1
|
Erdogan NO, Temucin CM, Başar K, Sen ZD, Ozer S. Affective modulation of emotional reactivity in euthymic patients with bipolar disorder. Int J Psychophysiol 2025; 207:112487. [PMID: 39667511 DOI: 10.1016/j.ijpsycho.2024.112487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/24/2024] [Accepted: 12/10/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Affective modulation of startle reflex (AMSR) is a widely used experimental tool for assessing emotional reactivity. Previous research has shown inconsistent findings of emotional reactivity in amplitude in bipolar patients (BP). This study examined emotional reactivity (ER) in euthymic BP compared to healthy controls using both subjective and objective measures. METHOD This study compared ER between 33 euthymic BP (I and II) and 35 healthy controls. Subjective experiences, valence, and arousal scores were assessed using the Self-Assessment Manikin. Objective measures included startle reflex parameters - amplitude, area, and latency - from the orbicularis oculi muscle via electromyography. To assess the AMSR, pictures of varying emotional valences from the International Affective Picture System were used during acoustic stimulation. RESULTS A significant picture category effect was observed in the subjective picture evaluation; however, no substantial group effect or picture category-group interaction was detected. In the controls, picture categories exerted a significant effect on amplitude, but did not in euthymic BP. A linear pattern of startle amplitude across different picture categories was evident in the control group but not in patients. Analyses of the area did not reveal significant group differences. Onset latency was also similar between groups. CONCLUSION This study indicates impaired emotional processing in euthymic individuals with bipolar disorder, as shown by altered startle reflex measurements. Future research with larger samples and consideration of bipolar disorder subtypes is needed to explore these findings further.
Collapse
Affiliation(s)
| | | | - Koray Başar
- Department of Psychiatry, Hacettepe University, Ankara, Türkiye
| | - Zumrut Duygu Sen
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany; Department of Psychiatry and Psychotherapy, University of Tubingen, Tubingen, Germany; German Center for Mental Health (DZPG), Halle-Jena-Magdeburg site, Germany
| | - Suzan Ozer
- Department of Psychiatry, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
2
|
Gunduz A, Aktan Suzgun M, E Kızıltan M. Modulation of the somatosensory blink reflex under fear. Neuroscience 2024; 554:11-15. [PMID: 39002753 DOI: 10.1016/j.neuroscience.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/21/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
OBJECTIVE This study evaluated the isolated and combined effects of fear and PPS paradigms on SBR. METHOD The prospective study was conducted with healthy participants. After stimulation of the right median nerve at the wrist, bilateral recordings were randomized under the following conditions: First experiment (with the right hand on the chair armrest): i. baseline recordings, ii. while watching fearful facial expressions from the Karolinska Emotional Faces battery (fear), iii. post-watching (post-fear), iv. while watching neutral facial expressions from the same battery (neutral), v. Immediately after viewing (post-neutral). Second experiment (right hand 2 cm away from the right eye, PPS): i. reference condition (PPS), ii. while watching fearful facial expressions (PPS-fear), iii. while watching neutral facial expressions (PPS-neutral). In each condition, SBR latency, area, duration, and amplitudes were measured and compared between conditions. RESULTS We included 16 participants. SBR could be recorded in 11 (mean age:30.7 ± 5.2, F/M:5/6). First experiment: SBR amplitude was significantly reduced in fear condition (p = 0.008), and SBR area was reduced considerably in fear and post-fear conditions (p = 0.004) compared to the baseline. Second experiment: The SBR area was higher in the PPS (p = 0.009) compared to the baseline and even higher in the fearPPS compared to the PPS (p = 0.038). In neutral or PPS-neutral conditions, the area of the SBR did not change significantly. CONCLUSION Fear suppressed SBR, but fear increased SBR when a threat stimulus was present. The findings were unrelated to habituation or attention, indicating cortical-amygdala-bulbar connections.
Collapse
Affiliation(s)
- Aysegul Gunduz
- Istanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Department of Neurology, Department of Clinical Neurophysiology, Istanbul, Turkey.
| | - Merve Aktan Suzgun
- Istanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Department of Neurology, Department of Clinical Neurophysiology, Istanbul, Turkey
| | - Meral E Kızıltan
- Istanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Department of Neurology, Department of Clinical Neurophysiology, Istanbul, Turkey
| |
Collapse
|
3
|
Dong WK. Modulation of multisensory nociceptive neurons in monkey cortical area 7b and behavioral correlates. J Neurophysiol 2024; 132:544-569. [PMID: 38985936 PMCID: PMC11427044 DOI: 10.1152/jn.00377.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024] Open
Abstract
Wide-range thermoreceptive neurons (WRT-EN) in monkey cortical area 7b that encoded innocuous and nocuous cutaneous thermal and threatening visuosensory stimulation with high fidelity were studied to identify their multisensory integrative response properties. Emphasis was given to characterizing the spatial and temporal effects of threatening visuosensory input on the thermal stimulus-response properties of these multisensory nociceptive neurons. Threatening visuosensory stimulation was most efficacious in modulating thermal evoked responses when presented as a downward ("looming"), spatially congruent, approaching and closely proximal target in relation to the somatosensory receptive field. Both temporal alignment and misalignment of spatially aligned threatening visual and thermal stimulation significantly increased mean discharge frequencies above those evoked by thermal stimulation alone, particularly at near noxious (43°C) and mildly noxious (45°C) temperatures. The enhanced multisensory discharge frequencies were equivalent to the discharge frequency evoked by overtly noxious thermal stimulation alone at 47°C (monkey pain tolerance threshold). A significant increase in behavioral mean escape frequency with shorter escape latency was evoked by multisensory stimulation at near noxious temperature (43°C), which was equivalent to that evoked by noxious stimulation alone (47°C). The remarkable concordance of elevating both neural discharge and escape frequency from a nonnociceptive and prepain level by near noxious thermal stimulation to a nociceptive and pain level by multisensory visual and near noxious thermal stimulation and integration is an elegantly designed defensive neural mechanism that in effect lowers both nociceptive response and pain thresholds to preemptively engage nocifensive behavior and, consequently, avert impending and actual injurious noxious thermal stimulation.NEW & NOTEWORTHY Multisensory nociceptive neurons in cortical area 7b are engaged in integration of threatening visuosensory and a wide range of innocuous and nocuous somatosensory (thermoreceptive) inputs. The enhancement of neuronal activity and escape behavior in monkey by multisensory integration is consistent and supportive of human psychophysical studies. The spatial features of visuosensory stimulation in peripersonal space in relation to somatic stimulation in personal space are critical to multisensory integration, nociception, nocifensive behavior, and pain.
Collapse
Affiliation(s)
- Willie K Dong
- Department of Anesthesiology and Pain Medicine, School of Medicine, University of Washington, Seattle, Washington, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| |
Collapse
|
4
|
Chiarella SG, De Pastina R, Raffone A, Simione L. Mindfulness Affects the Boundaries of Bodily Self-Representation: The Effect of Focused-Attention Meditation in Fading the Boundary of Peripersonal Space. Behav Sci (Basel) 2024; 14:306. [PMID: 38667102 PMCID: PMC11047477 DOI: 10.3390/bs14040306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024] Open
Abstract
Peripersonal space (PPS) is a dynamic multisensory representation of the space around the body, influenced by internal and external sensory information. The malleability of PPS boundaries, as evidenced by their expansion after tool use or modulation through social interactions, positions PPS as a crucial element in understanding the subjective experiences of self and otherness. Building on the existing literature highlighting both the cognitive and bodily effects of mindfulness meditation, this study proposes a novel approach by employing focused-attention meditation (FAM) and a multisensory audio-tactile task to assess PPS in both the extension and sharpness of its boundaries. The research hypothesis posits that FAM, which emphasizes heightened attention to bodily sensations and interoception, may reduce the extension of PPS and make its boundaries less sharp. We enrolled 26 non-meditators who underwent a repeated measure design in which they completed the PPS task before and after a 15-min FAM induction. We found a significant reduction in the sharpness of PPS boundaries but no significant reduction in PPS extension. These results provide novel insights into the immediate effects of FAM on PPS, potentially shedding light on the modulation of self-other representations in both cognitive and bodily domains. Indeed, our findings could have implications for understanding the intricate relationship between mindfulness practices and the subjective experience of self within spatial contexts.
Collapse
Affiliation(s)
- Salvatore Gaetano Chiarella
- Institute of Cognitive Sciences and Technologies (ISTC), National Research Council (CNR), 00185 Rome, Italy
- International School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Riccardo De Pastina
- Department of Psychology, “Sapienza” University of Rome, 00185 Rome, Italy; (R.D.P.); (A.R.)
| | - Antonino Raffone
- Department of Psychology, “Sapienza” University of Rome, 00185 Rome, Italy; (R.D.P.); (A.R.)
| | - Luca Simione
- Institute of Cognitive Sciences and Technologies (ISTC), National Research Council (CNR), 00185 Rome, Italy
- Dipartimento di Scienze Umanistiche e Sociali Internazionali, UNINT, Università degli Studi Internazionali di Roma, 00147 Rome, Italy
| |
Collapse
|
5
|
Favero JD, Luck C, Lipp OV, Marinovic W. The effect of prepulse amplitude and timing on the perception of an electrotactile pulse. Atten Percept Psychophys 2024; 86:1038-1047. [PMID: 36385671 PMCID: PMC11062989 DOI: 10.3758/s13414-022-02597-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 11/17/2022]
Abstract
The perceived intensity of an intense stimulus as well as the startle reflex it elicits can both be reduced when preceded by a weak stimulus (prepulse). Both phenomena are used to characterise the processes of sensory gating in clinical and non-clinical populations. The latter phenomenon, startle prepulse inhibition (PPI), is conceptualised as a measure of pre-attentive sensorimotor gating due to its observation at short latencies. In contrast, the former, prepulse inhibition of perceived stimulus intensity (PPIPSI), is believed to involve higher-order cognitive processes (e.g., attention), which require longer latencies. Although conceptually distinct, PPIPSI is often studied using parameters that elicit maximal PPI, likely limiting what we can learn about sensory gating's influence on conscious perception. Here, we tested an array of stimulus onset asynchronies (SOAs; 0-602 ms) and prepulse intensities (0-3× perceptual threshold) to determine the time course and sensitivity to the intensity of electrotactile PPIPSI. Participants were required to compare an 'unpleasant but not painful' electric pulse to their left wrist that was presented alone with the same stimulus preceded by an electric prepulse, and report which pulse stimulus felt more intense. Using a 2× perceptual threshold prepulse, PPIPSI emerged as significant at SOAs from 162 to 602 ms. We conclude that evidence of electrotactile PPIPSI at SOAs of 162 ms or longer is consistent with gating of perception requiring higher-level processes, not measured by startle PPI. The possible role of attentional processes, stimuli intensity, modality-specific differences, and methods of investigating PPIPSI further are discussed.
Collapse
Affiliation(s)
- Jaspa D Favero
- School of Population Health, Curtin University, Perth, WA, Australia.
| | - Camilla Luck
- School of Population Health, Curtin University, Perth, WA, Australia
| | - Ottmar V Lipp
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia
| | - Welber Marinovic
- School of Population Health, Curtin University, Perth, WA, Australia.
| |
Collapse
|
6
|
Kofler M, Hallett M, Iannetti GD, Versace V, Ellrich J, Téllez MJ, Valls-Solé J. The blink reflex and its modulation - Part 1: Physiological mechanisms. Clin Neurophysiol 2024; 160:130-152. [PMID: 38102022 PMCID: PMC10978309 DOI: 10.1016/j.clinph.2023.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/11/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023]
Abstract
The blink reflex (BR) is a protective eye-closure reflex mediated by brainstem circuits. The BR is usually evoked by electrical supraorbital nerve stimulation but can be elicited by a variety of sensory modalities. It has a long history in clinical neurophysiology practice. Less is known, however, about the many ways to modulate the BR. Various neurophysiological techniques can be applied to examine different aspects of afferent and efferent BR modulation. In this line, classical conditioning, prepulse and paired-pulse stimulation, and BR elicitation by self-stimulation may serve to investigate various aspects of brainstem connectivity. The BR may be used as a tool to quantify top-down modulation based on implicit assessment of the value of blinking in a given situation, e.g., depending on changes in stimulus location and probability of occurrence. Understanding the role of non-nociceptive and nociceptive fibers in eliciting a BR is important to get insight into the underlying neural circuitry. Finally, the use of BRs and other brainstem reflexes under general anesthesia may help to advance our knowledge of the brainstem in areas not amenable in awake intact humans. This review summarizes talks held by the Brainstem Special Interest Group of the International Federation of Clinical Neurophysiology at the International Congress of Clinical Neurophysiology 2022 in Geneva, Switzerland, and provides a state-of-the-art overview of the physiology of BR modulation. Understanding the principles of BR modulation is fundamental for a valid and thoughtful clinical application (reviewed in part 2) (Gunduz et al., submitted).
Collapse
Affiliation(s)
- Markus Kofler
- Department of Neurology, Hochzirl Hospital, Zirl, Austria.
| | - Mark Hallett
- National Institute of Neurological Disorders and Stroke, NIH, USA.
| | - Gian Domenico Iannetti
- University College London, United Kingdom; Italian Institute of Technology (IIT), Rome, Italy.
| | - Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Vipiteno-Sterzing, Italy.
| | - Jens Ellrich
- Friedrich-Alexander-University Erlangen-Nuremberg, Germany.
| | | | - Josep Valls-Solé
- IDIBAPS (Institut d'Investigació August Pi i Sunyer), University of Barcelona, Spain.
| |
Collapse
|
7
|
Cocchini G, Müllensiefen D, Platania R, Niglio C, Tricomi E, Veronelli L, Judica E. Back and front peripersonal space: behavioural and EMG evidence of top-down and bottom-up mechanisms. Exp Brain Res 2024; 242:241-255. [PMID: 38006421 PMCID: PMC10786954 DOI: 10.1007/s00221-023-06740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 11/02/2023] [Indexed: 11/27/2023]
Abstract
Previous studies have identified a 'defensive graded field' in the peripersonal front space where potential threatening stimuli induce stronger blink responses, mainly modulated by top-down mechanisms, which include various factors, such as proximity to the body, stimulus valence, and social cues. However, very little is known about the mechanisms responsible for representation of the back space and the possible role of bottom-up information. By means of acoustic stimuli, we evaluated individuals' representation for front and back space in an ambiguous environment that offered some degree of uncertainty in terms of both distance (close vs. far) and front-back egocentric location of sound sources. We aimed to consider verbal responses about localization of sound sources and EMG data on blink reflex. Results suggested that stimulus distance evaluations were better explained by subjective front-back discrimination, rather than real position. Moreover, blink response data were also better explained by subjective front-back discrimination. Taken together, these findings suggest that the mechanisms that dictate blink response magnitude might also affect sound localization (possible bottom-up mechanism), probably interacting with top-down mechanisms that modulate stimuli location and distance. These findings are interpreted within the defensive peripersonal framework, suggesting a close relationship between bottom-up and top-down mechanisms on spatial representation.
Collapse
Affiliation(s)
- Gianna Cocchini
- Psychology Department, Goldsmiths University of London, London, UK.
| | | | - Ruggero Platania
- Psychology Department, Goldsmiths University of London, London, UK
| | - Chiara Niglio
- Psychology Department, Goldsmiths University of London, London, UK
| | - Enrica Tricomi
- Medizintechnik Group, Institut Für Technische Informatik (ZITI), Heidelberg University, Heidelberg, Germany
| | - Laura Veronelli
- Department of Neurorehabilitation Sciences, Casa Di Cura IGEA SpA, Milan, Italy
- Department of Psychology, University of Milan-Bicocca, Milan, Italy
| | - Elda Judica
- Department of Neurorehabilitation Sciences, Casa Di Cura IGEA SpA, Milan, Italy
| |
Collapse
|
8
|
Biggio M, Escelsior A, Murri MB, Trabucco A, Delfante F, da Silva BP, Bisio A, Serafini G, Bove M, Amore M. "Surrounded, detached": the relationship between defensive peripersonal space and personality. Front Psychiatry 2023; 14:1244364. [PMID: 37900289 PMCID: PMC10603239 DOI: 10.3389/fpsyt.2023.1244364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Personality shapes the cognitive, affective, and behavioral interactions between individuals and the environment. Defensive peripersonal space (DPPS) is the projected interface between the body and the world with a protective function for the body. Previous studies suggest that DPPS displays inter-individual variability that is associated with psychiatric symptoms, such as anxiety. However, DPPS may share a link with personality traits. Methods Fifty-five healthy participants were assessed with the Personality Inventory for DSM-5 (PID-5)-Adult to evaluate personality dimensions. Subjects underwent the Hand Blink Reflex (HBR) task that estimates the DPPS limits by assessing the modulation of blink intensity in response to the median nerve stimulation. Data of the HBR was analyzed with Bayesian multilevel models, while the relationship between DPPS and personality traits was explored using network analysis. Results HBR was best modeled using a piecewise linear regression model, with two distinct slope parameters for electromyographic data. Network analyzes showed a positive correlation between the proximal slope and detachment personality trait, suggesting that individuals with higher scores in the detachment trait had an increased modulation of HBR, resulting in a larger extension of the DPPS. Discussion Features of the detachment personality trait include avoidance of interpersonal experiences, restricted affectivity, and suspiciousness, which affect interpersonal functioning. We suggest that DPPS may represent a characteristic feature of maladaptive personality traits, thus constitute a biomarker or a target for rehabilitative interventions.
Collapse
Affiliation(s)
- Monica Biggio
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Andrea Escelsior
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Martino Belvederi Murri
- Institute of Psychiatry, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Alice Trabucco
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy
| | | | - Beatriz Pereira da Silva
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Ambra Bisio
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Gianluca Serafini
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Marco Bove
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Mario Amore
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy
| |
Collapse
|
9
|
Mercante B, Enrico P, Deriu F. Cognitive Functions following Trigeminal Neuromodulation. Biomedicines 2023; 11:2392. [PMID: 37760833 PMCID: PMC10525298 DOI: 10.3390/biomedicines11092392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/13/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Vast scientific effort in recent years have been focused on the search for effective and safe treatments for cognitive decline. In this regard, non-invasive neuromodulation has gained increasing attention for its reported effectiveness in promoting the recovery of multiple cognitive domains after central nervous system damage. In this short review, we discuss the available evidence supporting a possible cognitive effect of trigeminal nerve stimulation (TNS). In particular, we ask that, while TNS has been widely and successfully used in the treatment of various neuropsychiatric conditions, as far as research in the cognitive field is concerned, where does TNS stand? The trigeminal nerve is the largest cranial nerve, conveying the sensory information from the face to the trigeminal sensory nuclei, and from there to the thalamus and up to the somatosensory cortex. On these bases, a bottom-up mechanism has been proposed, positing that TNS-induced modulation of the brainstem noradrenergic system may affect the function of the brain networks involved in cognition. Nevertheless, despite the promising theories, to date, the use of TNS for cognitive empowering and/or cognitive decline treatment has several challenges ahead of it, mainly due to little uniformity of the stimulation protocols. However, as the field continues to grow, standardization of practice will allow for data comparisons across studies, leading to optimized protocols targeting specific brain circuitries, which may, in turn, influence cognition in a designed manner.
Collapse
Affiliation(s)
- Beniamina Mercante
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (B.M.); (P.E.)
| | - Paolo Enrico
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (B.M.); (P.E.)
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (B.M.); (P.E.)
- AOU Sassari, Unit of Endocrinology, Nutritional and Metabolic Disorders, 07100 Sassari, Italy
| |
Collapse
|
10
|
Legrain V, Filbrich L, Vanderclausen C. Letter on the pain of blind people for the use of those who can see their pain. Pain 2023; 164:1451-1456. [PMID: 36728808 DOI: 10.1097/j.pain.0000000000002862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 12/12/2022] [Indexed: 02/03/2023]
Affiliation(s)
- Valéry Legrain
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- Louvain Bionics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Lieve Filbrich
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Camille Vanderclausen
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Neuropsychological Rehabilitation Unit, Saint-Luc University Hospital, Brussels, Belgium
| |
Collapse
|
11
|
Fossataro C, Adenzato M, Bruno M, Fontana E, Garbarini F, Ardito RB. The role of early attachment experiences in modulating defensive peripersonal space. Sci Rep 2023; 13:3835. [PMID: 36882581 PMCID: PMC9992660 DOI: 10.1038/s41598-023-30985-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Selecting appropriate defensive behaviours for threats approaching the space surrounding the body (peripersonal space, PPS) is crucial for survival. The extent of defensive PPS is measured by recording the hand-blink reflex (HBR), a subcortical defensive response. Higher-order cortical areas involved in PPS representation exert top-down modulation on brainstem circuits subserving HBR. However, it is not yet known whether pre-existing models of social relationships (internal working models, IWM) originating from early attachment experiences influence defensive responses. We hypothesized that organized IWM ensure adequate top-down regulation of brainstem activity mediating HBR, whereas disorganized IWM are associated with altered response patterns. To investigate attachment-dependent modulation on defensive responses, we used the Adult Attachment Interview to determine IWM and recorded HBR in two sessions (with or without the neurobehavioral attachment system activated). As expected, the HBR magnitude in individuals with organized IWM was modulated by the threat proximity to the face, regardless of the session. In contrast, for individuals with disorganized IWM, attachment system activation enhances HBR regardless of the threat position, suggesting that triggering emotional attachment experiences magnifies the threatening valence of external stimuli. Our results indicate that the attachment system exerts a strong modulation on defensive responses and the magnitude of PPS.
Collapse
Affiliation(s)
- Carlotta Fossataro
- MANIBUS Lab, Department of Psychology, University of Turin, Via Verdi 10, 10124, Turin, Italy
| | - Mauro Adenzato
- Department of Psychology, University of Turin, Turin, Italy.
| | | | - Elena Fontana
- Department of Psychology, University of Turin, Turin, Italy
| | - Francesca Garbarini
- MANIBUS Lab, Department of Psychology, University of Turin, Via Verdi 10, 10124, Turin, Italy.,Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Rita B Ardito
- Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
12
|
Multisensory-driven facilitation within the peripersonal space is modulated by the expectations about stimulus location on the body. Sci Rep 2022; 12:20061. [PMID: 36414633 PMCID: PMC9681840 DOI: 10.1038/s41598-022-21469-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
Compelling evidence from human and non-human studies suggests that responses to multisensory events are fastened when stimuli occur within the space surrounding the bodily self (i.e., peripersonal space; PPS). However, some human studies did not find such effect. We propose that these dissonant voices might actually uncover a specific mechanism, modulating PPS boundaries according to sensory regularities. We exploited a visuo-tactile paradigm, wherein participants provided speeded responses to tactile stimuli and rated their perceived intensity while ignoring simultaneous visual stimuli, appearing near the stimulated hand (VTNear) or far from it (VTFar; near the non-stimulated hand). Tactile stimuli could be delivered only to one hand (unilateral task) or to both hands randomly (bilateral task). Results revealed that a space-dependent multisensory enhancement (i.e., faster responses and higher perceived intensity in VTNear than VTFar) was present when highly predictable tactile stimulation induced PPS to be circumscribed around the stimulated hand (unilateral task). Conversely, when stimulus location was unpredictable (bilateral task), participants showed a comparable multisensory enhancement in both bimodal conditions, suggesting a PPS widening to include both hands. We propose that the detection of environmental regularities actively shapes PPS boundaries, thus optimizing the detection and reaction to incoming sensory stimuli.
Collapse
|
13
|
Acute stress affects peripersonal space representation in cortisol stress responders. Psychoneuroendocrinology 2022; 142:105790. [PMID: 35605473 DOI: 10.1016/j.psyneuen.2022.105790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/18/2022] [Accepted: 04/27/2022] [Indexed: 11/22/2022]
Abstract
Peripersonal space is the representation of the space near the body. It is implemented by a dedicated multisensory-motor network, whose purpose is to predict and plan interactions with the environment, and which can vary depending on environmental circumstances. Here, we investigated the effect on the PPS representation of an experimentally induced stress response and compared it to a control, non-stressful, manipulation. We assessed PPS representation in healthy humans, before and after a stressful manipulation, by quantifying visuotactile interactions as a function of the distance from the body, while monitoring salivary cortisol concentration. While PPS representation was not significantly different between the control and experimental group, a relation between cortisol response and changes in PPS emerged within the experimental group. Participants who showed a cortisol stress response presented enhanced visuotactile integration for stimuli close to the body and reduced for far stimuli. Conversely, individuals with a less pronounced cortisol response showed a reduced difference in visuotactile integration between the near and the far space. In our interpretation, physiological stress resulted in a freezing-like response, where multisensory-motor resources are allocated only to the area immediately surrounding the body.
Collapse
|
14
|
Kühne K, Fischer MH, Jeglinski-Mende MA. During the COVID-19 pandemic participants prefer settings with a face mask, no interaction and at a closer distance. Sci Rep 2022; 12:12777. [PMID: 35896701 PMCID: PMC9326138 DOI: 10.1038/s41598-022-16730-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/14/2022] [Indexed: 11/08/2022] Open
Abstract
Peripersonal space is the space surrounding our body, where multisensory integration of stimuli and action execution take place. The size of peripersonal space is flexible and subject to change by various personal and situational factors. The dynamic representation of our peripersonal space modulates our spatial behaviors towards other individuals. During the COVID-19 pandemic, this spatial behavior was modified by two further factors: social distancing and wearing a face mask. Evidence from offline and online studies on the impact of a face mask on pro-social behavior is mixed. In an attempt to clarify the role of face masks as pro-social or anti-social signals, 235 observers participated in the present online study. They watched pictures of two models standing at three different distances from each other (50, 90 and 150 cm), who were either wearing a face mask or not and were either interacting by initiating a hand shake or just standing still. The observers' task was to classify the model by gender. Our results show that observers react fastest, and therefore show least avoidance, for the shortest distances (50 and 90 cm) but only when models wear a face mask and do not interact. Thus, our results document both pro- and anti-social consequences of face masks as a result of the complex interplay between social distancing and interactive behavior. Practical implications of these findings are discussed.
Collapse
Affiliation(s)
- K Kühne
- Cognitive Sciences Division, University of Potsdam, Karl‑Liebknecht‑Straße 24‑25, House 14, 14476, Potsdam, Germany.
| | - M H Fischer
- Cognitive Sciences Division, University of Potsdam, Karl‑Liebknecht‑Straße 24‑25, House 14, 14476, Potsdam, Germany
| | - M A Jeglinski-Mende
- Cognitive Sciences Division, University of Potsdam, Karl‑Liebknecht‑Straße 24‑25, House 14, 14476, Potsdam, Germany
| |
Collapse
|
15
|
Koppel L, Novembre G, Kämpe R, Savallampi M, Morrison I. Prediction and action in cortical pain processing. Cereb Cortex 2022; 33:794-810. [PMID: 35289367 PMCID: PMC9890457 DOI: 10.1093/cercor/bhac102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Predicting that a stimulus is painful facilitates action to avoid harm. But how distinct are the neural processes underlying the prediction of upcoming painful events vis-à-vis those taking action to avoid them? Here, we investigated brain activity as a function of current and predicted painful or nonpainful thermal stimulation, as well as the ability of voluntary action to affect the duration of upcoming stimulation. Participants performed a task which involved the administration of a painful or nonpainful stimulus (S1), which predicted an immediately subsequent very painful or nonpainful stimulus (S2). Pressing a response button within a specified time window during S1 either reduced or did not reduce the duration of the upcoming stimulation. Predicted pain increased activation in several regions, including anterior cingulate cortex (ACC), midcingulate cortex (MCC), and insula; however, activation in ACC and MCC depended on whether a meaningful action was performed, with MCC activation showing a direct relationship with motor output. Insula's responses for predicted pain were also modulated by potential action consequences, albeit without a direct relationship with motor output. These findings suggest that cortical pain processing is not specifically tied to the sensory stimulus, but instead, depends on the consequences of that stimulus for sensorimotor control of behavior.
Collapse
Affiliation(s)
- Lina Koppel
- Corresponding author: Department of Management and Engineering, Division of Economics, Linköping University, 581 83 Linköping, Sweden.
| | - Giovanni Novembre
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden,Center for Medical Image Science and Visualization (CMIV), Linköping University Hospital, 581 85 Linköping, Sweden
| | - Robin Kämpe
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden,Center for Medical Image Science and Visualization (CMIV), Linköping University Hospital, 581 85 Linköping, Sweden
| | - Mattias Savallampi
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| | - India Morrison
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden,Center for Medical Image Science and Visualization (CMIV), Linköping University Hospital, 581 85 Linköping, Sweden
| |
Collapse
|
16
|
Improved acquisition of contact heat evoked potentials with increased heating ramp. Sci Rep 2022; 12:925. [PMID: 35042939 PMCID: PMC8766469 DOI: 10.1038/s41598-022-04867-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/29/2021] [Indexed: 12/05/2022] Open
Abstract
Contact heat evoked potentials (CHEPs) represent an objective and non-invasive measure to investigate the integrity of the nociceptive neuraxis. The clinical value of CHEPs is mostly reflected in improved diagnosis of peripheral neuropathies and spinal lesions. One of the limitations of conventional contact heat stimulation is the relatively slow heating ramp (70 °C/s). This is thought to create a problem of desynchronized evoked responses in the brain, particularly after stimulation in the feet. Recent technological advancements allow for an increased heating ramp of contact heat stimulation, however, to what extent these improve the acquisition of evoked potentials is still unknown. In the current study, 30 healthy subjects were stimulated with contact heat at the hand and foot with four different heating ramps (i.e., 150 °C/s, 200 °C/s, 250 °C/s, and 300 °C/s) to a peak temperature of 60 °C. We examined changes in amplitude, latency, and signal-to-noise ratio (SNR) of the vertex (N2-P2) waveforms. Faster heating ramps decreased CHEP latency for hand and foot stimulation (hand: F = 18.41, p < 0.001; foot: F = 4.19, p = 0.009). Following stimulation of the foot only, faster heating ramps increased SNR (F = 3.32, p = 0.024) and N2 amplitude (F = 4.38, p = 0.007). Our findings suggest that clinical applications of CHEPs should consider adopting faster heating ramps up to 250 °C/s. The improved acquisition of CHEPs might consequently reduce false negative results in clinical cohorts. From a physiological perspective, our results demonstrate the importance of peripherally synchronizing afferents recruitment to satisfactorily acquire CHEPs.
Collapse
|
17
|
Empathy as a predictor of peripersonal space: Evidence from the crossmodal congruency task. Conscious Cogn 2022; 98:103267. [PMID: 34998269 DOI: 10.1016/j.concog.2021.103267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 12/21/2021] [Accepted: 12/26/2021] [Indexed: 11/23/2022]
Abstract
To investigate whether individual differences in Empathy predict the characteristics of Peripersonal Space (PPS) representations, we asked participants to complete the IRI questionnaire and a visuo-tactile crossmodal congruency task (CCT) as an index of PPS. In the CCT, they responded to the elevation of a tactile target while ignoring a visual distractor presented at the same (i.e. congruent) or different (i.e. incongruent) elevation. The target-distractor distance was also manipulated in depth, with visual distractors randomly presented at near, middle or far locations (0 cm, 25 cm or 50 cm). The near and middle crossmodal congruency effects (CCE) were inversely related to participants' scores on the Empathic Concern sub-scale (EC). Furthermore, the slope of participants' CCE across locations was related to EC scores, with flatter slopes for higher EC individuals. Thus, higher EC individuals showed reduced visuo-tactile integration responses within PPS and a reduced differentiation between PPS and extra-personal space (EPS).
Collapse
|
18
|
Northon S, Deldar Z, Piché M. Effects of spatial attention and limb position on the cortical interaction of bilateral noxious inputs. Psychophysiology 2021; 59:e13966. [PMID: 34783035 DOI: 10.1111/psyp.13966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/20/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022]
Abstract
Bilateral noxious inputs interact in the brain to provide a better representation of physical threat. In the present study, we investigated the effects of spatial attention and limb position on this interaction. Painful laser stimuli were applied randomly on the right hand or on both hands, while varying spatial attention (focal or overall) and limb position (hands near or far from each other). Pain perception and laser-evoked potentials (N1, N2, P2) were compared between conditions in 27 healthy volunteers. Compared with unilateral stimulation, bilateral stimulation increased pain (p = .004), the N2 (p = .0015) and P2 (p < .001) amplitude. The effects on pain and the P2 were greater when hands were in the near compared with the far position (p < .05). The effect on pain was also greater for overall compared with focal pain rating (p = .003). In addition, the N1 amplitude was greater for bilateral stimulation when hands were in the far compared with the near position (p = .01). These results show that increased brain responses and pain for bilateral compared with unilateral noxious stimulation are modulated differentially by spatial attention and limb position. This suggests that the integration of noxious inputs occurs through partially independent pain-related processes, that it is modulated by limb position, and that it is partially independent of pain perception. We propose that this is necessary to produce coordinated, flexible and adapted defensive responses.
Collapse
Affiliation(s)
- Stéphane Northon
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | - Zoha Deldar
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | - Mathieu Piché
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| |
Collapse
|
19
|
Ronga I, Galigani M, Bruno V, Castellani N, Rossi Sebastiano A, Valentini E, Fossataro C, Neppi-Modona M, Garbarini F. Seeming confines: Electrophysiological evidence of peripersonal space remapping following tool-use in humans. Cortex 2021; 144:133-150. [PMID: 34666298 DOI: 10.1016/j.cortex.2021.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 02/05/2021] [Accepted: 08/07/2021] [Indexed: 11/29/2022]
Abstract
The peripersonal space (PPS) is a special portion of space immediately surrounding the body, where the integration between tactile stimuli delivered on the body and auditory or visual events emanating from the environment occurs. Interestingly, PPS can widen if a tool is employed to interact with objects in the far space. However, electrophysiological evidence of such tool-use dependent plasticity in the human brain is scarce. Here, in a series of three experiments, participants were asked to respond to tactile stimuli, delivered to their right hand, either in isolation (unimodal condition) or combined with auditory stimulation, which could occur near (bimodal-near) or far from the stimulated hand (bimodal-far). According to multisensory integration spatial rule, when bimodal stimuli are presented at the same location, we expected a response enhancement (response time - RT - facilitation and event-related potential - ERP - super-additivity). In Experiment 1, we verified that RT facilitation was driven by bimodal input spatial congruency, independently from auditory stimulus intensity. In Experiment 2, we showed that our bimodal task was effective in eliciting the magnification of ERPs in bimodal conditions, with significantly larger responses in the near as compared to far condition. In Experiment 3 (main experiment), we explored tool-use driven PPS plasticity. Our audio-tactile task was performed either following tool-use (a 20-min reaching task, performed using a 145 cm-long rake) or after a control cognitive training (a 20-min visual discrimination task) performed in the far space. Following the control training, faster RTs and greater super-additive ERPs were found in bimodal-near as compared to bimodal-far condition (replicating Experiment 2 results). Crucially, this far-near differential response was significantly reduced after tool-use. Altogether our results indicate a selective effect of tool-use remapping in extending the boundaries of PPS. The present finding might be considered as an electrophysiological evidence of tool-use dependent plasticity in the human brain.
Collapse
Affiliation(s)
- Irene Ronga
- MANIBUS Research Group, Department of Psychology, University of Turin, Italy
| | - Mattia Galigani
- MANIBUS Research Group, Department of Psychology, University of Turin, Italy
| | - Valentina Bruno
- MANIBUS Research Group, Department of Psychology, University of Turin, Italy
| | - Nicolò Castellani
- MANIBUS Research Group, Department of Psychology, University of Turin, Italy; Molecular Mind Lab, IMT School for Advanced Studies, Lucca, Italy
| | | | - Elia Valentini
- Department of Psychology and Centre for Brain Science, University of Essex, UK
| | - Carlotta Fossataro
- MANIBUS Research Group, Department of Psychology, University of Turin, Italy
| | - Marco Neppi-Modona
- MANIBUS Research Group, Department of Psychology, University of Turin, Italy
| | - Francesca Garbarini
- MANIBUS Research Group, Department of Psychology, University of Turin, Italy.
| |
Collapse
|
20
|
Vastano R, Costantini M, Widerstrom-Noga E. Maladaptive reorganization following SCI: The role of body representation and multisensory integration. Prog Neurobiol 2021; 208:102179. [PMID: 34600947 DOI: 10.1016/j.pneurobio.2021.102179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 09/08/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
In this review we focus on maladaptive brain reorganization after spinal cord injury (SCI), including the development of neuropathic pain, and its relationship with impairments in body representation and multisensory integration. We will discuss the implications of altered sensorimotor interactions after SCI with and without neuropathic pain and possible deficits in multisensory integration and body representation. Within this framework we will examine published research findings focused on the use of bodily illusions to manipulate multisensory body representation to induce analgesic effects in heterogeneous chronic pain populations and in SCI-related neuropathic pain. We propose that the development and intensification of neuropathic pain after SCI is partly dependent on brain reorganization associated with dysfunctional multisensory integration processes and distorted body representation. We conclude this review by suggesting future research avenues that may lead to a better understanding of the complex mechanisms underlying the sense of the body after SCI, with a focus on cortical changes.
Collapse
Affiliation(s)
- Roberta Vastano
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL, USA.
| | - Marcello Costantini
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, ITAB, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Eva Widerstrom-Noga
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL, USA.
| |
Collapse
|
21
|
Mine D, Yokosawa K. Does response facilitation to visuo-tactile stimuli around a remote-controlled hand avatar reflect peripersonal space or attentional bias? Exp Brain Res 2021; 239:3105-3112. [PMID: 34402944 DOI: 10.1007/s00221-021-06192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/10/2021] [Indexed: 11/25/2022]
Abstract
People react faster to visuo-tactile stimuli presented near the body (i.e., in peripersonal space) than to tactile stimuli presented alone. This multi-sensory facilitation effect has been used as a measurement of peripersonal space. Previous research has reported that peripersonal space representations can be modulated by actively using hand-held tools or disconnected hand avatars. However, previous research has ignored the possibility that the attentional effect of active tool use could affect multi-sensory facilitation. In the present study, we delivered tactile stimuli to participants' left or right hand concurrently with visual stimuli presented near a virtual hand avatar operated by the movements of participants' left or right hand, which was shown far in a virtual environment and disconnected from the body. Participants reacted to tactile stimuli while ignoring the visual stimuli. The results indicated a multi-sensory facilitation effect when tactile stimuli were delivered to the hand used to operate the hand avatar. In contrast, the facilitation was not observed when the tactile stimuli were delivered to the hand that is not operating the hand avatar. These results suggest that the strength of the multi-sensory facilitation effect differed across conditions, even though the visual attention captured around the hand avatar was controlled across conditions. We concluded that the modulation of peripersonal space resulting from using tools or avatars is nearly independent of visual attention captured around tools or avatars.
Collapse
Affiliation(s)
- Daisuke Mine
- Graduate School of Interdisciplinary Information Studies, The University of Tokyo, Tokyo, Japan.
| | | |
Collapse
|
22
|
Cortical interaction of bilateral inputs is similar for noxious and innocuous stimuli but leads to different perceptual effects. Exp Brain Res 2021; 239:2803-2819. [PMID: 34279670 DOI: 10.1007/s00221-021-06175-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/10/2021] [Indexed: 12/20/2022]
Abstract
The cerebral integration of somatosensory inputs from multiple sources is essential to produce adapted behaviors. Previous studies suggest that bilateral somatosensory inputs interact differently depending on stimulus characteristics, including their noxious nature. The aim of this study was to clarify how bilateral inputs evoked by noxious laser stimuli, noxious shocks, and innocuous shocks interact in terms of perception and brain responses. The experiment comprised two conditions (right-hand stimulation and concurrent stimulation of both hands) in which painful laser stimuli, painful shocks and non-painful shocks were delivered. Perception, somatosensory-evoked potentials (P45, N100, P260), laser-evoked potentials (N1, N2 and P2) and event-related spectral perturbations (delta to gamma oscillation power) were compared between conditions and stimulus modalities. The amplitude of negative vertex potentials (N2 or N100) and the power of delta/theta oscillations were increased in the bilateral compared with unilateral condition, regardless of the stimulus type (P < 0.01). However, gamma oscillation power increased for painful and non-painful shocks (P < 0.01), but not for painful laser stimuli (P = 0.08). Despite the similarities in terms of brain activity, bilateral inputs interacted differently for painful stimuli, for which perception remained unchanged, and non-painful stimuli, for which perception increased. This may reflect a ceiling effect for the attentional capture by noxious stimuli and warrants further investigations to examine the regulation of such interactions by bottom-up and top-down processes.
Collapse
|
23
|
Lee HS, Hong SJJ, Baxter T, Scott J, Shenoy S, Buck L, Bodenheimer B, Park S. Altered Peripersonal Space and the Bodily Self in Schizophrenia: A Virtual Reality Study. Schizophr Bull 2021; 47:927-937. [PMID: 33844019 PMCID: PMC8266616 DOI: 10.1093/schbul/sbab024] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Self-disturbances such as an anomalous perception of one's own body boundary are central to the phenomenology of schizophrenia (SZ), but measuring the spatial parameters of the hypothesized self-other boundary has proved to be challenging. Peripersonal space (PPS) refers to the immediate zone surrounding the body where the self interacts physically with the environment; the space that corresponds to hypothesized self-other boundary. PPS is represented by enhanced multisensory integration and faster reaction time (RT) for objects near the body. Thus, multisensory RT tasks can be used to estimate self-other boundary. We aimed to quantify PPS in SZ using an immersive virtual reality visuotactile RT paradigm. Twenty-four participants with SZ and 24 demographically matched controls (CO) were asked to detect tactile vibration while watching a ball approaching them, thrown by either a machine (nonsocial condition) or an avatar (social condition). Parameters of PPS were estimated from the midpoint of the spatial range where the tactile RT decreased most rapidly (size) and the gradient of the RT change at this midpoint (slope). Overall, PPS was smaller in participants with SZ compared with CO. PPS slope for participants with SZ was shallower than CO in the social but not in nonsocial condition, indicating an increased uncertainty of self-other boundary across an extended zone in SZ. Social condition also increased false alarms for tactile detection in SZ. Clinical symptoms were not clearly associated with PPS parameters. These findings suggest the context-dependent nature of weakened body boundary in SZ and underscore the importance of reconciliating objective and subjective aspects of self-disturbances.
Collapse
Affiliation(s)
- Hyeon-Seung Lee
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Seok-Jin J Hong
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Tatiana Baxter
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Jason Scott
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Sunil Shenoy
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Lauren Buck
- School of Engineering, Vanderbilt University, Nashville, TN, USA
| | | | - Sohee Park
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
24
|
Versace V, Campostrini S, Sebastianelli L, Saltuari L, Valls-Solé J, Kofler M. Prepulse inhibition vs cognitive modulation of the hand-blink reflex. Sci Rep 2021; 11:4618. [PMID: 33633320 PMCID: PMC7907410 DOI: 10.1038/s41598-021-84241-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/11/2021] [Indexed: 12/01/2022] Open
Abstract
The excitability of brainstem circuitries mediating defensive blinking in response to abrupt sensory inputs is continuously modulated by cortical areas, e.g., the hand-blink reflex (HBR), elicited by intense electrical median nerve stimulation, is enhanced when the stimulated hand is close to the face, with the behavioural purpose to optimize self-protection from increased threat. Here we investigated whether such cortically mediated HBR facilitation can be influenced by prepulse inhibition (PPI), which is known to occur entirely at the subcortical level. Twenty healthy volunteers underwent HBR recordings in five experimental conditions. In conditions 1 and 2, the stimulated hand was held either near (1) or far (2) from the face, respectively. In conditions 3 and 4, stimulation of the hand near the face was preceded by a peri-liminal prepulse to the index finger of the contralateral hand held either near (3) or far from the face (4). In condition 5, participants self-triggered the stimulus eliciting the HBR. We observed a reproducible HBR in 14 out of 20 participants and measured onset latency and area of the HBR in orbicularis oculi muscles bilaterally. HBR area decreased and latency increased in condition 2 relative to condition 1; HBR area decreased and latency increased markedly in condition 3, and somewhat less in condition 4, relative to conditions 1 and 2; self-stimulation (condition 5) also suppressed HBRs, but less than prepulses. These findings indicate that PPI of the HBR is more robust than the cognitive modulation exerted by top-down cortical projections. Possibly, an attentional shift to a prepulse may serve to reduce blinking in response to perturbation when it is convenient, in a given situation, not to interrupt ongoing visual processing.
Collapse
Affiliation(s)
- Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno-Sterzing (SABES-ASDAA), Margarethenstr. 24, 39049, Vipiteno-Sterzing, BZ, Italy.
| | - Stefania Campostrini
- Department of Neurorehabilitation, Hospital of Vipiteno-Sterzing (SABES-ASDAA), Margarethenstr. 24, 39049, Vipiteno-Sterzing, BZ, Italy
| | - Luca Sebastianelli
- Department of Neurorehabilitation, Hospital of Vipiteno-Sterzing (SABES-ASDAA), Margarethenstr. 24, 39049, Vipiteno-Sterzing, BZ, Italy
| | - Leopold Saltuari
- Department of Neurorehabilitation, Hospital of Vipiteno-Sterzing (SABES-ASDAA), Margarethenstr. 24, 39049, Vipiteno-Sterzing, BZ, Italy
| | - Josep Valls-Solé
- IDIBAPS (Institut d'Investigació August Pi i Sunyer), Facultat de Medicina, University of Barcelona, Barcelona, Spain
| | - Markus Kofler
- Department of Neurology, Hochzirl Hospital, Zirl, Austria
| |
Collapse
|
25
|
Çalıkuşu F, Gündüz A, Kızıltan M. The effect of vision on top.down modulation of hand blink reflex. NEUROL SCI NEUROPHYS 2021. [DOI: 10.4103/nsn.nsn_77_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
26
|
Mercante B, Loi N, Ginatempo F, Biggio M, Manca A, Bisio A, Enrico P, Bove M, Deriu F. Transcutaneous trigeminal nerve stimulation modulates the hand blink reflex. Sci Rep 2020; 10:21116. [PMID: 33273638 PMCID: PMC7713378 DOI: 10.1038/s41598-020-78092-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/18/2020] [Indexed: 11/19/2022] Open
Abstract
The hand-blink reflex (HBR) is a subcortical response, elicited by the electrical stimulation of the median nerve, whose magnitude is specifically modulated according to the spatial properties of the defensive peripersonal space (DPPS) of the face. For these reasons, the HBR is commonly used as a model to assess the DPPS of the face. Little is known on the effects induced by the activation of cutaneous afferents from the face on the DPPS of the face. Therefore, we tested the effect of non-painful transcutaneous trigeminal nerve stimulation (TNS) on the amplitude of the HBR. Fifteen healthy participants underwent HBR recording before and after 20 min of sham- and real-TNS delivered bilaterally to the infraorbital nerve in two separate sessions. The HBR was recorded bilaterally from the orbicularis oculi muscles, following non-painful median nerve stimulation at the wrist. The HBR amplitude was assessed in the "hand-far" and "hand-near" conditions, relative to the hand position in respect to the face. The amplitudes of the hand-far and hand-near HBR were measured bilaterally before and after sham- and real-TNS. Real-TNS significantly reduced the magnitude of the HBR, while sham-TNS had no significant effect. The inhibitory effect of TNS was of similar extent on both the hand-far and hand-near components of the HBR, which suggests an action exerted mainly at brainstem level.
Collapse
Affiliation(s)
- Beniamina Mercante
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy
| | - Nicola Loi
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy
| | - Francesca Ginatempo
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy
| | - Monica Biggio
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| | - Andrea Manca
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy
| | - Ambra Bisio
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| | - Paolo Enrico
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy
| | - Marco Bove
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy.
| |
Collapse
|
27
|
Garbarini F, Fossataro C, Pia L, Berti A. What pathological embodiment/disembodiment tell us about body representations. Neuropsychologia 2020; 149:107666. [DOI: 10.1016/j.neuropsychologia.2020.107666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/11/2020] [Accepted: 10/24/2020] [Indexed: 11/16/2022]
|
28
|
Ladda AM, Wallwork SB, Lotze M. Multimodal Sensory-Spatial Integration and Retrieval of Trained Motor Patterns for Body Coordination in Musicians and Dancers. Front Psychol 2020; 11:576120. [PMID: 33312150 PMCID: PMC7704436 DOI: 10.3389/fpsyg.2020.576120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/27/2020] [Indexed: 12/26/2022] Open
Abstract
Dancers and musicians are experts in spatial and temporal processing, which allows them to coordinate movement with music. This high-level processing has been associated with structural and functional adaptation of the brain for high performance sensorimotor integration. For these integration processes, adaptation does not only take place in primary and secondary sensory and motor areas but also in tertiary brain areas, such as the lateral prefrontal cortex (lPFC) and the intraparietal sulcus (IPS), providing vital resources for highly specialized performance. Here, we review evidence for the role of these brain areas in multimodal training protocols and integrate these findings into a new model of sensorimotor processing in complex motor learning.
Collapse
Affiliation(s)
- Aija Marie Ladda
- Functional Imaging Unit, Diagnostic Radiology and Neuroradiology, University of Greifswald, Greifswald, Germany
| | - Sarah B. Wallwork
- IIMPACT in Health, Allied Health and Human Performance, University of South Australia, Adelaide, SA, Australia
| | - Martin Lotze
- Functional Imaging Unit, Diagnostic Radiology and Neuroradiology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
29
|
Jutzeler CR, Linde LD, Rosner J, Hubli M, Curt A, Kramer JLK. Single-trial averaging improves the physiological interpretation of contact heat evoked potentials. Neuroimage 2020; 225:117473. [PMID: 33099013 DOI: 10.1016/j.neuroimage.2020.117473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/12/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022] Open
Abstract
Laser and contact heat evoked potentials (LEPs and CHEPs, respectively) provide an objective measure of pathways and processes involved in nociception. The majority of studies analyzing LEP or CHEP outcomes have done so based on conventional, across-trial averaging. With this approach, evoked potential components are potentially confounded by latency jitter and ignore relevant information contained within single trials. The current study addressed the advantage of analyzing nociceptive evoked potentials based on responses to noxious stimulations within each individual trial. Single-trial and conventional averaging were applied to data previously collected in 90 healthy subjects from 3 stimulation locations on the upper limb. The primary analysis focused on relationships between single and across-trial averaged CHEP outcomes (i.e., N2P2 amplitude and N2 and P2 latencies) and subject characteristics (i.e., age, sex, height, and rating of perceived intensity), which were examined by way of linear mixed model analysis. Single-trial averaging lead to larger N2P2 amplitudes and longer N2 and P2 latencies. Age and ratings of perceived intensity were the only subject level characteristics associated with CHEPs outcomes that significantly interacted with the method of analysis (conventional vs single-trial averaging). The strength of relationships for age and ratings of perceived intensity, measured by linear fit, were increased for single-trial compared to conventional across-trial averaged CHEP outcomes. By accounting for latency jitter, single-trial averaging improved the associations between CHEPs and physiological outcomes and should be incorporated as a standard analytical technique in future studies.
Collapse
Affiliation(s)
- Catherine R Jutzeler
- Swiss Federal Institute of Technology (ETH Zurich), Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland; SIB Swiss Institute of Bioinformatics, Switzerland; Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland.
| | - Lukas D Linde
- ICORD, University of British Columbia, 818W 10th Ave, Vancouver, British Columbia, Canada; Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, 818W 10th Ave, Vancouver, British Columbia, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 818W 10th Ave, Vancouver, British Columbia, Canada
| | - Jan Rosner
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Michèle Hubli
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - John L K Kramer
- ICORD, University of British Columbia, 818W 10th Ave, Vancouver, British Columbia, Canada; Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, 818W 10th Ave, Vancouver, British Columbia, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 818W 10th Ave, Vancouver, British Columbia, Canada.
| |
Collapse
|
30
|
Ayas S, Kızıltan ME, Karaali-Savrun F, Gündüz A. Modulation of the Somatosensory Blink Reflex in the Peripersonal Space Is Defective in Episodic Migraine. PAIN MEDICINE 2020; 21:1663-1667. [PMID: 31958117 DOI: 10.1093/pm/pnz328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE In migraine, there is an altered behavior of patients during the attack and an altered connectivity in the cortical structures modulating and encoding the sensation and pain. Thus, we hypothesized that the extent of the peripersonal space (PPS) and the responses in the PPS may change during a migraine attack. For this reason, we analyzed the modulation of somatosensory blink reflex (SBR) in the PPS during episodic migraine. DESIGN Cross-sectional assessment of modulation of SBR in patients with migraine. SETTING Headache outpatient clinic of a tertiary referral center. SUBJECTS We included 22 patients with episodic migraine, of whom 13 individuals were in the interictal period and nine were experiencing a headache episode. We also included 14 healthy individuals. The three groups were similar in age and gender. METHODS SBR was recorded when the participants were sitting with their forearm in the extrapersonal space and also when their hands were in the PPS surrounding the face. Latency, amplitude, and area under the curve (AUC) were measured and compared. RESULTS The amplitude and AUC of the SBR were significantly higher in patients during the attack compared with healthy subjects. The magnitude of the SBR was increased in the PPS in healthy subjects, whereas the increase was not significant in patients during the attack or in the interictal period. CONCLUSIONS We think that the modulation in the PPS is defective in patients with migraine both during the acute attack and in the interictal phase, suggesting diminished top-down modulation of the SBR.
Collapse
Affiliation(s)
- Selahattin Ayas
- Department of Neurology, Cerrahpasa Medical Faculty, IUC, Istanbul, Turkey
| | - Meral E Kızıltan
- Department of Neurology, Cerrahpasa Medical Faculty, IUC, Istanbul, Turkey
| | | | - Ayşegül Gündüz
- Department of Neurology, Cerrahpasa Medical Faculty, IUC, Istanbul, Turkey
| |
Collapse
|
31
|
Fossataro C, Burin D, Ronga I, Galigani M, Rossi Sebastiano A, Pia L, Garbarini F. Agent-dependent modulation of corticospinal excitability during painful transcutaneous electrical stimulation. Neuroimage 2020; 217:116897. [DOI: 10.1016/j.neuroimage.2020.116897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 03/11/2020] [Accepted: 04/29/2020] [Indexed: 12/28/2022] Open
|
32
|
Versace V, Campostrini S, Sebastianelli L, Saltuari L, Valls-Solé J, Kofler M. Threat vs control: Potentiation of the trigeminal blink reflex by threat proximity is overruled by self-stimulation. Psychophysiology 2020; 57:e13626. [PMID: 32573801 DOI: 10.1111/psyp.13626] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/21/2020] [Accepted: 05/19/2020] [Indexed: 11/27/2022]
Abstract
The magnitude of the defensive blink reflex is modulated by continuous assessment of its protective value. Here, we studied whether the trigeminal blink reflex (TBR) is modulated by a potentially offensive object close to the face, and, if so, whether self-stimulation or observation of the act of stimulus triggering counteracts such modulation. In all, 26 healthy volunteers participated in various experimental conditions. At baseline, an experimenter triggered supraorbital nerve stimuli remotely, unseen by the participants; in experimental conditions, the experimenter held a stimulation probe close to the participant's face but triggered the stimuli either remotely, "surprising" participants (S1 ), or directly on the probe, observed by participants (S2 ). In other conditions, participants triggered stimuli themselves on the probe held next to their body (S3 ) or held in front of their face (S4 ). The latter condition was repeated similarly, but pressing the button only randomly generated electrical stimuli (S5, "Russian roulette"). The size of the R2 component of the TBR (TBR-R2) was the main outcome measure. Compared to baseline, TBR-R2 area was significantly larger in S1 when the "threatening" probe was close to the face and the participant had no control over stimulation. Conversely, TBR-R2 was suppressed when participants either saw the action of triggering, thus being aware (S2 ), or had full initiative over stimulation (S3 , S4 ). Random self-generated stimuli (S5 ) inhibited TBR-R2, but to a lesser extent than S3 and S4. Perceived threat close to the face facilitates TBR-R2, but knowledge about impending stimulation or self-agency overrules this effect.
Collapse
Affiliation(s)
- Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno/Sterzing, Vipiteno/Sterzing, Italy.,Research Unit for Neurorehabilitation of South Tyrol, Bolzano/Bozen, Italy
| | - Stefania Campostrini
- Department of Neurorehabilitation, Hospital of Vipiteno/Sterzing, Vipiteno/Sterzing, Italy.,Research Unit for Neurorehabilitation of South Tyrol, Bolzano/Bozen, Italy
| | - Luca Sebastianelli
- Department of Neurorehabilitation, Hospital of Vipiteno/Sterzing, Vipiteno/Sterzing, Italy.,Research Unit for Neurorehabilitation of South Tyrol, Bolzano/Bozen, Italy
| | - Leopold Saltuari
- Research Unit for Neurorehabilitation of South Tyrol, Bolzano/Bozen, Italy.,Department of Neurology, Hochzirl Hospital, Zirl, Austria
| | - Josep Valls-Solé
- IDIBAPS (Institut d'Investigació August Pi i Sunyer), Facultat de Medicina, University of Barcelona, Barcelona, Spain
| | - Markus Kofler
- Department of Neurology, Hochzirl Hospital, Zirl, Austria
| |
Collapse
|
33
|
Schmidt K, Forkmann K, Elsenbruch S, Bingel U. Enhanced pain-related conditioning for face compared to hand pain. PLoS One 2020; 15:e0234160. [PMID: 32559202 PMCID: PMC7304572 DOI: 10.1371/journal.pone.0234160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/19/2020] [Indexed: 11/29/2022] Open
Abstract
Pain is evolutionarily hardwired to signal potential danger and threat. It has been proposed that altered pain-related associative learning processes, i.e., emotional or fear conditioning, might contribute to the development and maintenance of chronic pain. Pain in or near the face plays a special role in pain perception and processing, especially with regard to increased pain-related fear and unpleasantness. However, differences in pain-related learning mechanisms between the face and other body parts have not yet been investigated. Here, we examined body-site specific differences in associative emotional conditioning using electrical stimuli applied to the face and the hand. Acquisition, extinction, and reinstatement of cue-pain associations were assessed in a 2-day emotional conditioning paradigm using a within-subject design. Data of 34 healthy subjects revealed higher fear of face pain as compared to hand pain. During acquisition, face pain (as compared to hand pain) led to a steeper increase in pain-related negative emotions in response to conditioned stimuli (CS) as assessed using valence ratings. While no significant differences between both conditions were observed during the extinction phase, a reinstatement effect for face but not for hand pain was revealed on the descriptive level and contingency awareness was higher for face pain compared to hand pain. Our results indicate a stronger propensity to acquire cue-pain-associations for face compared to hand pain, which might also be reinstated more easily. These differences in learning and resultant pain-related emotions might play an important role in the chronification and high prevalence of chronic facial pain and stress the evolutionary significance of pain in the head and face.
Collapse
Affiliation(s)
- Katharina Schmidt
- Department of Neurology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- * E-mail:
| | - Katarina Forkmann
- Department of Neurology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sigrid Elsenbruch
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Department of Medical Psychology and Medical Sociology, Ruhr University Bochum, Bochum, Germany
| | - Ulrike Bingel
- Department of Neurology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
34
|
Calabrò RS, Chillura A, Billeri L, Cannavò A, Buda A, Molonia F, Manuli A, Bramanti P, Naro A. Peri-Personal Space Tracing by Hand-Blink Reflex Modulation in Patients with Chronic Disorders of Consciousness. Sci Rep 2020; 10:1712. [PMID: 32015445 PMCID: PMC6997168 DOI: 10.1038/s41598-020-58625-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
The assessment of awareness in patients with chronic Disorders of Consciousness (DoC), including Unresponsive Wakefulness Syndrome (UWS) and Minimally Conscious State (MCS), is challenging. The level of awareness impairment may depend on the degree of deterioration of the large-scale cortical-thalamo-cortical networks induced by brain injury. Electrophysiological approaches may shed light on awareness presence in patients with DoC by estimating cortical functions related to the cortical-thalamo-cortical networks including, for example, the cortico-subcortical processes generating motor responses to the perturbation of the peri-personal space (PPS). We measured the amplitude, latency, and duration of the hand-blink reflex (HBR) responses by recording electromyography (EMG) signals from both the orbicularis oculi muscles while electrically stimulating the median nerve at the wrist. Such a BR is thought to be mediated by a neural circuit at the brainstem level. Despite its defensive-response nature, HBR can be modulated by the distance between the stimulated hand and the face. This suggests a functional top-down control of HBR as reflected by HBR features changes (latency, amplitude, and magnitude). We therefore estimated HBR responses in a sample of patients with DoC (8 MCS and 12 UWS, compared to 15 healthy controls -HC) while performing a motor task targeting the PPS. This consisted of passive movements in which the hand of the subject was positioned at different distances from the participant's face. We aimed at demonstrating a residual top-down modulation of HBR properties, which could be useful to differentiate patients with DoC and, potentially, demonstrate awareness preservation. We found a decrease in latency, and an increase in duration and magnitude of HBR responses, which were all inversely related to the hand-to-face distance in HC and patients with MCS, but not in individuals with UWS. Our data suggest that only patients with MCS have preserved, residual, top-down modulation of the processes related to the PPS from higher-order cortical areas to sensory-motor integration network. Although the sample size was relatively small, being thus our data preliminary, HBR assessment seems a rapid, easy, and first-level tool to differentiate patients with MCS from those with UWS. We may also hypothesize that such a HBR modulation suggests awareness preservation.
Collapse
Affiliation(s)
| | | | - Luana Billeri
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | | | - Antonio Buda
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | | | | | | | - Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| |
Collapse
|
35
|
Fossataro C, Tieri G, Grollero D, Bruno V, Garbarini F. Hand blink reflex in virtual reality: The role of vision and proprioception in modulating defensive responses. Eur J Neurosci 2019; 51:937-951. [PMID: 31630450 DOI: 10.1111/ejn.14601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 09/15/2019] [Accepted: 10/09/2019] [Indexed: 01/19/2023]
Abstract
Our research focused on the role of vision and proprioception in modulating a defensive reflex (hand blink reflex, HBR) whose magnitude is enhanced when the threatened hand is inside the peripersonal space of the face. We capitalized on virtual reality, which allows dissociating vision and proprioception by presenting a virtual limb in congruent/incongruent positions with respect to the participants' limb. In experiment 1, participants placed their own stimulated hand in far/near positions with respect to their face (postural manipulation task), while observing a virtual empty scenario. Vision was not informative, but the HBR was significantly enhanced in near compared with far position, suggesting that proprioception is sufficient for the HBR modulation to occur. In experiment 2, participants did not perform the postural manipulation but they (passively) observed the avatar's virtual limb performing it. Proprioceptive signals were not informative, but the HBR was significantly enhanced when the observed virtual limb was near to the face, suggesting that visual information plays a role in modulating the HBR. In experiment 3, both participants and avatar performed the postural manipulation, either congruently (both of them far/near) or incongruently (one of them far, the other near). The HBR modulation was present only in congruent conditions. In incongruent conditions, the conflict between vision and proprioception confounded the system, abolishing the difference between far and near positions. Taken together, these findings promote the view that observing a virtual limb modulates the HBR, providing also new evidence on the role of vision and proprioception in modulating this subcortical reflex.
Collapse
Affiliation(s)
| | - Gaetano Tieri
- IRCCS, Fondazione Santa Lucia, Rome, Italy.,Virtual Reality Lab, University of Rome Unitelma Sapienza, Rome, Italy
| | - Demetrio Grollero
- MANIBUS Lab, Psychology Department, University of Turin, Turin, Italy.,MoMi Lab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Valentina Bruno
- MANIBUS Lab, Psychology Department, University of Turin, Turin, Italy
| | - Francesca Garbarini
- MANIBUS Lab, Psychology Department, University of Turin, Turin, Italy.,Neuroscience Institute of Turin, University of Turin, Turin, Italy
| |
Collapse
|
36
|
Naro A, Calabrò RS, La Rosa G, Andronaco VA, Billeri L, Lauria P, Bramanti A, Bramanti P. Toward understanding the neurophysiological basis of peripersonal space: An EEG study on healthy individuals. PLoS One 2019; 14:e0218675. [PMID: 31233542 PMCID: PMC6590804 DOI: 10.1371/journal.pone.0218675] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/06/2019] [Indexed: 11/18/2022] Open
Abstract
The subcortical mechanisms subtending the sensorimotor processes related to the peripersonal space (PPS) have been well characterized, whereas less evidence is available concerning the cortical mechanisms. We investigated the theta, alpha and beta event-related spectral perturbations (ERSP) while holding the forearm in different positions into the PPS of the face. Fifty healthy individuals were subjected to EEG recording while being provided with median nerve electric stimulation at the wrist of the right hand held at different hand-to-face distances. Theta and beta rhythms were significantly perturbed depending on the hand-to-face distance, whereas alpha oscillations reflected a more general, non-specific oscillatory response to the motor task. The perturbation of theta and beta frequency bands may reflect the processes of top-down modulation overseeing the conscious spatiotemporal encoding of sensory-motor information within the PPS. In other words, such perturbation reflects the continuous update of the conscious internal representations of the PPS to build up a purposeful and reflexive motor response.
Collapse
Affiliation(s)
- Antonino Naro
- Neurorehabilitation Unit, IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | | | - Gianluca La Rosa
- Neurorehabilitation Unit, IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | | | - Luana Billeri
- Neurorehabilitation Unit, IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Paola Lauria
- Neurorehabilitation Unit, IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Alessia Bramanti
- Neurorehabilitation Unit, IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Placido Bramanti
- Neurorehabilitation Unit, IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| |
Collapse
|
37
|
Feasibility and reliability of intraorally evoked “nociceptive-specific” blink reflexes. Clin Oral Investig 2019; 24:883-896. [DOI: 10.1007/s00784-019-02966-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/29/2019] [Accepted: 05/16/2019] [Indexed: 11/26/2022]
|
38
|
Bufacchi RJ, Ponticelli S, Novembre G, Kilintari M, Guo Y, Iannetti GD. Muscular effort increases hand-blink reflex magnitude. Neurosci Lett 2019; 702:11-14. [PMID: 30528879 PMCID: PMC6527920 DOI: 10.1016/j.neulet.2018.11.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The magnitude of hand-blink reflex is increased by tonic cortico-spinal activation. This effect is smaller than the commonly observed HBR increase when the stimulated hand is near the eye. Nonetheless, when using HBR as an indicator of behavioural relevance, this effect should be taken into account.
Defensive motor responses elicited by sudden environmental stimuli are finely modulated by their behavioural relevance to maximise the organism’s survival. One such response, the blink reflex evoked by intense electrical stimulation of the median nerve (Hand-Blink Reflex; HBR), has been extensively used to derive fine-grained maps of defensive peripersonal space. However, as other subcortical reflexes, the HBR might also be modulated by lower-level factors that do not bear direct relevance to the defensive value of blinking, thus posing methodological and interpretive problems. Here, we tested whether HBR magnitude is affected by the muscular effort present when holding the hand in certain postures. We found that HBR magnitude increases with muscular effort, an effect most likely mediated by the increased corticospinal drive. However, we found strong evidence that this effect is substantially smaller than the well-known effect of eye-hand proximity on HBR magnitude. Nonetheless, care should be taken in future experiments to avoid erroneous interpretations of the effects of muscular effort as indicators of behaviour relevance.
Collapse
Affiliation(s)
- R J Bufacchi
- Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), London, UK; Centre for Mathematics and Physics in the Life Sciences and EXperimental biology (CoMPLEX), University College London, London, UK
| | - S Ponticelli
- Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), London, UK
| | - G Novembre
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy
| | - M Kilintari
- Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), London, UK
| | - Y Guo
- Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), London, UK
| | - G D Iannetti
- Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), London, UK; Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy.
| |
Collapse
|
39
|
Defensive peripersonal space is modified by a learnt protective posture. Sci Rep 2019; 9:6739. [PMID: 31043673 PMCID: PMC6494889 DOI: 10.1038/s41598-019-43258-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/15/2019] [Indexed: 01/06/2023] Open
Abstract
The Hand Blink Reflex (HBR) is a subcortical defensive response, elicited by the electrical stimulation of the median nerve. HBR increases when the stimulated hand is inside the defensive peripersonalspace (DPPS) of the face. However, the presence of a screen protecting the face could reduce the amplitude of this response. This work aimed to investigate whether the learning of a posture intended to protect the head could modulate the HBR responses. Boxing athletes learn a defensive posture consisting of blocking with arms opponent's blow towards the face. Two groups were recruited: 13 boxers and 13 people naïve to boxing. HBR response was recorded and elicited in three hand positions depending on the distance from the face. A suppression of HBR enhancement in the static position close to the face was observed in boxer group, contrary to the control group. Also, the higher years of practice in boxing, the higher suppression occurred. However, this suppression was not observed when boxers were asked to move the hand up-to/down-from the face. These findings might suggest that the sensorimotor experience related to a previously learnt protective posture can modify the HBR and thus shape the dimension of the DPPS.
Collapse
|
40
|
Filbrich L, Blandiaux S, Manfron L, Farnè A, De Keyser R, Legrain V. Unimodal and crossmodal extinction of nociceptive stimuli in healthy volunteers. Behav Brain Res 2019; 362:114-121. [PMID: 30630019 DOI: 10.1016/j.bbr.2019.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 12/28/2018] [Accepted: 01/06/2019] [Indexed: 11/25/2022]
Abstract
Nociception, the physiological mechanisms specifically processing information about noxious and potentially painful stimuli, has the double function to warn about potential body damages (interoception) and about the cause of such potential damages (exteroception). The exteroceptive function is thought to rely on multisensory integration between somatic and extra-somatic stimuli, provided that extra-somatic stimuli occur near the stimulated body area. To corroborate this hypothesis, we succeeded to show in healthy volunteers that the perception of nociceptive stimuli applied on one hand can be extinguished, as compared to single presentation, by the simultaneous application of nociceptive stimuli on the opposite hand, as well as by the presentation of visual stimuli near the opposite hand. On the contrary, visual stimuli presented near the same stimulated hand facilitated the perception of nociceptive stimuli. This nociceptive extinction phenomenon indicates that the perception of noxious events does not merely rely on the specific activation of the nociceptive system, but also depends on other sensory experiences about the body and the space around it.
Collapse
Affiliation(s)
- Lieve Filbrich
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium; Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Séverine Blandiaux
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Louise Manfron
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium; Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Alessandro Farnè
- ImpAct team, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, Lyon, France
| | - Roxane De Keyser
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Valéry Legrain
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium; Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
41
|
Serino A. Peripersonal space (PPS) as a multisensory interface between the individual and the environment, defining the space of the self. Neurosci Biobehav Rev 2019; 99:138-159. [DOI: 10.1016/j.neubiorev.2019.01.016] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/23/2018] [Accepted: 01/14/2019] [Indexed: 11/25/2022]
|
42
|
Schmidt K, Forkmann K, Schultz H, Gratz M, Bitz A, Wiech K, Bingel U. Enhanced Neural Reinstatement for Evoked Facial Pain Compared With Evoked Hand Pain. THE JOURNAL OF PAIN 2019; 20:1057-1069. [PMID: 30904514 DOI: 10.1016/j.jpain.2019.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/07/2019] [Accepted: 03/14/2019] [Indexed: 11/26/2022]
Abstract
Memory retrieval is accompanied by a reactivation of cortical and subcortical areas that have been active during encoding. This neural reinstatement is stronger during retrieval of pain-associated material compared with other unpleasant events. In this functional magnetic resonance imaging study, we investigated the differences in neural reinstatement during recognition of visual stimuli that had been paired with face or hand pain during memory encoding. Body site-specific neural reinstatement was tested in 23 healthy young volunteers who performed a visual categorization and a surprise recognition task. Our data shows increased neural reinstatement in task-specific and encoding-related areas, such as the parahippocampus (left: x = -26, y = -30, z = -18, t = 4.11; right: x = 26, y = -38, z = -6, t = 4.36), precuneus (x = 2, y = -56, z = 2, t = 3.77), fusiform gyrus (left: x = -24, y = -26, z = -20, t = 5.41; right: x = 18, y = -58, z = -14, t = 4.52), and amygdala (x = -34, y = -4, z = -20, t = 4.49) for pictures that were previously presented with face compared with hand pain. These results correlated with the individual's recognition confidence, although recognition rates did not differ between the conditions. Functional connectivity was increased between the amygdala and parahippocampus (x = 34, y = -10, z = -28, t = 5.13) for pictures that had previously been paired with face compared with hand pain. Our results were positively correlated with pain-related fear, represented by neural activation in the thalamus (x = -14, y = -35, z = 4, t = 3.54). The reported results can be interpreted as compensatory resource activation and support the notion of a stronger affective component of face compared with hand pain, potentially in line with its greater biological relevance. PERSPECTIVE: This study demonstrates neural reinstatement of face pain-related information, which might be related to the increased biological and affective component of face pain compared with pain on the extremities. Our results might contribute to the understanding of the development and prevalence of head and face pain conditions.
Collapse
Affiliation(s)
| | | | - Heidrun Schultz
- School of Psychology, University of Birmingham, United Kingdom
| | - Marcel Gratz
- Hahn Institute for Magnetic Resonance Imaging, Essen, Germany; Highfield and Hybrid MR-Imaging, University Hospital Essen, Essen, Germany
| | - Andreas Bitz
- University of Applied Sciences, Faculty of Electrical Engineering and Information Technology, Aachen, Germany
| | - Katja Wiech
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, United Kingdom
| | - Ulrike Bingel
- Clinic of Neurology, University Hospital Essen, Essen, Germany; Highfield and Hybrid MR-Imaging, University Hospital Essen, Essen, Germany
| |
Collapse
|
43
|
Somervail R, Bufacchi RJ, Guo Y, Kilintari M, Novembre G, Swapp D, Steed A, Iannetti GD. Movement of environmental threats modifies the relevance of the defensive eye-blink in a spatially-tuned manner. Sci Rep 2019; 9:3661. [PMID: 30842481 PMCID: PMC6403335 DOI: 10.1038/s41598-019-40075-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/07/2019] [Indexed: 11/08/2022] Open
Abstract
Subcortical reflexive motor responses are under continuous cortical control to produce the most effective behaviour. For example, the excitability of brainstem circuitry subserving the defensive hand-blink reflex (HBR), a response elicited by intense somatosensory stimuli to the wrist, depends on a number of properties of the eliciting stimulus. These include face-hand proximity, which has allowed the description of an HBR response field around the face (commonly referred to as a defensive peripersonal space, DPPS), as well as stimulus movement and probability of stimulus occurrence. However, the effect of stimulus-independent movements of objects in the environment has not been explored. Here we used virtual reality to test whether and how the HBR-derived DPPS is affected by the presence and movement of threatening objects in the environment. In two experiments conducted on 40 healthy volunteers, we observed that threatening arrows flying towards the participant result in DPPS expansion, an effect directionally-tuned towards the source of the arrows. These results indicate that the excitability of brainstem circuitry subserving the HBR is continuously adjusted, taking into account the movement of environmental objects. Such adjustments fit in a framework where the relevance of defensive actions is continually evaluated, to maximise their survival value.
Collapse
Affiliation(s)
- R Somervail
- Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), London, UK
| | - R J Bufacchi
- Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), London, UK
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Y Guo
- Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), London, UK
| | - M Kilintari
- Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), London, UK
| | - G Novembre
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - D Swapp
- Department of Computer Science, University College London (UCL), London, UK
| | - A Steed
- Department of Computer Science, University College London (UCL), London, UK
| | - G D Iannetti
- Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), London, UK.
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia (IIT), Rome, Italy.
| |
Collapse
|
44
|
Versace V, Campostrini S, Sebastianelli L, Saltuari L, Kofler M. Modulation of exteroceptive electromyographic responses in defensive peripersonal space. J Neurophysiol 2019; 121:1111-1124. [PMID: 30811266 DOI: 10.1152/jn.00554.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cutaneous silent period (CSP) to noxious finger stimulation constitutes a robust spinal inhibitory reflex that protects the hand from injury. In certain conditions, spinal inhibition is interrupted by a brief burst-like electromyographic activity, dividing the CSP into two inhibitory phases (I1 and I2). This excitatory component is termed long-loop reflex (LLR) and is presumed to be transcortical in origin. Efficient defense from environmental threats requires sensorimotor integration between multimodal sensory afferents and planning of defensive movements. In the defensive peripersonal space (DPPS) immediately surrounding the body, we interact with objects and persons with increased alertness. We investigated whether CSP differs when the stimulated hand is in the DPPS of the face compared with a distant position. Furthermore, we investigated the possible role of vision in CSP modulation. Fifteen healthy volunteers underwent CSP testing with the handheld either within 5 cm from the nose (near) or away from the body (far). Recordings were obtained from first dorsal interosseous muscle following index (D2) or little finger (D5) stimulation with varying intensities. A subgroup of subjects underwent CSP recordings in near and far conditions, both with eyes open and with eyes closed. No inhibitory CSP parameter differed between stimulation in near and far conditions. LLRs occurring following D2 stimulation were significantly larger in near than far conditions at all stimulus intensities, irrespective of subjects seeing their hand. Similar to the hand-blink reflex, spinally organized protective reflexes may be modulated by corticospinal facilitatory input when the hand enters the DPPS of the face. NEW & NOTEWORTHY The present findings demonstrate for the first time that a spinally organized protective reflex, the cutaneous silent period (CSP), may be modulated by top-down corticospinal facilitatory input when the stimulated hand enters the defensive peripersonal space (DPPS) of the face. In particular, the cortically mediated excitatory long-loop reflex, which may interrupt the CSP, is facilitated when the stimulated hand is in the DPPS, irrespective of visual control over the hand. No spinal inhibitory CSP parameter differs significantly in or outside the DPPS.
Collapse
Affiliation(s)
- Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno/Sterzing and Research Unit for Neurorehabilitation of South Tyrol, Sterzing, Italy
| | - Stefania Campostrini
- Department of Neurorehabilitation, Hospital of Vipiteno/Sterzing and Research Unit for Neurorehabilitation of South Tyrol, Sterzing, Italy
| | - Luca Sebastianelli
- Department of Neurorehabilitation, Hospital of Vipiteno/Sterzing and Research Unit for Neurorehabilitation of South Tyrol, Sterzing, Italy
| | - Leopold Saltuari
- Department of Neurorehabilitation, Hospital of Vipiteno/Sterzing and Research Unit for Neurorehabilitation of South Tyrol, Sterzing, Italy.,Department of Neurology, Hochzirl Hospital, Zirl, Austria
| | - Markus Kofler
- Department of Neurology, Hochzirl Hospital, Zirl, Austria
| |
Collapse
|
45
|
Fossataro C, Bruno V, Gindri P, Garbarini F. Defending the Body Without Sensing the Body Position: Physiological Evidence in a Brain-Damaged Patient With a Proprioceptive Deficit. Front Psychol 2018; 9:2458. [PMID: 30564182 PMCID: PMC6288365 DOI: 10.3389/fpsyg.2018.02458] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 11/20/2018] [Indexed: 01/10/2023] Open
Abstract
The ability to know where our body parts are located in space (proprioception) is fundamental for both successfully interacting with the external world and monitoring potential threats. In this case-control study, we investigated whether the absence of proprioceptive signals may affect physiological defensive responses. To this aim, a right brain-damaged patient with a left upper-limb proprioceptive deficit (P+ patient) and age-matched healthy controls, underwent the recording of the Hand-Blink Reflex (HBR). This defensive response, elicited by electrical stimulation of the median nerve and recorded from the orbicularis oculi, is modulated by the hand position: it is enhanced when the threatened hand is near to the face, inside the defensive peripersonal-space (DPPS). According to the classical neuropsychological perspective, we used P+ patient as a model to investigate the role of proprioception in HBR modulation, by manipulating the congruity/incongruity between the intended and actual positions of the stimulated hand. P+ patient, with his eyes closed, had to voluntarily place his left hand either far from or near to his face and to relieve the arm's weight over a supporting device. Then, in congruent conditions, the hand was stimulated in the actual (intended) position. In incongruent conditions, the patient's hand was moved by the examiner from the intended to the opposite (not-intended) position and then stimulated. We observed an inverse response pattern between congruent and incongruent conditions. In congruent conditions, P+ patient showed an HBR enhancement in near compared to far position, comparable to that found in healthy controls. This suggests that, even in absence of proprioceptive and visual information, the HBR modulation was still present. Conversely, in incongruent conditions, P+ patient showed a greater HBR magnitude for far position (when the hand was actually far, but the patient intended it to be near) than for near position (when the hand was actually near, but the patient intended it to be far). This result suggests that proprioceptive signals are not necessary for HBR modulation to occur. It relies more on the intended than on the actual position of the hand. The role of motor intention and planning in shaping the DPPS is discussed.
Collapse
Affiliation(s)
- Carlotta Fossataro
- MANIBUS Laboratory, Psychology Department, University of Turin, Turin, Italy
| | - Valentina Bruno
- MANIBUS Laboratory, Psychology Department, University of Turin, Turin, Italy
| | - Patrizia Gindri
- MANIBUS Laboratory, Psychology Department, University of Turin, Turin, Italy
- San Camillo Hospital of Turin, Turin, Italy
| | - Francesca Garbarini
- MANIBUS Laboratory, Psychology Department, University of Turin, Turin, Italy
- San Camillo Hospital of Turin, Turin, Italy
| |
Collapse
|
46
|
Bufacchi RJ, Iannetti GD. An Action Field Theory of Peripersonal Space. Trends Cogn Sci 2018; 22:1076-1090. [PMID: 30337061 PMCID: PMC6237614 DOI: 10.1016/j.tics.2018.09.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 11/16/2022]
Abstract
Predominant conceptual frameworks often describe peripersonal space (PPS) as a single, distance-based, in-or-out zone within which stimuli elicit enhanced neural and behavioural responses. Here we argue that this intuitive framework is contradicted by neurophysiological and behavioural data. First, PPS-related measures are not binary, but graded with proximity. Second, they are strongly influenced by factors other than proximity, such as walking, tool use, stimulus valence, and social cues. Third, many different PPS-related responses exist, and each can be used to describe a different space. Here, we reconceptualise PPS as a set of graded fields describing behavioural relevance of actions aiming to create or avoid contact between objects and the body. This reconceptualisation incorporates PPS into mainstream theories of action selection and behaviour.
Collapse
Affiliation(s)
- Rory J Bufacchi
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK; Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London, UK
| | - Gian Domenico Iannetti
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK; Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London, UK; Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy.
| |
Collapse
|
47
|
Blini E, Desoche C, Salemme R, Kabil A, Hadj-Bouziane F, Farnè A. Mind the Depth: Visual Perception of Shapes Is Better in Peripersonal Space. Psychol Sci 2018; 29:1868-1877. [PMID: 30285541 PMCID: PMC6238160 DOI: 10.1177/0956797618795679] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Closer objects are invariably perceived as bigger than farther ones and are therefore
easier to detect and discriminate. This is so deeply grounded in our daily experience that
no question has been raised as to whether the advantage for near objects depends on other
features (e.g., depth itself). In a series of five experiments (N = 114),
we exploited immersive virtual environments and visual illusions (i.e., Ponzo) to probe
humans’ perceptual abilities in depth and, specifically, in the space closely surrounding
our body, termed peripersonal space. We reversed the natural distance scaling of size in
favor of the farther object, which thus appeared bigger, to demonstrate a persistent
shape-discrimination advantage for close objects. Psychophysical modeling further
suggested a sigmoidal trend for this benefit, mirroring that found for multisensory
estimates of peripersonal space. We argue that depth is a fundamental, yet overlooked,
dimension of human perception and that future studies in vision and perception should be
depth aware.
Collapse
Affiliation(s)
- Elvio Blini
- 1 Integrative Multisensory Perception Action & Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,2 University of Lyon 1
| | - Clément Desoche
- 3 Hospices Civils de Lyon, Neuro-Immersion Platform, Lyon, France
| | - Romeo Salemme
- 1 Integrative Multisensory Perception Action & Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,3 Hospices Civils de Lyon, Neuro-Immersion Platform, Lyon, France
| | - Alexandre Kabil
- 3 Hospices Civils de Lyon, Neuro-Immersion Platform, Lyon, France
| | - Fadila Hadj-Bouziane
- 1 Integrative Multisensory Perception Action & Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,2 University of Lyon 1
| | - Alessandro Farnè
- 1 Integrative Multisensory Perception Action & Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,2 University of Lyon 1.,3 Hospices Civils de Lyon, Neuro-Immersion Platform, Lyon, France
| |
Collapse
|
48
|
Chillura A, Naro A, Ciappina F, Bramanti A, Lauria P, Bramanti P, Calabrò RS. Detecting peripersonal space: The promising role of ultrasonics. Brain Behav 2018; 8:e01085. [PMID: 30094963 PMCID: PMC6160641 DOI: 10.1002/brb3.1085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/18/2018] [Accepted: 06/20/2018] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION The approach of an external stimulus to the peripersonal space (PPS) modifies some physiological measures, including the cerebral blood flow (CBF) in the supplementary motor area and premotor cortex. CBF measurement may be useful to assess brain activations when producing specific motor responses, likely mediated by cortical and subcortical neural circuits. METHODS This study investigated PPS in 15 healthy humans by characterizing the hemodynamic responses (pulsatility index, PI; and heart rate, HR) related to different directions of movements of individual's hand toward and backward his/her own face, so to perturb PPS). RESULTS We observed that the CBF and HR were enhanced more when the stimulated hand was inside the PPS of the face in the passive and active condition than when the hand was outside the PPS and during motor imagery task. CONCLUSIONS These results suggest that the modulation of PPS-related brain responses depends on specific sensory-motor integration processes related to the location and the final position of a target in the PPS. We may thus propose TCD as a rapid and easy approach to get information concerning brain responses related to stimuli approaching the PPS. Understanding the modulations of brain activations during tasks targeting PPS can help to understand the results of psychophysical and behavioral trials and to plan patient-tailored cognitive rehabilitative training.
Collapse
Affiliation(s)
| | - Antonino Naro
- IRCCS centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | | | | | - Paola Lauria
- IRCCS centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | | | | |
Collapse
|
49
|
Hunley SB, Lourenco SF. What is peripersonal space? An examination of unresolved empirical issues and emerging findings. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2018; 9:e1472. [PMID: 29985555 DOI: 10.1002/wcs.1472] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 11/07/2022]
Abstract
Findings from diverse fields of study, including neuroscience, psychology, zoology, and sociology, demonstrate that human and non-human primates maintain a representation of the space immediately surrounding the body, known as peripersonal space (PPS). However, progress in this field has been hampered by the lack of an agreed upon definition of PPS. Since the beginning of its formal study, scientists have argued that PPS plays a crucial role in both defensive and non-defensive actions. Yet consensus is lacking about the cognitive and neural instantiation of these functions. In particular, researchers have begun to ask whether a single, unified system of spatial-attentional resources supports both the defensive and non-defensive functions of PPS or, rather, whether there are multiple, independent systems. Moreover, there are open questions about the specificity of PPS. For example: Does PPS dissociate from other well-known phenomena such as personal space and the body schema? Finally, emerging research has brought attention to important questions about individual differences in the flexibility of PPS and the distribution of PPS in front compared to behind the body. In this advanced review, we shed light on questions about the nature of PPS, offering answers when the research permits or providing recommendations for achieving answers in future research. In so doing, we lay the groundwork for a comprehensive definition of PPS. This article is categorized under: Cognitive Biology > Evolutionary Roots of Cognition Psychology > Attention Psychology > Perception and Psychophysics Neuroscience > Plasticity.
Collapse
Affiliation(s)
- Samuel B Hunley
- Department of Psychology, Emory University, Atlanta, Georgia
| | | |
Collapse
|
50
|
Spatially-defined motor deficits in people with unilateral complex regional pain syndrome. Cortex 2018; 104:154-162. [DOI: 10.1016/j.cortex.2017.06.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/23/2017] [Accepted: 06/29/2017] [Indexed: 02/05/2023]
|