three squirrel monkeys were trained to grasp sugar pellets from wells of varying depths before and after a left unilateral lesion of the cervical dorsal column. Using DeepLabCut, we identified post-lesion deficits in kinematic grasping behavior that included changes in digit orientation, increased variance in vertical and horizontal digit movement, and longer time to complete the task. While video-based analyses of grasping behavior demonstrated deficits in fine-scale digit function that persisted through at least 14 weeks post-injury, traditional end-point behavioral analyses showed a recovery of global hand function as evidenced by recovery of the proportion of successful retrievals by approximately 14 weeks post-injury. The combination of traditional end-point and video-based kinematic analyses provides a more comprehensive characterization of grasping behavior and highlights that global grasping performance may recover despite persistent fine-scale kinematic deficits in digit function. Machine-learning-based video analysis of kinematic digit function, in conjunction with traditional end-point behavioral analyses of grasping behavior, provide sensitive and specific indices for monitoring recovery of fine-grained hand sensorimotor behavior after spinal cord injury that can aid future studies that seek to develop targeted therapeutic interventions for improving behavioral outcomes.
Collapse
Affiliation(s)
- Daniela Hernandez Duque
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute of Surgery and Engineering (VISE), Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jordan M Racca
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Isaac V Manzanera Esteve
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, USA; Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pai-Feng Yang
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
6
|
Wu R, Yang PF, Wang F, Liu Q, Gore JC, Chen LM. Differential Recovery of Submodality Touch Neurons and Interareal Communication in Sensory Input-Deprived Area 3b and S2 Cortices. J Neurosci 2022; 42:9330-9342. [PMID: 36379707 PMCID: PMC9794378 DOI: 10.1523/jneurosci.0034-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 08/09/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Cortical reactivation and regain of interareal functional connections have been linked to the recovery of hand grasping behavior after loss of sensory inputs in primates. We investigated contributions of neurons in two hierarchically organized somatosensory areas, 3b and S2, by characterizing local field potential (LFP) and multiunit spiking activity in five states (rest, stimulus-on, sustained, stimulus-off, and induced) and interareal communication after grasping behavior of dorsal column lesioned male squirrel monkeys had mostly recovered. Compared with normal cortex, fMRI, LFP, and spiking response magnitudes to step indentations were significantly weaker. The sustained component of the spiking recovered much better than the stimulus-off response. Correlation between overall spiking and γ LFP remained strong within each recovered areas 3b and S2. The interareal correlations of γ LFP were severely disrupted, except in the resting and stimulus-on periods. Interareal correlation of spiking was disrupted in the stimulus-off period only. In summary, submodality of low threshold mechanoreceptive neurons recovered differentially in input-deprived area 3b and S2 when impaired global hand grasping behavior returned. Slow-adapting-like neurons recovered, whereas rapid-adapting-like neurons did not. Interareal communications were also severely compromised. We propose that slow-adapting-like neurons and afferents in recovered area 3b and S2 mediate recovery of impaired grasping behavior after dorsal column tract lesion.SIGNIFICANCE STATEMENT Sensory feedback is essential for execution of hand grasping behavior in primates. Reactivations of somatosensory cortices have been attributed to recovery of such behavior after loss of sensory inputs via largely unknown mechanisms. In input-deprived area 3b and S2 cortex, after hand grasping behavior mostly recovered, we found slow-adapting-like neurons were greatly recovered, whereas rapid-adapting-like neurons did not. Communications between area 3b and S2 neurons were severely compromised. We suggest that recovery of slow-adapting-like neurons in input-deprived area 3b and S2 may mediate the recovery of hand grasping behavior.
Collapse
Affiliation(s)
- Ruiqi Wu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 200031, China
| | - Pai-Feng Yang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Qing Liu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Department of Biomedical Engineer, Vanderbilt University, Nashville, Tennessee 37232
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| |
Collapse
|
7
|
Andersen RA, Aflalo T. Preserved cortical somatotopic and motor representations in tetraplegic humans. Curr Opin Neurobiol 2022; 74:102547. [PMID: 35533644 PMCID: PMC9167753 DOI: 10.1016/j.conb.2022.102547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/16/2022] [Accepted: 03/27/2022] [Indexed: 11/16/2022]
Abstract
A rich literature has documented changes in cortical representations of the body in somatosensory and motor cortex. Recent clinical studies of brain-machine interfaces designed to assist paralyzed patients have afforded the opportunity to record from and stimulate human somatosensory, motor, and action-related areas of the posterior parietal cortex. These studies show considerable preserved structure in the cortical somato-motor system. Motor cortex can immediately control assistive devices, stimulation of somatosensory cortex produces sensations in an orderly somatotopic map, and the posterior parietal cortex shows a high-dimensional representation of cognitive action variables. These results are strikingly similar to what would be expected in a healthy subject, demonstrating considerable stability of adult cortex even after severe injury and despite potential plasticity-induced new activations within the same region of cortex. Clinically, these results emphasize the importance of targeting cortical areas for BMI control signals that are consistent with their normal functional role.
Collapse
Affiliation(s)
- Richard A Andersen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena CA 91125, United States; Tianqiao and Chrissy Chen Brain-machine Interface Center, Chen Institute for Neuroscience, California Institute of Technology, Pasadena CA 91125, United States.
| | - Tyson Aflalo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena CA 91125, United States; Tianqiao and Chrissy Chen Brain-machine Interface Center, Chen Institute for Neuroscience, California Institute of Technology, Pasadena CA 91125, United States
| |
Collapse
|
8
|
Moreno-López Y, Hollis ER. Sensory Circuit Remodeling and Movement Recovery After Spinal Cord Injury. Front Neurosci 2021; 15:787690. [PMID: 34955735 PMCID: PMC8692650 DOI: 10.3389/fnins.2021.787690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/10/2021] [Indexed: 12/18/2022] Open
Abstract
Restoring sensory circuit function after spinal cord injury (SCI) is essential for recovery of movement, yet current interventions predominantly target motor pathways. Integrated cortical sensorimotor networks, disrupted by SCI, are critical for perceiving, shaping, and executing movement. Corticocortical connections between primary sensory (S1) and motor (M1) cortices are critical loci of functional plasticity in response to learning and injury. Following SCI, in the motor cortex, corticocortical circuits undergo dynamic remodeling; however, it remains unknown how rehabilitation shapes the plasticity of S1-M1 networks or how these changes may impact recovery of movement.
Collapse
Affiliation(s)
| | - Edmund R Hollis
- Burke Neurological Institute, White Plains, NY, United States.,Weill Cornell Medicine, Feil Family Brain & Mind Research Institute, New York, NY, United States
| |
Collapse
|
9
|
Qi HX, Reed JL, Wang F, Gross CL, Liu X, Chen LM, Kaas JH. Longitudinal fMRI measures of cortical reactivation and hand use with and without training after sensory loss in primates. Neuroimage 2021; 236:118026. [PMID: 33930537 PMCID: PMC8409436 DOI: 10.1016/j.neuroimage.2021.118026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 11/28/2022] Open
Abstract
In a series of previous studies, we demonstrated that damage to the dorsal column in the cervical spinal cord deactivates the contralateral somatosensory hand cortex and impairs hand use in a reach-to-grasp task in squirrel monkeys. Nevertheless, considerable cortical reactivation and behavioral recovery occurs over the following weeks to months after lesion. This timeframe may also be a window for targeted therapies to promote cortical reactivation and functional reorganization, aiding in the recovery process. Here we asked if and how task specific training of an impaired hand would improve behavioral recovery and cortical reorganization in predictable ways, and if recovery related cortical changes would be detectable using noninvasive functional magnetic resonance imaging (fMRI). We further asked if invasive neurophysiological mapping reflected fMRI results. A reach-to-grasp task was used to test impairment and recovery of hand use before and after dorsal column lesions (DC-lesion). The activation and organization of the affected primary somatosensory cortex (area 3b) was evaluated with two types of fMRI - either blood oxygenation level dependent (BOLD) or cerebral blood volume (CBV) with a contrast agent of monocrystalline iron oxide nanocolloid (MION) - before and after DC-lesion. At the end of the behavioral and fMRI studies, microelectrode recordings in the somatosensory areas 3a, 3b and 1 were used to characterize neuronal responses and verify the somatotopy of cortical reactivations. Our results indicate that even after nearly complete DC lesions, monkeys had both considerable post-lesion behavioral recovery, as well as cortical reactivation assessed with fMRI followed by extracellular recordings. Generalized linear regression analyses indicate that lesion extent is correlated with the behavioral outcome, as well as with the difference in the percent signal change from pre-lesion peak activation in fMRI. Monkeys showed behavioral recovery and nearly complete cortical reactivation by 9-12 weeks post-lesion (particularly when the DC-lesion was incomplete). Importantly, the specific training group revealed trends for earlier behavioral recovery and had higher magnitude of fMRI responses to digit stimulation by 5-8 weeks post-lesion. Specific kinematic measures of hand movements in the selected retrieval task predicted recovery time and related to lesion characteristics better than overall task performance success. For measures of cortical reactivation, we found that CBV scans provided stronger signals to vibrotactile digit stimulation as compared to BOLD scans, and thereby may be the preferred non-invasive way to study the cortical reactivation process after sensory deprivations from digits. When the reactivation of cortex for each of the digits was considered, the reactivation by digit 2 stimulation as measured with microelectrode maps and fMRI maps was best correlated with overall behavioral recovery.
Collapse
Affiliation(s)
- Hui-Xin Qi
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA.
| | - Jamie L. Reed
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| | - Feng Wang
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37240, USA,Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37240, USA
| | | | - Xin Liu
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| | - Li Min Chen
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37240, USA,Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37240, USA
| | - Jon H. Kaas
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA,Institute of Imaging Science, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
10
|
Liao C, Qi H, Reed JL, Jeoung H, Kaas JH. Corticocuneate projections are altered after spinal cord dorsal column lesions in New World monkeys. J Comp Neurol 2021; 529:1669-1702. [PMID: 33029803 PMCID: PMC7987845 DOI: 10.1002/cne.25050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 12/31/2022]
Abstract
Recovery of responses to cutaneous stimuli in the area 3b hand cortex of monkeys after dorsal column lesions (DCLs) in the cervical spinal cord relies on neural rewiring in the cuneate nucleus (Cu) over time. To examine whether the corticocuneate projections are modified during recoveries after the DCL, we injected cholera toxin subunit B into the hand representation in Cu to label the cortical neurons after various recovery times, and related results to the recovery of neural responses in the affected area 3b hand cortex. In normal New World monkeys, labeled neurons were predominately distributed in the hand regions of contralateral areas 3b, 3a, 1 and 2, parietal ventral (PV), secondary somatosensory cortex (S2), and primary motor cortex (M1), with similar distributions in the ipsilateral cortex in significantly smaller numbers. In monkeys with short-term recoveries, the area 3b hand neurons were unresponsive or responded weakly to touch on the hand, while the cortical labeling pattern was largely unchanged. After longer recoveries, the area 3b hand neurons remained unresponsive, or responded to touch on the hand or somatotopically abnormal parts, depending on the lesion extent. The distributions of cortical labeled neurons were much more widespread than the normal pattern in both hemispheres, especially when lesions were incomplete. The proportion of labeled neurons in the contralateral area 3b hand cortex was not correlated with the functional reactivation in the area 3b hand cortex. Overall, our findings indicated that corticocuneate inputs increase during the functional recovery, but their functional role is uncertain.
Collapse
Affiliation(s)
- Chia‐Chi Liao
- Department of Psychology Vanderbilt University Nashville Tennessee USA
| | - Hui‐Xin Qi
- Department of Psychology Vanderbilt University Nashville Tennessee USA
| | - Jamie L. Reed
- Department of Psychology Vanderbilt University Nashville Tennessee USA
| | - Ha‐Seul Jeoung
- Department of Psychology Vanderbilt University Nashville Tennessee USA
| | - Jon H. Kaas
- Department of Psychology Vanderbilt University Nashville Tennessee USA
| |
Collapse
|
11
|
Yang PF, Phipps MA, Jonathan S, Newton AT, Byun N, Gore JC, Grissom WA, Caskey CF, Chen LM. Bidirectional and state-dependent modulation of brain activity by transcranial focused ultrasound in non-human primates. Brain Stimul 2021; 14:261-272. [PMID: 33460838 PMCID: PMC7988301 DOI: 10.1016/j.brs.2021.01.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/19/2020] [Accepted: 01/08/2021] [Indexed: 01/10/2023] Open
Abstract
Transcranial focused ultrasound (FUS) stimulation under MRI guidance, coupled with functional MRI (fMRI) monitoring of effects, offers a precise, noninvasive technology to dissect functional brain circuits and to modulate altered brain functional networks in neurological and psychiatric disorders. Here we show that ultrasound at moderate intensities modulated neural activity bi-directionally. Concurrent sonication of somatosensory areas 3a/3b with 250 kHz FUS suppressed the fMRI signals produced there by peripheral tactile stimulation, while at the same time eliciting fMRI activation at inter-connected, off-target brain regions. Direct FUS stimulation of the cortex resulted in different degrees of BOLD signal changes across all five off-target regions, indicating that its modulatory effects on active and resting neurons differed. This is the first demonstration of the dual suppressive and excitative modulations of FUS on a specific functional circuit and of ability of concurrent FUS and MRI to evaluate causal interactions between functional circuits with neuron-class selectivity.
Collapse
Affiliation(s)
- Pai-Feng Yang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Anthony Phipps
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | - Sumeeth Jonathan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | - Allen T Newton
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nellie Byun
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - William A Grissom
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Charles F Caskey
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
12
|
Qi HX, Liao CC, Reed JL, Kaas JH. Reorganization of Higher-Order Somatosensory Cortex After Sensory Loss from Hand in Squirrel Monkeys. Cereb Cortex 2020; 29:4347-4365. [PMID: 30590401 DOI: 10.1093/cercor/bhy317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/18/2018] [Accepted: 11/20/2018] [Indexed: 12/31/2022] Open
Abstract
Unilateral dorsal column lesions (DCL) at the cervical spinal cord deprive the hand regions of somatosensory cortex of tactile activation. However, considerable cortical reactivation occurs over weeks to months of recovery. While most studies focused on the reactivation of primary somatosensory area 3b, here, for the first time, we address how the higher-order somatosensory cortex reactivates in the same monkeys after DCL that vary across cases in completeness, post-lesion recovery times, and types of treatments. We recorded neural responses to tactile stimulation in areas 3a, 3b, 1, secondary somatosensory cortex (S2), parietal ventral (PV), and occasionally areas 2/5. Our analysis emphasized comparisons of the responsiveness, somatotopy, and receptive field size between areas 3b, 1, and S2/PV across DCL conditions and recovery times. The results indicate that the extents of the reactivation in higher-order somatosensory areas 1 and S2/PV closely reflect the reactivation in primary somatosensory cortex. Responses in higher-order areas S2 and PV can be stronger than those in area 3b, thus suggesting converging or alternative sources of inputs. The results also provide evidence that both primary and higher-order fields are effectively activated after long recovery times as well as after behavioral and electrocutaneous stimulation interventions.
Collapse
Affiliation(s)
- Hui-Xin Qi
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Chia-Chi Liao
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Jamie L Reed
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
13
|
Massoto TB, Santos ACR, Ramalho BS, Almeida FM, Martinez AMB, Marques SA. Mesenchymal stem cells and treadmill training enhance function and promote tissue preservation after spinal cord injury. Brain Res 2019; 1726:146494. [PMID: 31586628 DOI: 10.1016/j.brainres.2019.146494] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/14/2019] [Accepted: 10/02/2019] [Indexed: 01/01/2023]
Abstract
Spinal cord injury (SCI) is considered a serious neurological disorder that can lead to severe sensory, motor and autonomic deficits. In this work, we investigated whether cell therapy associated with physical activity after mouse SCI could promote morphological and functional outcomes, using a lesion model established by our group. Mesenchymal stem cells (8 × 105 cells/2 µL) or DMEM (2 µL), were injected in the epicenter of the lesion at 7 days after SCI, and the mice started a moderate treadmill training 14 days after injury. Functional assessments were performed weekly up to 8 weeks after injury when the morphological analyses were also performed. Four injured groups were analyzed: DMEM (SCI plus DMEM injection), MSCT (SCI plus MSC injection), DMEM + TMT (SCI plus DMEM injection and treadmill training) and MSCT + TMT (SCI plus MSC injection and treadmill training). The animals that received the combined therapy (MSCT + TMT) were able to recover and maintained the better functional results throughout the analyzed period. The morphometric analysis from MSCT + TMT group evidenced a larger spared white matter area and a higher number of preserved myelinated fibers with the majority of them reaching the ideal G-ratio values, when compared to other groups. Ultrastructural analysis from this group, using transmission electron microscopy, showed better tissue preservation with few microcavitations and degenerating nerve fibers. Also, this group exhibited a significantly higher neurotrophin 4 (NT4) expression as compared to the other groups. The results provided by this study support the conclusion that the association of strategies is a potential therapeutic approach to treat SCI, with the possibility of translation into the clinical practice.
Collapse
Affiliation(s)
- Tamires Braga Massoto
- Laboratory of Neural Regeneration and Function - Department of Neurobiology, Institute of Biology, Federal Fluminense University, Rio de Janeiro, Brazil
| | - Anne Caroline Rodrigues Santos
- Laboratory of Neural Regeneration and Function - Department of Neurobiology, Institute of Biology, Federal Fluminense University, Rio de Janeiro, Brazil; Laboratory of Neurodegeneration and Repair, Clementino Fraga Filho Hospital, Medical School, Departament of Pathology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Graduate Program in Pathological Anatomy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna S Ramalho
- Laboratory of Neurodegeneration and Repair, Clementino Fraga Filho Hospital, Medical School, Departament of Pathology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Graduate Program in Pathological Anatomy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Martins Almeida
- Graduate Program in Pathological Anatomy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Maria Blanco Martinez
- Laboratory of Neurodegeneration and Repair, Clementino Fraga Filho Hospital, Medical School, Departament of Pathology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Graduate Program in Pathological Anatomy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Suelen Adriani Marques
- Laboratory of Neural Regeneration and Function - Department of Neurobiology, Institute of Biology, Federal Fluminense University, Rio de Janeiro, Brazil; Graduate Program in Pathological Anatomy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
14
|
Yang PF, Phipps MA, Newton AT, Chaplin V, Gore JC, Caskey CF, Chen LM. Neuromodulation of sensory networks in monkey brain by focused ultrasound with MRI guidance and detection. Sci Rep 2018; 8:7993. [PMID: 29789605 PMCID: PMC5964220 DOI: 10.1038/s41598-018-26287-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/08/2018] [Indexed: 01/16/2023] Open
Abstract
Focused ultrasound (FUS) has gained recognition as a technique for non-invasive neuromodulation with high spatial precision and the ability to both excite and inhibit neural activity. Here we demonstrate that MRI-guided FUS is capable of exciting precise targets within areas 3a/3b in the monkey brain, causing downstream activations in off-target somatosensory and associated brain regions which are simultaneously detected by functional MRI. The similarity between natural tactile stimulation-and FUS- evoked fMRI activation patterns suggests that FUS likely can excite populations of neurons and produce associated spiking activities that may be subsequently transmitted to other functionally related touch regions. The across-region differences in fMRI signal changes relative to area 3a/3b between tactile and FUS conditions also indicate that FUS modulated the tactile network differently. The significantly faster rising (>1 sec) fMRI signals elicited by direct FUS stimulation at the targeted cortical region suggest that a different neural hemodynamic coupling mechanism may be involved in generating fMRI signals. This is the first demonstration of imaging neural excitation effects of FUS with BOLD fMRI on a specific functional circuit in non-human primates.
Collapse
Affiliation(s)
- Pai-Feng Yang
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - M Anthony Phipps
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Allen T Newton
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Vandiver Chaplin
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - John C Gore
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Charles F Caskey
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA.
| | - Li Min Chen
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA.
| |
Collapse
|
15
|
Correlated Disruption of Resting-State fMRI, LFP, and Spike Connectivity between Area 3b and S2 following Spinal Cord Injury in Monkeys. J Neurosci 2017; 37:11192-11203. [PMID: 29038239 DOI: 10.1523/jneurosci.2318-17.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 01/04/2023] Open
Abstract
This study aims to understand how functional connectivity (FC) between areas 3b and S2 alters following input deprivation and the neuronal basis of disrupted FC of resting-state fMRI signals. We combined submillimeter fMRI with microelectrode recordings to localize the deafferented digit regions in areas 3b and S2 by mapping tactile stimulus-evoked fMRI activations before and after cervical dorsal column lesion in each male monkey. An average afferent disruption of 97% significantly reduced fMRI, local field potential (LFP), and spike responses to stimuli in both areas. Analysis of resting-state fMRI signal correlation, LFP coherence, and spike cross-correlation revealed significantly reduced functional connectivity between deafferented areas 3b and S2. The degrees of reductions in stimulus responsiveness and FC after deafferentation differed across fMRI, LFP, and spiking signals. The reduction of FC was much weaker than that of stimulus-evoked responses. Whereas the largest stimulus-evoked signal drop (∼80%) was observed in LFP signals, the greatest FC reduction was detected in the spiking activity (∼30%). fMRI signals showed mild reductions in stimulus responsiveness (∼25%) and FC (∼20%). The overall deafferentation-induced changes were quite similar in areas 3b and S2 across signals. Here we demonstrated that FC strength between areas 3b and S2 was much weakened by dorsal column lesion, and stimulus response reduction and FC disruption in fMRI covary with those of LFP and spiking signals in deafferented areas 3b and S2. These findings have important implications for fMRI studies aiming to probe FC alterations in pathological conditions involving deafferentation in humans.SIGNIFICANCE STATEMENT By directly comparing fMRI, local field potential, and spike signals in both tactile stimulation and resting states before and after severe disruption of dorsal column afferent, we demonstrated that reduction in fMRI responses to stimuli is accompanied by weakened resting-state fMRI functional connectivity (FC) in input-deprived and reorganized digit regions in area 3b of the S1 and S2. Concurrent reductions in local field potential and spike FC validated the use of resting-state fMRI signals for probing neural intrinsic FC alterations in pathological deafferented cortex, and indicated that disrupted FC between mesoscale functionally highly related regions may contribute to the behavioral impairments.
Collapse
|
16
|
Chen LM, Yang PF, Wang F, Mishra A, Shi Z, Wu R, Wu TL, Wilson GH, Ding Z, Gore JC. Biophysical and neural basis of resting state functional connectivity: Evidence from non-human primates. Magn Reson Imaging 2017; 39:71-81. [PMID: 28161319 DOI: 10.1016/j.mri.2017.01.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/27/2017] [Indexed: 12/17/2022]
Abstract
Functional MRI (fMRI) has evolved from simple observations of regional changes in MRI signals caused by cortical activity induced by a task or stimulus, to task-free acquisitions of images in a resting state. Such resting state signals contain low frequency fluctuations which may be correlated between voxels, and strongly correlated regions are deemed to reflect functional connectivity within synchronized circuits. Resting state functional connectivity (rsFC) measures have been widely adopted by the neuroscience community, and are being used and interpreted as indicators of intrinsic neural circuits and their functional states in a broad range of applications, both basic and clinical. However, there has been relatively little work reported that validates whether inter-regional correlations in resting state fluctuations of fMRI (rsfMRI) signals actually measure functional connectivity between brain regions, or to establish how MRI data correlate with other metrics of functional connectivity. In this mini-review, we summarize recent studies of rsFC within mesoscopic scale cortical networks (100μm-10mm) within a well defined functional region of primary somatosensory cortex (S1), as well as spinal cord and brain white matter in non-human primates, in which we have measured spatial patterns of resting state correlations and validated their interpretation with electrophysiological signals and anatomic connections. Moreover, we emphasize that low frequency correlations are a general feature of neural systems, as evidenced by their presence in the spinal cord as well as white matter. These studies demonstrate the valuable role of high field MRI and invasive measurements in an animal model to inform the interpretation of human imaging studies.
Collapse
Affiliation(s)
- Li Min Chen
- Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Pai-Feng Yang
- Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Arabinda Mishra
- Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Zhaoyue Shi
- Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Ruiqi Wu
- Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Tung-Lin Wu
- Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - George H Wilson
- Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Zhaohua Ding
- Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA; Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37232, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
17
|
Wu TL, Mishra A, Wang F, Yang PF, Gore JC, Chen LM. Effects of isoflurane anesthesia on resting-state fMRI signals and functional connectivity within primary somatosensory cortex of monkeys. Brain Behav 2016; 6:e00591. [PMID: 28032008 PMCID: PMC5167001 DOI: 10.1002/brb3.591] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/15/2016] [Accepted: 09/06/2016] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Correlated low-frequency fluctuations of resting-state functional magnetic resonance imaging (rsfMRI) signals have been widely used for inferring intrinsic brain functional connectivity (FC). In animal studies, accurate estimate of anesthetic effects on rsfMRI signals is demanded for reliable interpretations of FC changes. We have previously shown that inter-regional FC can reliably delineate local millimeter-scale circuits within digit representations of primary somatosensory cortex (S1) subregions (areas 3a, 3b, and 1) in monkeys under isoflurane anesthesia. The goals of this study are to determine (1) the general effects of isoflurane on rsfMRI signals in the S1 circuit and (2) whether the effects are functional- and regional- dependent, by quantifying the relationships between isoflurane levels, power and inter-regional correlation coefficients in digit and face regions of distinct S1 subregions. METHODS Functional MRI data were collected from male adult squirrel monkeys at three different isoflurane levels (1.25%, 0.875%, and 0.5%). All scans were acquired on a 9.4T magnet with a 3-cm-diameter surface transmit-receive coil centered over the S1 cortex. Power and seed-based inter-regional functional connectivity analyses were subsequently performed. RESULTS As anesthesia level increased, we observed (1) diminishing amplitudes of signal fluctuations, (2) reduced power of fluctuations in the low-frequency band used for connectivity measurements, (3) decreased inter-voxel connectivity around seed regions, and (4) weakened inter-regional FC across all pairs of regions of interest (digit-to-digit). The low-frequency power measures derived from rsfMRI signals from control muscle regions, however, did not exhibit any isoflurane level-related changes. Within the isoflurane dosage range we tested, the inter-regional functional connectivity differences were still detectable, and the effects of isoflurane did not differ across region-of-interest (ROI) pairs. CONCLUSION Our data demonstrate that isoflurane induced similar dose-dependent suppressive effects on the power of rsfMRI signals and local fine-scale FC across functionally related but distinct S1 subregions.
Collapse
Affiliation(s)
- Tung-Lin Wu
- Vanderbilt University Institute of Imaging Science Nashville TN USA; Biomedical Engineering Vanderbilt University Nashville TN USA
| | - Arabinda Mishra
- Vanderbilt University Institute of Imaging Science Nashville TN USA; Radiology and Radiological Sciences Vanderbilt University Nashville TN USA
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science Nashville TN USA; Radiology and Radiological Sciences Vanderbilt University Nashville TN USA
| | - Pai-Feng Yang
- Vanderbilt University Institute of Imaging Science Nashville TN USA; Radiology and Radiological Sciences Vanderbilt University Nashville TN USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science Nashville TN USA; Biomedical Engineering Vanderbilt University Nashville TN USA; Radiology and Radiological Sciences Vanderbilt University Nashville TN USA
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science Nashville TN USA; Radiology and Radiological Sciences Vanderbilt University Nashville TN USA
| |
Collapse
|
18
|
Altered Spatiotemporal Dynamics of Cortical Activation to Tactile Stimuli in Somatosensory Area 3b and Area 1 of Monkeys after Spinal Cord Injury. eNeuro 2016; 3:eN-NWR-0095-16. [PMID: 27699211 PMCID: PMC5041163 DOI: 10.1523/eneuro.0095-16.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 12/04/2022] Open
Abstract
Reactivation of deafferented cortex plays a key role in mediating the recovery of lost functions, although the precise mechanism is not fully understood. This study simultaneously characterized the dynamic spatiotemporal features of tactile responses in areas 3b and 1 before and 6–8 weeks after partial dorsal column lesion (DCL), and examined how the reactivation relates to the recovery of simple hand use in squirrel monkeys. A combination of high spatiotemporal resolution functional intrinsic optical imaging, microelectrode mapping, behavioral assessment, and tracer histology methods were used. Compared with the normal cortex, we found that the responses of deafferented areas 3b and 1 to 3 s of continuous 8 Hz tactile stimulation of a single digit were significantly weaker and more transient. This finding indicates a loss of response to sustained tactile stimuli. The activation area enlarged for areas 3b and 1 in both directions along digit representation (medial–lateral) and across areas (anterior–posterior). All subjects showed behavioral deficits in a food reaching-grasping-retrieving task within the first 5 weeks after DCL, but recovered at the time when optical images were acquired. Summarily, we showed that these populations of cortical neurons responded to peripheral tactile inputs, albeit in significantly altered manners in each area, several weeks after deafferentation. We propose that compromised ascending driven inputs, impaired lateral inhibition, and local integration of input signals may account for the altered spatiotemporal dynamics of the reactivated areas 3b and 1 cortices. Further investigation with large sample sizes is needed to fully characterize the effects of deafferentation on area 1 activation size.
Collapse
|
19
|
Qi HX, Wang F, Liao CC, Friedman RM, Tang C, Kaas JH, Avison MJ. Spatiotemporal trajectories of reactivation of somatosensory cortex by direct and secondary pathways after dorsal column lesions in squirrel monkeys. Neuroimage 2016; 142:431-453. [PMID: 27523450 DOI: 10.1016/j.neuroimage.2016.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/23/2016] [Accepted: 08/09/2016] [Indexed: 11/17/2022] Open
Abstract
After lesions of the somatosensory dorsal column (DC) pathway, the cortical hand representation can become unresponsive to tactile stimuli, but considerable responsiveness returns over weeks of post-lesion recovery. The reactivation suggests that preserved subthreshold sensory inputs become potentiated and axon sprouting occurs over time to mediate recovery. Here, we studied the recovery process in 3 squirrel monkeys, using high-resolution cerebral blood volume-based functional magnetic resonance imaging (CBV-fMRI) mapping of contralateral somatosensory cortex responsiveness to stimulation of distal finger pads with low and high level electrocutaneous stimulation (ES) before and 2, 4, and 6weeks after a mid-cervical level contralateral DC lesion. Both low and high intensity ES of digits revealed the expected somatotopy of the area 3b hand representation in pre-lesion monkeys, while in areas 1 and 3a, high intensity stimulation was more effective in activating somatotopic patterns. Six weeks post-lesion, and irrespective of the severity of loss of direct DC inputs (98%, 79%, 40%), somatosensory cortical area 3b of all three animals showed near complete recovery in terms of somatotopy and responsiveness to low and high intensity ES. However there was significant variability in the patterns and amplitudes of reactivation of individual digit territories within and between animals, reflecting differences in the degree of permanent and/or transient silencing of primary DC and secondary inputs 2weeks post-lesion, and their spatio-temporal trajectories of recovery between 2 and 6weeks. Similar variations in the silencing and recovery of somatotopy and responsiveness to high intensity ES in areas 3a and 1 are consistent with individual differences in damage to and recovery of DC and spinocuneate pathways, and possibly the potentiation of spinothalamic pathways. Thus, cortical deactivation and subsequent reactivation depends not only on the degree of DC lesion, but also on the severity and duration of loss of secondary as well as primary inputs revealed by low and high intensity ES.
Collapse
Affiliation(s)
- Hui-Xin Qi
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA.
| | - Feng Wang
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37240, USA; Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37240, USA
| | - Chia-Chi Liao
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| | - Robert M Friedman
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| | - Chaohui Tang
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37240, USA; Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37240, USA
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA; Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37240, USA
| | - Malcolm J Avison
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37240, USA; Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37240, USA; Pharmacology, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
20
|
Liao CC, Reed JL, Kaas JH, Qi HX. Intracortical connections are altered after long-standing deprivation of dorsal column inputs in the hand region of area 3b in squirrel monkeys. J Comp Neurol 2015; 524:1494-526. [PMID: 26519356 DOI: 10.1002/cne.23921] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/01/2015] [Accepted: 10/26/2015] [Indexed: 11/09/2022]
Abstract
A complete unilateral lesion of the dorsal column somatosensory pathway in the upper cervical spinal cord deactivates neurons in the hand region in contralateral somatosensory cortex (areas 3b and 1). Over weeks to months of recovery, parts of the hand region become reactivated by touch on the hand or face. To determine whether changes in cortical connections potentially contribute to this reactivation, we injected tracers into electrophysiologically identified locations in cortex of area 3b representing the reactivated hand and normally activated face in adult squirrel monkeys. Our results indicated that even when only partially reactivated, most of the expected connections of area 3b remained intact. These intact connections include the majority of intrinsic connections within area 3b; feedback connections from area 1, secondary somatosensory cortex (S2), parietal ventral area (PV), and other cortical areas; and thalamic inputs from the ventroposterior lateral nucleus (VPL). In addition, tracer injections in the reactivated hand region of area 3b labeled more neurons in the face and shoulder regions of area 3b than in normal monkeys, and injections in the face region of area 3b labeled more neurons in the hand region. Unexpectedly, the intrinsic connections within area 3b hand cortex were more widespread after incomplete dorsal column lesions (DCLs) than after a complete DCL. Although these additional connections were limited, these changes in connections may contribute to the reactivation process after injuries. J. Comp. Neurol. 524:1494-1526, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chia-Chi Liao
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, 37240
| | - Jamie L Reed
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, 37240
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, 37240
| | - Hui-Xin Qi
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, 37240
| |
Collapse
|
21
|
Tracking trauma-induced structural and functional changes above the level of spinal cord injury. Curr Opin Neurol 2015; 28:365-72. [DOI: 10.1097/wco.0000000000000224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Injury alters intrinsic functional connectivity within the primate spinal cord. Proc Natl Acad Sci U S A 2015; 112:5991-6. [PMID: 25902510 DOI: 10.1073/pnas.1424106112] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Recent demonstrations of correlated low-frequency MRI signal variations between subregions of the spinal cord at rest in humans, similar to those found in the brain, suggest that such resting-state functional connectivity constitutes a common feature of the intrinsic organization of the entire central nervous system. We report our detection of functional connectivity within the spinal cords of anesthetized squirrel monkeys at rest and show that the strength of connectivity within these networks is altered by the effects of injuries. By quantifying the low-frequency MRI signal correlations between different horns within spinal cord gray matter, we found distinct functional connectivity relationships between the different sensory and motor horns, a pattern that was similar to activation patterns evoked by nociceptive heat or tactile stimulation of digits. All horns within a single spinal segment were functionally connected, with the strongest connectivity occurring between ipsilateral dorsal and ventral horns. Each horn was strongly connected to the same horn on neighboring segments, but this connectivity reduced drastically along the spinal cord. Unilateral injury to the spinal cord significantly weakened the strength of the intrasegment horn-to-horn connectivity only on the injury side and in slices below the lesion. These findings suggest resting-state functional connectivity may be a useful biomarker of functional integrity in injured and recovering spinal cords.
Collapse
|
23
|
|