1
|
Feng N, Huang X, Jia Y. Small extracellular vesicles from adipose derived stem cells alleviate microglia activation and improve motor deficit of Parkinson's disease via miR-100-5p/DTX3L/STAT1 signaling axis. Exp Neurol 2025; 389:115250. [PMID: 40194649 DOI: 10.1016/j.expneurol.2025.115250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/23/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
Dopaminergic neuron loss caused by microglia activation is an important pathological factor of Parkinson's disease (PD). Previously, we reported that small extracellular vesicle from adipose derived stem cells (ADSC-sEVs) could inhibit the activation of microglia and protect neuron apoptosis from microglia activation. However, whether ADSC-sEVs have protective effect on the motor deficit of PD mouse and the exact mechanism remains unknown. In this study, ADSC-sEVs were delivered to experimental model of Parkinson's disease by tail vein injection to explore the in vivo effect of ADSC-sEVs on PD. Next, the potential key microRNA in ADSC-sEVs was screened by RNA sequencing (RNA-seq), and the exact mechanism was further explored. We found that ADSC-sEVs greatly alleviated the activation of microglia and reduced the loss of dopaminergic neurons in the substantia nigra of PD mice, the motor deficit was also significantly improved. By RNA-seq analysis, miR-100-5p was verified as a potential microRNA in this process, because knockdown of miR-100-5p in ADSC-sEVs weakened the protective effect of ADSC-sEVs on PD mouse as well as the anti-inflammatory effect on microglia activation. Finally, we found that miR-100-5p could target Deltex E3 ubiquitin ligase 3 L (DTX3L) and suppress its expression, which then decreased the expression and phosphorylation of Signal Transducers and Activators of Transcription 1 (STAT1), as well as alleviating the activation of microglia. Our findings illustrate that ADSC-sEVs are an effective therapy for PD, and it could be a promising therapy for the treatment of PD.
Collapse
Affiliation(s)
- Nianhua Feng
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, China.
| | - Xiaoxi Huang
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, China
| | - Yanjun Jia
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, China
| |
Collapse
|
2
|
Zhang L, Guan C, Wang S, Pfeiffer N, Grus FH. Anti-TNFα and Anti-IL-1β Monoclonal Antibodies Preserve BV-2 Microglial Homeostasis Under Hypoxia by Mitigating Inflammatory Reactivity and ATF4/MAPK-Mediated Apoptosis. Antioxidants (Basel) 2025; 14:363. [PMID: 40338234 PMCID: PMC11939723 DOI: 10.3390/antiox14030363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 05/09/2025] Open
Abstract
The disruption of microglial homeostasis and cytokine release are critical for neuroinflammation post-injury and strongly implicated in retinal neurodegenerative diseases like glaucoma. This study examines microglial responses to chemical hypoxia induced by cobalt chloride (CoCl2) in BV-2 murine microglial cells, focusing on signaling pathways and proteomic alterations. We assessed the protective effects of monoclonal antibodies against TNFα and IL-1β. CoCl2 exposure led to decreased cell viability, reduced mitochondrial membrane potential, increased lactate dehydrogenase release, elevated reactive oxygen species generation, and activation of inflammatory pathways, including nitric oxide synthase (iNOS), STAT1, and NF-κB/NLRP3. These responses were significantly mitigated by treatment with anti-TNFα and anti-IL-1β, suggesting their dual role in reducing microglial damage and inhibiting inflammatory reactivity. Additionally, these treatments reduced apoptosis by modulating ATF4 and the p38 MAPK/caspase-3 pathways. Label-free quantitative mass spectrometry-based proteomics and Gene Ontology revealed that CoCl2 exposure led to the upregulation of proteins primarily involved in endoplasmic reticulum and catabolic processes, while downregulated proteins are associated with biosynthesis. Anti-TNFα and anti-IL-1β treatments partially restored the proteomic profile toward normalcy, with network analysis identifying heat shock protein family A member 8 (HSPA8) as a central mediator in recovery. These findings offer insights into the pathogenesis of hypoxic microglial impairment and suggest potential therapeutic targets.
Collapse
Affiliation(s)
- Linglin Zhang
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (L.Z.); (C.G.); (N.P.)
| | - Chaoqiang Guan
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (L.Z.); (C.G.); (N.P.)
| | - Sudena Wang
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany;
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (L.Z.); (C.G.); (N.P.)
| | - Franz H. Grus
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (L.Z.); (C.G.); (N.P.)
| |
Collapse
|
3
|
Samidurai M, Chennakesavan K, Sarkar S, Malovic E, Nguyen HM, Singh L, Kumar A, Ealy A, Janarthanam C, Palanisamy BN, Kondru N, Zenitsky G, Jin H, Anantharam V, Kanthasamy A, Zhang H, Wulff H, Kanthasamy A. KCa3.1 Contributes to Neuroinflammation and Nigral Dopaminergic Neurodegeneration in Experimental models of Parkinson's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643982. [PMID: 40166152 PMCID: PMC11956954 DOI: 10.1101/2025.03.18.643982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Chronic neuroinflammation and misfolded α-synuclein (αSyn) have been identified as key pathological correlates driving Parkinson's disease (PD) pathogenesis; however, the contribution of ion channels to microglia activation in the context of α-synucleinopathy remains elusive. Herein, we show that KCa3.1, a calcium-activated potassium channel, is robustly upregulated within microglia in multiple preclinical models of PD and, most importantly, in human PD and dementia with Lewy bodies (DLB) brains. Pharmacological inhibition of KCa3.1 via senicapoc or TRAM-34 inhibits KCa3.1 channel activity and the associated reactive microglial phenotype in response to aggregated αSyn, as well as ameliorates of PD like pathology in diverse PD mouse models. Additionally, proteomic and transcriptomic profiling of microglia revealed that senicapoc ameliorates aggregated αSyn-induced, inflammation-associated pathways and dysregulated metabolism in primary microglial cells. Mechanistically, FYN kinase in a STAT1 dependent manner regulates KCa3.1 mediated the microglial reactive activation phenotype after α-synucleinopathy. Moreover, reduced neuroinflammation and subsequent PD-like neuropathology were observed in SYN AAV inoculated KCa3.1 knockout mice. Together, these findings suggest that KCa3.1 inhibition represents a novel therapeutic strategy for treating patients with PD and related α-synucleinopathies.
Collapse
|
4
|
Xu L, Ye Y, Gu W, Xu X, Chen N, Zhang L, Cai W, Hu J, Wang T, Chao H, Tu Y, Ji J. Histone lactylation stimulated upregulation of PSMD14 alleviates neuron PANoptosis through deubiquitinating PKM2 to activate PINK1-mediated mitophagy after traumatic brain injury. Autophagy 2025:1-19. [PMID: 40000916 DOI: 10.1080/15548627.2025.2471633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 02/27/2025] Open
Abstract
Alleviating the multiple types of programmed neuronal death caused by mechanical injury has been an impetus for designing neuro-therapeutical approaches after traumatic brain injury (TBI). The aim of this study was to elucidate the potential role of PSMD14 (proteasome 26S subunit, non-ATPase 14) in neuron death and the specific mechanism through which it improves prognosis of TBI patients. Here, we identified differential expression of the PSMD14 protein between the controlled cortical impact (CCI) and sham mouse groups by LC-MS proteomic analysis and found that PSMD14 was significantly upregulated in neurons after brain injury by qPCR and western blot. PSMD14 suppressed stretch-induced neuron PANoptosis and improved motor ability and learning performance after CCI in vivo. Mechanistically, PSMD14 improved PINK1 phosphorylation levels at Thr257 and activated PINK1-mediated mitophagy by deubiquitinating PKM/PKM2 (pyruvate kinase M1/2) to maintain PKM protein stability. PSMD14-induced mitophagy promoted mitochondrial homeostasis to reduced ROS production, and ultimately inhibited the neuron PANoptosis. The upregulation of neuronal PSMD14 after TBI was due to the increase of histone lactation modification level and lactate treatment alleviated neuron PANoptosis via increasing PSMD14 expression. Our findings suggest that PSMD14 could be a potential therapeutic approach for improving the prognosis of TBI patients.Abbreviations: CCI: controlled cortical impact; CQ: chloroquine; DUBs: deubiquitinating enzymes; H3K18la: H3 lysine 18 lactylation; IB: immunoblot; IHC: immunohistochemistry; IP: immunoprecipitation; MLKL: mixed lineage kinase domain like pseudokinase; PI3K: phosphoinositide 3-kinase; PINK1: PTEN induced kinase 1; PKM/PKM2: pyruvate kinase M1/2; PSMD14: proteasome 26S subunit, non-ATPase 14; ROS: reactive oxygen species; RIPK1: receptor interacting serine/threonine kinase 1; RIPK3: receptor interacting serine/threonine kinase 3; TBI: traumatic brain injury.
Collapse
Affiliation(s)
- Lei Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yangfan Ye
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Gu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Nuo Chen
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liuchao Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wanzhi Cai
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingming Hu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tian Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Honglu Chao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yiming Tu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Ji
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Neurosurgery, The Affiliated Kizilsu Kirghiz Autonomous Prefecture People's Hospital of Nanjing Medical University, Artux, Xinjiang, China
| |
Collapse
|
5
|
Kim S, Yang K, Kim K, Kim HJ, Kim DY, Chae J, Ahn YH, Kang JL. The interplay of cancer-associated fibroblasts and apoptotic cancer cells suppresses lung cancer cell growth through WISP-1-integrin ανβ3-STAT1 signaling pathway. Cell Commun Signal 2025; 23:98. [PMID: 39966869 PMCID: PMC11837402 DOI: 10.1186/s12964-025-02094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/08/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Cell death within the tumor microenvironment (TME) plays a crucial role in controlling cancer by influencing the balance of tumor-specific immunity. Cancer-associated fibroblasts (CAFs) significantly contribute to tumor progression through paracrine mechanisms. We found that reprogramming of CAFs by apoptotic cancer cells suppresses tumor volume and lung metastasis. Here, we investigated the mechanisms by which the interaction between apoptotic lung cancer cells and CAFs hinders tumor growth. METHODS Experimental methods including CCK assay, colony formation assay, immunoblotting, co-immunoprecipitation, qRT-PCR analysis, qRT-PCR array, apoptosis assay, ELISA, and immunofluorescent staining were used in this study. Additionally, CAFs were isolated from lung tumors of Kras-mutant (KrasLA1) mice and human lung adenocarcinoma samples using magnetic-activated cell sorting. Murine lung cancer cells (344SQ cells) along with various human cancer cell lines (A549, HCT116, and LoVo) were cultured. In animal study, conditioned medium (CM) derived from CAFs (undiluted or 50% diluted) with or without neutralizing anti-WISP-1 antibody was administered into syngeneic mice to study anti-tumoral effects. To confirm the paracrine role of WISP-1, recombinant WISP-1 (rWISP-1) was administered via intratumoral injection. RESULTS We demonstrate that treatment with CM from lung CAFs exposed to apoptotic cancer cells suppresses proliferation and promotes apoptosis in lung cancer cells through STAT1 signaling. Pharmacologic inhibition of Notch1 activation or siRNA-mediated Notch1 silencing in CAFs reversed the antiproliferative and proapoptotic effects. Similarly, knockdown of Wnt-induced signaling protein 1 (WISP-1) in CAFs or neutralizing the CM with anti-WISP-1 antibodies reversed the antiproliferative and proapoptotic effects. WISP-1 signaled through integrin ανβ3-STAT1 signaling pathway to inhibit cancer cell growth and promote apoptosis. The in vivo introduction of CM derived from apoptotic 344SQ-exposed CAFs (ApoSQ-CAF CM) potently decelerated tumor growth. This effect was observed alongside the downregulation of proliferative and anti-apoptotic markers, while simultaneously boosting the activation of phosphorylated STAT1 and pro-apoptotic markers in CD326+ tumor cells within syngeneic immunocompetent mice. rWISP-1 effectively replicates the in vivo effects of ApoSQ-CAF CM. CONCLUSIONS These findings suggest that CM from apoptotic cancer cell-exposed CAFs may offer a promising therapeutic approach by lung cancer suppression.
Collapse
Affiliation(s)
- Shinyoung Kim
- Department of Physiology, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, Korea
| | - Kyungwon Yang
- Department of Physiology, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, Korea
| | - Kiyoon Kim
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, Korea
| | - Hee Ja Kim
- Department of Physiology, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Korea
| | - Da Young Kim
- Department of Physiology, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, Korea
| | - Jeesoo Chae
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, 07985, Korea
| | - Young-Ho Ahn
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, Korea
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, 07985, Korea
| | - Jihee Lee Kang
- Department of Physiology, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Korea.
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, Korea.
| |
Collapse
|
6
|
Xue L, Wu Y. Activation of PPARγ regulates M1/M2 macrophage polarization and attenuates dextran sulfate sodium salt-induced inflammatory bowel disease via the STAT-1/STAT-6 pathway. Kaohsiung J Med Sci 2025; 41:e12927. [PMID: 39737788 PMCID: PMC11827550 DOI: 10.1002/kjm2.12927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/01/2025] Open
Abstract
This study aimed to investigate whether activation of PPARγ regulates M1/M2 macrophage polarization to attenuate dextran sulfate sodium salt (DSS)-induced inflammatory bowel disease (IBD) via the STAT-1/STAT-6 pathway in vivo and in vitro. We first examined the effect of PPARγ on macrophage polarization in LPS/IFN-γ-treated M1 RAW264.7 cells and IL-4/IL-13-treated M2 RAW264.7 cells. Then, 40 male C57BL/6 mice were randomly divided into five groups: the Sham, IBD, IBD + fludarabine (FLU), IBD + IL-4, and IBD + pioglitazone (PI) groups. The mice received 2.5% DSS in their drinking water for 7 days and then received regular water for 2 days to establish the experimental IBD murine model. The mice in the IBD + FLU, IBD + IL-4, and IBD + PI groups were intraperitoneally injected with FLU, IL-4, and PI, respectively, for 9 days. Clinical symptoms, intestinal barrier function, macrophage polarization, PPARγ, and the STAT-1/STAT-6 pathway were analyzed. Activation of PPARγ decreased M1 polarization marker expression and STAT-1 phosphorylation and increased M2 polarization marker expression and STAT-6 phosphorylation in RAW264.7 cells. Activation of PPARγ attenuated disease symptoms, such as weight loss, diarrhea, and bloody stool. Histological analysis revealed that PI treatment reduced inflammatory cell infiltration, restored the mucosal architecture, and improved the expression of tight junction proteins. Moreover, the activation of PPARγ decreased the expression of iNOS and increased the expression of Arg-1, Fizz 1, and Ym 1 by inhibiting STAT-1 phosphorylation and promoting STAT-6 phosphorylation in mice with DSS-induced IBD. Activation of PPARγ regulates M1/M2 macrophage polarization to attenuate DSS-induced IBD via the STAT-1/STAT-6 pathway in vivo and in vitro.
Collapse
Affiliation(s)
- Liang Xue
- Department of Gastrointestinal SurgeryThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
- Department of General SurgeryThe First People's Hospital of LianyungangLianyungangChina
| | - Yong‐You Wu
- Department of Gastrointestinal SurgeryThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
7
|
Atalay Ekiner S, Gęgotek A, Domingues P, Domingues MR, Skrzydlewska E. Comparison of Microalgae Nannochloropsis oceanica and Chlorococcum amblystomatis Lipid Extracts Effects on UVA-Induced Changes in Human Skin Fibroblasts Proteome. Mar Drugs 2024; 22:509. [PMID: 39590789 PMCID: PMC11595653 DOI: 10.3390/md22110509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Lipid extracts from the microalgae Nannochloropsis oceanica and Chlorococcum amblystomatis have great potential to prevent ultraviolet A (UVA)-induced metabolic disorders. Therefore, the aim of this study has been to analyze their cytoprotective effect, focused on maintaining intracellular redox balance and inflammation in UVA-irradiated skin fibroblasts, at the proteome level. The above lipid extracts reversed the suppression of the antioxidant response caused by UVA radiation, which was more visible in the case of C. amblystomatis. Modulations of interactions between heme oxygenase-1 and matrix metalloproteinase 1/Parkinson's disease protein 7/transcript1-α/β, as well as thioredoxin and migration inhibitory factor/Parkinson's disease protein 7/calnexin/ATPase p97, created key molecular signaling underlying their cytoprotective actions. Moreover, they reduced pro-inflammatory processes in the control group but they also showed the potential to regulate the cellular inflammatory response by changing inflammasome signaling associated with the changes in the caspase-1 interaction area, including heat shock proteins HSP90, HSPA8, and vimentin. Therefore, lipid extracts from N. oceanica and C. amblystomatis protect skin fibroblast metabolism from UVA-induced damage by restoring the redox balance and regulating inflammatory signaling pathways. Thus, those extracts have proven to have great potential to be used in cosmetic or cosmeceutical products to protect the skin against the effects of solar radiation. However, the possibility of their use requires the evaluation of their effects at the skin level in in vivo and clinical studies.
Collapse
Affiliation(s)
- Sinemyiz Atalay Ekiner
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland; (S.A.E.); (A.G.)
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland; (S.A.E.); (A.G.)
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (P.D.); (M.R.D.)
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (P.D.); (M.R.D.)
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland; (S.A.E.); (A.G.)
| |
Collapse
|
8
|
Pei CS, Hou XO, Ma ZY, Tu HY, Qian HC, Li Y, Li K, Liu CF, Ouyang L, Liu JY, Hu LF. α-Synuclein disrupts microglial autophagy through STAT1-dependent suppression of Ulk1 transcription. J Neuroinflammation 2024; 21:275. [PMID: 39462396 PMCID: PMC11515151 DOI: 10.1186/s12974-024-03268-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Autophagy dysfunction in glial cells is implicated in the pathogenesis of Parkinson's disease (PD). The previous study reported that α-synuclein (α-Syn) disrupted autophagy in cultured microglia. However, the mechanism of microglial autophagy dysregulation is poorly understood. METHODS Two α-Syn-based PD models were generated via AAV-mediated α-Syn delivery into the mouse substantia nigra and striatal α-Syn preformed fibril (PFF) injection. The levels of microglial UNC-51-like kinase 1 (Ulk1) and other autophagy-related genes in vitro and in PD mice, as well as in the peripheral blood mononuclear cells of PD patients and healthy controls, were determined via quantitative PCR, western blotting and immunostaining. The regulatory effect of signal transducer and activator of transcription 1 (STAT1) on Ulk1 transcription was determined via a luciferase reporter assay and other biochemical studies and was verified through Stat1 knockdown or overexpression. The effect of α-Syn on glial STAT1 activation was assessed by immunohistochemistry and western blotting. Changes in microglial status, proinflammatory molecule expression and dopaminergic neuron loss in the nigrostriatum of PD and control mice following microglial Stat1 conditional knockout (cKO) or treatment with the ULK1 activator BL-918 were evaluated by immunostaining and western blotting. Motor behaviors were determined via open field tests, rotarod tests and balance beam crossing. RESULTS The transcription of microglial ULK1, a kinase that controls autophagy initiation, decreased in both in vitro and in vivo PD mouse models. STAT1 plays a critical role in suppressing Ulk1 transcription. Specifically, Stat1 overexpression downregulated Ulk1 transcription, while Stat1 knockdown increased ULK1 expression, along with an increase in LC3II and a decrease in the SQSTM1/p62 protein. α-Syn PFF caused toll-like receptor 4-dependent activation of STAT1 in microglia. Ablation of Stat1 alleviated the decrease in microglial ULK1 expression and disruption of autophagy caused by α-Syn PFF. Importantly, the ULK1 activator BL-918 and microglial Stat1 cKO attenuated neuroinflammation, dopaminergic neuronal damage and motor defects in PD models. CONCLUSIONS These findings reveal a novel mechanism by which α-Syn impairs microglial autophagy and indicate that targeting STAT1 or ULK1 may be a therapeutic strategy for PD.
Collapse
Affiliation(s)
- Chong-Shuang Pei
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xiao-Ou Hou
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhen-Yuan Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Hai-Yue Tu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Hai-Chun Qian
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yang Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kai Li
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jun-Yi Liu
- Department of Neurology, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Li-Fang Hu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China.
- Institute of Neuroscience, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
9
|
He H, Zhang X, He H, Xu G, Li L, Yang C, Liu Y, You Z, Zhang J. Microglial priming by IFN-γ involves STAT1-mediated activation of the NLRP3 inflammasome. CNS Neurosci Ther 2024; 30:e70061. [PMID: 39392762 PMCID: PMC11468839 DOI: 10.1111/cns.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/31/2024] [Accepted: 09/10/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Inflammatory and immune responses in the brain that contribute to various neuropsychiatric disorders may begin as microglial "priming". Interferon (IFN)-γ is known to cause microglial priming, but the mechanism is unclear. METHODS We examined the effects of IFN-γ on gene expression, microglial activation, inflammatory and immune responses and activity of the NLRP3 inflammasome in primary microglia and in the brains of mice. RESULTS Our results showed that treating microglial cultures with IFN-γ induced a hedgehog-like morphology and upregulated markers of microglial activation (CD86, CD11b) and pro-inflammatory molecules (IL-1β, IL-6, TNF-α, iNOS), while downregulating markers of microglial homeostasis (CX3CR1, CD200R1), anti-inflammatory molecules (MCR1, Arg-1) and neurotrophic factors (IGF-1, BDNF). IFN-γ also upregulated markers of NLRP3 inflammasome activation (NLRP3, caspase-1, gasdermin D, IL-18). This particular transcriptional profiling makes IFN-γ-primed microglia with exaggerated responses upon lipopolysaccharide (LPS) stimulation. The level of NLRP3, caspase-1, gasdermin D, IL-1β, IL-18, TNF-α and iNOS in microglia cultures treated with both IFN-γ and LPS were highest than with either one alone. Injecting IFN-γ into the lateral ventricle of mice induced similar morphological and functional changes in hippocampal microglia as in primary microglial cultures. The effects of IFN-γ on NLRP3 inflammasome and microglia from cultures or hippocampus were abolished when STAT1 was inhibited using fludarabin. Injecting mice with IFN-γ alone or together with LPS induced anxiety- and depression-like behaviors and impaired hippocampus-dependent spatial memory; these effects were mitigated by fludarabin. CONCLUSIONS IFN-γ primes microglia by activating STAT1, which upregulates genes that activate the NLRP3 inflammasome. Inhibiting the IFN-γ/STAT1 axis may be a way to treat neurodegenerative diseases and psychiatric disorders that involve microglial priming.
Collapse
Affiliation(s)
- Haili He
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese MedicineGuiyangChina
| | - Xiaomei Zhang
- School of Life Science and Technology, Center for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Hui He
- School of Life Science and Technology, Center for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Gaojie Xu
- School of Life Science and Technology, Center for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Liangyuan Li
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese MedicineGuiyangChina
| | - Chengyan Yang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese MedicineGuiyangChina
| | - Yu‐e Liu
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese MedicineGuiyangChina
| | - Zili You
- School of Life Science and Technology, Center for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Jinqiang Zhang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese MedicineGuiyangChina
| |
Collapse
|
10
|
Romero-Ramírez L, García-Rama C, Mey J. Janus Kinase Inhibitor Brepocitinib Rescues Myelin Phagocytosis Under Inflammatory Conditions: In Vitro Evidence from Microglia and Macrophage Cell Lines. Mol Neurobiol 2024; 61:6423-6434. [PMID: 38308667 DOI: 10.1007/s12035-024-03963-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/16/2024] [Indexed: 02/05/2024]
Abstract
Central nervous system (CNS) injuries induce cell death and consequently the release of myelin and other cellular debris. Microglia as well as hematogenous macrophages actively collaborate to phagocyte them and undergo their degradation. However, myelin accumulation persists in the lesion site long after the injury with detrimental effects on axonal regeneration. This might be due to the presence of inhibitors of phagocytosis in the injury site. As we recently published that some proinflammatory stimuli, like interferon-γ (IFNγ) and lipopolysaccharide (LPS), inhibit myelin phagocytosis in macrophages, we have now studied the signaling pathways involved. A phagocytosis assay in Raw264.7 macrophages and N13 microglia cell lines with labeled myelin was developed with the pHrodo reagent that emits fluorescence in acidic cellular compartments (e.g.lysosomes). Pharmacological inhibition of Janus kinases (Jak) with Brepocitinib restored myelin phagocytosis and rescued the expression of genes related to phagocytosis, like triggering receptor expressed on myeloid cells 2 (TREM2), induced by IFNγ or LPS. In addition, while pharmacological inhibition of the signal transducer and activator of transcription 3 (STAT3) rescued myelin phagocytosis and the expression of phagocytosis related genes in the presence of LPS, it did not have any effect on IFNγ-treated cells. Our results show that Jak pathways participate in the inhibition of myelin phagocytosis by IFNγ and LPS. They also indicate that the resolution of inflammation is important for the clearance of cellular debris by macrophages and subsequent regenerative processes.
Collapse
Affiliation(s)
- Lorenzo Romero-Ramírez
- Laboratorio de Regeneración Neuronal, Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda S/N, 45071, Toledo, Spain.
| | - Concepción García-Rama
- Laboratorio de Regeneración Neuronal, Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda S/N, 45071, Toledo, Spain
| | - Jörg Mey
- Laboratorio de Regeneración Neuronal, Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda S/N, 45071, Toledo, Spain
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
11
|
Wu JW, Gao W, Shen LP, Chen YL, Du SQ, Du ZY, Zhao XD, Lu XJ. Leonurus japonicus Houtt. modulates neuronal apoptosis in intracerebral hemorrhage: Insights from network pharmacology and molecular docking. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118223. [PMID: 38642624 DOI: 10.1016/j.jep.2024.118223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Leonurus japonicus Houtt. (Labiatae), commonly known as Chinese motherwort, is a herbaceous flowering plant that is native to Asia. It is widely acknowledged in traditional medicine for its diuretic, hypoglycemic, antiepileptic properties and neuroprotection. Currently, Leonurus japonicus (Leo) is included in the Pharmacopoeia of the People's Republic of China. Traditional Chinese Medicine (TCM) recognizes Leo for its myriad pharmacological attributes, but its efficacy against ICH-induced neuronal apoptosis is unclear. AIMS OF THE STUDY This study aimed to identify the potential targets and regulatory mechanisms of Leo in alleviating neuronal apoptosis after ICH. MATERIALS AND METHODS The study employed network pharmacology, UPLC-Q-TOF-MS technique, molecular docking, pharmacodynamic studies, western blotting, and immunofluorescence techniques to explore its potential mechanisms. RESULTS Leo was found to assist hematoma absorption, thus improving the neurological outlook in an ICH mouse model. Importantly, molecular docking highlighted JAK as Leo's potential therapeutic target in ICH scenarios. Further experimental evidence demonstrated that Leo adjusts JAK1 and STAT1 phosphorylation, curbing Bax while augmenting Bcl-2 expression. CONCLUSION Leo showcases potential in mitigating neuronal apoptosis post-ICH, predominantly via the JAK/STAT mechanism.
Collapse
Affiliation(s)
- Jia-Wei Wu
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China; Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province, 214122, PR China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
| | - Wei Gao
- Department of Neurology, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu Province, 214122, PR China
| | - Li-Ping Shen
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province, 214122, PR China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
| | - Yong-Lin Chen
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China; Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province, 214122, PR China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
| | - Shi-Qing Du
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China; Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province, 214122, PR China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
| | - Zhi-Yong Du
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China; Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province, 214122, PR China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
| | - Xu-Dong Zhao
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China; Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province, 214122, PR China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China.
| | - Xiao-Jie Lu
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China; Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province, 214122, PR China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China.
| |
Collapse
|
12
|
Del Águila Á, Zhang R, Yu X, Dang L, Xu F, Zhang J, Jain V, Tian J, Zhong XP, Sheng H, Yang W. Microglial heterogeneity in the ischemic stroke mouse brain of both sexes. Genome Med 2024; 16:95. [PMID: 39095897 PMCID: PMC11295600 DOI: 10.1186/s13073-024-01368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Ischemic stroke elicits a complex and sustained immune response in the brain. Immunomodulatory treatments have long held promise for improving stroke outcomes, yet none have succeeded in the clinical setting. This lack of success is largely due to our incomplete understanding of how immune cells respond to stroke. The objective of the current study was to dissect the effect of permanent stroke on microglia, the resident immune cells within the brain parenchyma. METHODS A permanent middle cerebral artery occlusion (pMCAO) model was used to induce ischemic stroke in young male and female mice. Microglia were sorted from fluorescence reporter mice after pMCAO or sham surgery and then subjected to single-cell RNA sequencing analysis. Various methods, including flow cytometry, RNA in situ hybridization, immunohistochemistry, whole-brain imaging, and bone marrow transplantation, were also employed to dissect the microglial response to stroke. Stroke outcomes were evaluated by infarct size and behavioral tests. RESULTS First, we showed the morphologic and spatial changes in microglia after stroke. We then performed single-cell RNA sequencing analysis on microglia isolated from sham and stroke mice of both sexes. The data indicate no major sexual dimorphism in the microglial response to permanent stroke. Notably, we identified seven potential stroke-associated microglial clusters, including four major clusters characterized by a disease-associated microglia-like signature, a highly proliferative state, a macrophage-like profile, and an interferon (IFN) response signature, respectively. Importantly, we provided evidence that the macrophage-like cluster may represent the long-sought stroke-induced microglia subpopulation with increased CD45 expression. Lastly, given that the IFN-responsive subset constitutes the most prominent microglial population in the stroke brain, we used fludarabine to pharmacologically target STAT1 signaling and found that fludarabine treatment improved long-term stroke outcome. CONCLUSIONS Our findings shed new light on microglia heterogeneity in stroke pathology and underscore the potential of targeting specific microglial populations for effective stroke therapies.
Collapse
Affiliation(s)
- Ángela Del Águila
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University Medical Center, 303 Research Drive, Box 3094, Durham, NC, 27710, USA
| | - Ran Zhang
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University Medical Center, 303 Research Drive, Box 3094, Durham, NC, 27710, USA
| | - Xinyuan Yu
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University Medical Center, 303 Research Drive, Box 3094, Durham, NC, 27710, USA
| | - Lihong Dang
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University Medical Center, 303 Research Drive, Box 3094, Durham, NC, 27710, USA
| | - Feng Xu
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University Medical Center, 303 Research Drive, Box 3094, Durham, NC, 27710, USA
| | - Jin Zhang
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University Medical Center, 303 Research Drive, Box 3094, Durham, NC, 27710, USA
| | - Vaibhav Jain
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Jilin Tian
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Xiao-Ping Zhong
- Departments of Pediatrics and Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
| | - Huaxin Sheng
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University Medical Center, 303 Research Drive, Box 3094, Durham, NC, 27710, USA
| | - Wei Yang
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University Medical Center, 303 Research Drive, Box 3094, Durham, NC, 27710, USA.
- Department of Neurology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
13
|
Hu L, Liu Y, Yuan Z, Guo H, Duan R, Ke P, Meng Y, Tian X, Xiao F. Glucose-6-phosphate dehydrogenase alleviates epileptic seizures by repressing reactive oxygen species production to promote signal transducer and activator of transcription 1-mediated N-methyl-d-aspartic acid receptors inhibition. Redox Biol 2024; 74:103236. [PMID: 38875958 PMCID: PMC11225908 DOI: 10.1016/j.redox.2024.103236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024] Open
Abstract
The pathogenesis of epilepsy remains unclear; however, a prevailing hypothesis suggests that the primary underlying cause is an imbalance between neuronal excitability and inhibition. Glucose-6-phosphate dehydrogenase (G6PD) is a key enzyme in the pentose phosphate pathway, which is primarily involved in deoxynucleic acid synthesis and antioxidant defense mechanisms and exhibits increased expression during the chronic phase of epilepsy, predominantly colocalizing with neurons. G6PD overexpression significantly reduces the frequency and duration of spontaneous recurrent seizures. Furthermore, G6PD overexpression enhances signal transducer and activator of transcription 1 (STAT1) expression, thus influencing N-methyl-d-aspartic acid receptors expression, and subsequently affecting seizure activity. Importantly, the regulation of STAT1 by G6PD appears to be mediated primarily through reactive oxygen species signaling pathways. Collectively, our findings highlight the pivotal role of G6PD in modulating epileptogenesis, and suggest its potential as a therapeutic target for epilepsy.
Collapse
Affiliation(s)
- Liqin Hu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China
| | - Yan Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China
| | - Ziwei Yuan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China
| | - Haokun Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China
| | - Ran Duan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China
| | - Pingyang Ke
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China
| | - Yuan Meng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China.
| | - Fei Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
14
|
Zhou D, Yu T, Zhang Z, Li G, Li Y. An integrated bioinformatics analysis reveals IRF8 as a critical biomarker for immune infiltration in atherosclerosis advance. Clin Exp Pharmacol Physiol 2024; 51:e13872. [PMID: 38886134 DOI: 10.1111/1440-1681.13872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/20/2024]
Abstract
Atherosclerosis, a lipid-driven chronic inflammatory disorder, is a significant global health concern associated with high rates of morbidity and mortality, imposing a substantial societal burden. The purpose of this study is to investigate the possible molecular mechanisms of atherosclerosis and identify potential therapeutic targets. We conducted an integrated bioinformatics analysis using data from peripheral blood mononuclear cell and TISSUE databases obtained from the Gene Expression Omnibus, to identify key genes associated with the progression of atherosclerosis. Here, IRF8 was found to be a key gene in atherosclerosis patients. Silencing IRF8 with small interfering RNA reduced inflammation in endothelial cells. This suggests IRF8 is a crucial biomarker for immune infiltration in atherosclerosis advance.
Collapse
Affiliation(s)
- Donglai Zhou
- Department of Cardiovascular Medicine, The First People's Hospital of Linping District, Hangzhou, China
| | - Tao Yu
- Department of Cardiovascular Medicine, The First People's Hospital of Linping District, Hangzhou, China
| | - Zhi Zhang
- Department of Cardiovascular Medicine, The First People's Hospital of Linping District, Hangzhou, China
| | - Guanhua Li
- Department of Cardiovascular Medicine, The First People's Hospital of Linping District, Hangzhou, China
| | - Yaomin Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
15
|
Yang X, Yang X, Sun A, Chen S, Wang X, Zhao X. The miR-23b-3p from adipose-derived stem cell exosomes alleviate inflammation in mice experiencing kainic acid-induced epileptic seizures. Neuroreport 2024; 35:612-620. [PMID: 38813900 DOI: 10.1097/wnr.0000000000002044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Epilepsy is a common neurologic disorder. While a good clinical solution is still missing, studies have confirmed that exosomes (Exos) derived from adipose-derived stem cells (ADSCs) had a therapeutic effect on various diseases, including neurological diseases. Therefore, this study aimed to reveal whether ADSC-Exo treatment could improve kainic acid (KA)-induced seizures in epileptic mice. ADSCs and Exos were isolated. Mice were generated with KA-induced epileptic seizures. ELISA was used to detect inflammatory factor expression. Luciferase reporter analysis detection showed a relationship among miR-23b-3p, STAT1, and glyoxylate reductase 1 (GlyR1). ADSC-Exos had a protective effect on KA-induced seizures by inhibiting inflammatory factor expression and the M1 microglia phenotype. The result showed that miR-23b-3p played an important role in the Exo-mediated protective effect in KA-induced seizures in epileptic mice by regulating STAT1 and GlyR1. Luciferase reporter analysis confirmed that miR-23b-3p interacted with the 3'-UTR of STAT1 and GlyR1. The miR-23b-3p inhibited M1 microglia-mediated inflammatory factor expression in microglial cells by regulating STAT1 and GlyR1. The downregulation of miR-23b-3p decreased the protective effect of ADSC-Exos on KA-induced seizures in epileptic mice. The miR-23b-3p from ADSC-Exos alleviated inflammation in mice with KA-induced epileptic seizures.
Collapse
Affiliation(s)
- Xue Yang
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | | | | | | | | | | |
Collapse
|
16
|
Zhang Y, Zhao Y, Wang Y, Li J, Huang Y, Lyu F, Wang Y, Wei P, Yuan Y, Fu Y, Gao Y. Microglial histone deacetylase 2 is dispensable for functional and histological outcomes in a mouse model of traumatic brain injury. J Cereb Blood Flow Metab 2024; 44:817-835. [PMID: 38069842 PMCID: PMC11197137 DOI: 10.1177/0271678x231197173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 04/26/2024]
Abstract
The Class-I histone deacetylases (HDACs) mediate microglial inflammation and neurological dysfunction after traumatic brain injury (TBI). However, whether the individual Class-I HDACs play an indispensable role in TBI pathogenesis remains elusive. HDAC2 has been shown to upregulate pro-inflammatory genes in myeloid cells under brain injuries such as intracerebral hemorrhage, thereby worsening outcomes. Thus, we hypothesized that HDAC2 drives microglia toward a pro-inflammatory neurotoxic phenotype in a murine model of controlled cortical impact (CCI). Our results revealed that HDAC2 expression was highly induced in CD16/CD32+ pro-inflammatory microglia 3 and 7d after TBI. Surprisingly, microglia-targeted HDAC2 knockout (HDAC2 miKO) mice failed to demonstrate a beneficial phenotype after CCI/TBI compared to their wild-type (WT) littermates. HDAC2 miKO mice exhibited comparable levels of grey and white matter injury, efferocytosis, and sensorimotor and cognitive deficits after CCI/TBI as WT mice. RNA sequencing of isolated microglia 3d after CCI/TBI indicated the elevation of a panel of pro-inflammatory cytokines/chemokines in HDAC2 miKO mice over WT mice, and flow cytometry showed further elevated brain infiltration of neutrophils and B cells in HDAC2 miKO mice. Together, this study does not support a detrimental role for HDAC2 in microglial responses after TBI and calls for investigation into alternative mechanisms.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yongfang Zhao
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yana Wang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jiaying Li
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yichen Huang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Fan Lyu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yangfan Wang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Pengju Wei
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yiwen Yuan
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yi Fu
- Department of Neurology & Institute of Neurology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Arvanitaki ES, Goulielmaki E, Gkirtzimanaki K, Niotis G, Tsakani E, Nenedaki E, Rouska I, Kefalogianni M, Xydias D, Kalafatakis I, Psilodimitrakopoulos S, Karagogeos D, Schumacher B, Stratakis E, Garinis GA. Microglia-derived extracellular vesicles trigger age-related neurodegeneration upon DNA damage. Proc Natl Acad Sci U S A 2024; 121:e2317402121. [PMID: 38635632 PMCID: PMC11047102 DOI: 10.1073/pnas.2317402121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
DNA damage and neurodegenerative disorders are intimately linked but the underlying mechanism remains elusive. Here, we show that persistent DNA lesions in tissue-resident macrophages carrying an XPF-ERCC1 DNA repair defect trigger neuroinflammation and neuronal cell death in mice. We find that microglia accumulate dsDNAs and chromatin fragments in the cytosol, which are sensed thereby stimulating a viral-like immune response in Er1Cx/- and naturally aged murine brain. Cytosolic DNAs are packaged into extracellular vesicles (EVs) that are released from microglia and discharge their dsDNA cargo into IFN-responsive neurons triggering cell death. To remove cytosolic dsDNAs and prevent inflammation, we developed targeting EVs to deliver recombinant DNase I to Er1Cx/- brain microglia in vivo. We show that EV-mediated elimination of cytosolic dsDNAs is sufficient to prevent neuroinflammation, reduce neuronal apoptosis, and delay the onset of neurodegenerative symptoms in Er1Cx/- mice. Together, our findings unveil a causal mechanism leading to neuroinflammation and provide a rationalized therapeutic strategy against age-related neurodegeneration.
Collapse
Affiliation(s)
- Ermioni S. Arvanitaki
- Department of Biology, University of Crete, HeraklionGR71409, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, HeraklionGR70013, Crete, Greece
| | - Evi Goulielmaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, HeraklionGR70013, Crete, Greece
| | - Katerina Gkirtzimanaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, HeraklionGR70013, Crete, Greece
| | - George Niotis
- Department of Biology, University of Crete, HeraklionGR71409, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, HeraklionGR70013, Crete, Greece
| | - Edisona Tsakani
- Department of Biology, University of Crete, HeraklionGR71409, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, HeraklionGR70013, Crete, Greece
| | - Electra Nenedaki
- Department of Biology, University of Crete, HeraklionGR71409, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, HeraklionGR70013, Crete, Greece
| | - Iliana Rouska
- Department of Biology, University of Crete, HeraklionGR71409, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, HeraklionGR70013, Crete, Greece
| | - Mary Kefalogianni
- Department of Physics, University of Crete, HeraklionGR71003, Crete, Greece
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, HeraklionGR71110, Crete, Greece
| | - Dionysios Xydias
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, HeraklionGR71110, Crete, Greece
- Materials Science and Technology Department, University of Crete, HeraklionGR70013, Crete, Greece
| | - Ilias Kalafatakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, HeraklionGR70013, Crete, Greece
- Medical School, Division of Basic Sciences, University of Crete, HeraklionGR71003, Crete, Greece
| | - Sotiris Psilodimitrakopoulos
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, HeraklionGR71110, Crete, Greece
| | - Domna Karagogeos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, HeraklionGR70013, Crete, Greece
- Medical School, Division of Basic Sciences, University of Crete, HeraklionGR71003, Crete, Greece
| | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University and University Hospital of Cologne, Cologne50931, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne50931, Germany
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, HeraklionGR71110, Crete, Greece
| | - George A. Garinis
- Department of Biology, University of Crete, HeraklionGR71409, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, HeraklionGR70013, Crete, Greece
| |
Collapse
|
18
|
Potru PS, Vidovic N, Wiemann S, Russ T, Trautmann M, Spittau B. A Custom Panel for Profiling Microglia Gene Expression. Cells 2024; 13:630. [PMID: 38607069 PMCID: PMC11012202 DOI: 10.3390/cells13070630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
Despite being immune cells of the central nervous system (CNS), microglia contribute to CNS development, maturation, and homeostasis, and microglia dysfunction has been implicated in several neurological disorders. Recent advancements in single-cell studies have uncovered unique microglia-specific gene expression. However, there is a need for a simple yet elegant multiplexed approach to quantifying microglia gene expression. To address this, we have designed a NanoString nCounter technology-based murine microglia-specific custom codeset comprising 178 genes. We analyzed RNA extracted from ex vivo adult mouse microglia, primary mouse microglia, the BV2 microglia cell line, and mouse bone marrow monocytes using our custom panel. Our findings reveal a pattern where homeostatic genes exhibit heightened expression in adult microglia, followed by primary cells, and are absent in BV2 cells, while reactive markers are elevated in primary microglia and BV2 cells. Analysis of publicly available data sets for the genes present in the panel revealed that the panel could reliably reflect the changes in microglia gene expression in response to various factors. These findings highlight that the microglia panel used offers a swift and cost-effective means to assess microglial cells and can be used to study them in varying contexts, ranging from normal homeostasis to disease models.
Collapse
Affiliation(s)
- Phani Sankar Potru
- Bielefeld University, Medical School OWL, Anatomy and Cell Biology, 33615 Bielefeld, Germany; (P.S.P.); (N.V.); (S.W.); (T.R.)
| | - Natascha Vidovic
- Bielefeld University, Medical School OWL, Anatomy and Cell Biology, 33615 Bielefeld, Germany; (P.S.P.); (N.V.); (S.W.); (T.R.)
| | - Susanne Wiemann
- Bielefeld University, Medical School OWL, Anatomy and Cell Biology, 33615 Bielefeld, Germany; (P.S.P.); (N.V.); (S.W.); (T.R.)
| | - Tamara Russ
- Bielefeld University, Medical School OWL, Anatomy and Cell Biology, 33615 Bielefeld, Germany; (P.S.P.); (N.V.); (S.W.); (T.R.)
| | - Marcel Trautmann
- Gerhard-Domagk-Institute of Pathology, Münster University Hospital, 48149 Münster, Germany
| | - Björn Spittau
- Bielefeld University, Medical School OWL, Anatomy and Cell Biology, 33615 Bielefeld, Germany; (P.S.P.); (N.V.); (S.W.); (T.R.)
| |
Collapse
|
19
|
Krumm L, Pozner T, Zagha N, Coras R, Arnold P, Tsaktanis T, Scherpelz K, Davis MY, Kaindl J, Stolzer I, Süß P, Khundadze M, Hübner CA, Riemenschneider MJ, Baets J, Günther C, Jayadev S, Rothhammer V, Krach F, Winkler J, Winner B, Regensburger M. Neuroinflammatory disease signatures in SPG11-related hereditary spastic paraplegia patients. Acta Neuropathol 2024; 147:28. [PMID: 38305941 PMCID: PMC10837238 DOI: 10.1007/s00401-023-02675-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024]
Abstract
Biallelic loss of SPG11 function constitutes the most frequent cause of complicated autosomal recessive hereditary spastic paraplegia (HSP) with thin corpus callosum, resulting in progressive multisystem neurodegeneration. While the impact of neuroinflammation is an emerging and potentially treatable aspect in neurodegenerative diseases and leukodystrophies, the role of immune cells in SPG11-HSP patients is unknown. Here, we performed a comprehensive immunological characterization of SPG11-HSP, including examination of three human postmortem brain donations, immunophenotyping of patients' peripheral blood cells and patient-specific induced pluripotent stem cell-derived microglia-like cells (iMGL). We delineate a previously unknown role of innate immunity in SPG11-HSP. Neuropathological analysis of SPG11-HSP patient brain tissue revealed profound microgliosis in areas of neurodegeneration, downregulation of homeostatic microglial markers and cell-intrinsic accumulation of lipids and lipofuscin in IBA1+ cells. In a larger cohort of SPG11-HSP patients, the ratio of peripheral classical and intermediate monocytes was increased, along with increased serum levels of IL-6 that correlated with disease severity. Stimulation of patient-specific iMGLs with IFNγ led to increased phagocytic activity compared to control iMGL as well as increased upregulation and release of proinflammatory cytokines and chemokines, such as CXCL10. On a molecular basis, we identified increased STAT1 phosphorylation as mechanism connecting IFNγ-mediated immune hyperactivation and SPG11 loss of function. STAT1 expression was increased both in human postmortem brain tissue and in an Spg11-/- mouse model. Application of an STAT1 inhibitor decreased CXCL10 production in SPG11 iMGL and rescued their toxic effect on SPG11 neurons. Our data establish neuroinflammation as a novel disease mechanism in SPG11-HSP patients and constitute the first description of myeloid cell/ microglia activation in human SPG11-HSP. IFNγ/ STAT1-mediated neurotoxic effects of hyperreactive microglia upon SPG11 loss of function indicate that immunomodulation strategies may slow down disease progression.
Collapse
Affiliation(s)
- Laura Krumm
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Tatyana Pozner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Naime Zagha
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Coras
- Department of Neuropathology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Thanos Tsaktanis
- Department of Neurology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Kathryn Scherpelz
- Division of Neuropathology, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Marie Y Davis
- Department of Neurology, University of Washington Medical Center, Seattle, WA, USA
- VA Puget Sound Healthcare System, Seattle, WA, USA
| | - Johanna Kaindl
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Iris Stolzer
- Department of Medicine 1, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Patrick Süß
- Department of Neurology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Mukhran Khundadze
- Institute of Human Genetics, Jena University Hospital Friedrich-Schiller-University Jena, Jena, Germany
| | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital Friedrich-Schiller-University Jena, Jena, Germany
- Center for Rare Diseases, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | | | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Claudia Günther
- Department of Medicine 1, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Kussmaulallee 4, 91054, Erlangen, Germany
| | - Suman Jayadev
- Department of Neurology, University of Washington Medical Center, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - Veit Rothhammer
- Department of Neurology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Florian Krach
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Winkler
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Department of Molecular Neurology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Regensburger
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Kussmaulallee 4, 91054, Erlangen, Germany.
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany.
- Department of Molecular Neurology, FAU Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
20
|
Wang W, Li J, Cui S, Li J, Ye X, Wang Z, Zhang T, Jiang X, Kong Y, Chen X, Chen YQ, Zhu S. Microglial Ffar4 deficiency promotes cognitive impairment in the context of metabolic syndrome. SCIENCE ADVANCES 2024; 10:eadj7813. [PMID: 38306420 PMCID: PMC10836723 DOI: 10.1126/sciadv.adj7813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Metabolic syndrome (MetS) is closely associated with an increased risk of dementia and cognitive impairment, and a complex interaction of genetic and environmental dietary factors may be implicated. Free fatty acid receptor 4 (Ffar4) may bridge the genetic and dietary aspects of MetS development. However, the role of Ffar4 in MetS-related cognitive dysfunction is unclear. In this study, we found that Ffar4 expression is down-regulated in MetS mice and MetS patients with cognitive impairment. Conventional and microglial conditional knockout of Ffar4 exacerbated high-fat diet (HFD)-induced cognitive dysfunction and anxiety, whereas microglial Ffar4 overexpression improved HFD-induced cognitive dysfunction and anxiety. Mechanistically, we found that microglial Ffar4 regulated microglial activation through type I interferon signaling. Microglial depletion and NF-κB inhibition partially reversed cognitive dysfunction and anxiety in microglia-specific Ffar4 knockout MetS mice. Together, these findings uncover a previously unappreciated role of Ffar4 in negatively regulating the NF-κB-IFN-β signaling and provide an attractive therapeutic target for delaying MetS-associated cognitive decline.
Collapse
Affiliation(s)
- Wei Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Jinyou Li
- Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Siyuan Cui
- Jiangnan University Medical Center, Wuxi 214002, China
| | - Jiayu Li
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Xianlong Ye
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Zhe Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Tingting Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Xuan Jiang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Yulin Kong
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Xin Chen
- Jiangnan University Medical Center, Wuxi 214002, China
| | - Yong Q. Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
- Jiangnan University Medical Center, Wuxi 214002, China
| |
Collapse
|
21
|
Stoll AC, Kemp CJ, Patterson JR, Howe JW, Steece-Collier K, Luk KC, Sortwell CE, Benskey MJ. Neuroinflammatory gene expression profiles of reactive glia in the substantia nigra suggest a multidimensional immune response to alpha synuclein inclusions. Neurobiol Dis 2024; 191:106411. [PMID: 38228253 PMCID: PMC10869642 DOI: 10.1016/j.nbd.2024.106411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/09/2023] [Accepted: 01/12/2024] [Indexed: 01/18/2024] Open
Abstract
Parkinson's disease (PD) pathology is characterized by alpha-synuclein (α-syn) aggregates, degeneration of dopamine neurons in the substantia nigra pars compacta (SNpc), and neuroinflammation. The presence of reactive glia correlates with deposition of pathological α-syn in early-stage PD. Thus, understanding the neuroinflammatory response of microglia and astrocytes to synucleinopathy may identify therapeutic targets. Here we characterized the neuroinflammatory gene expression profile of reactive microglia and astrocytes in the SNpc during early synucleinopathy in the rat α-syn pre-formed fibril (PFF) model. Rats received intrastriatal injection of α-syn PFFs and expression of immune genes was quantified with droplet digital PCR (ddPCR), after which fluorescent in situ hybridization (FISH) was used to localize gene expression to microglia or astrocytes in the SNpc. Genes previously associated with reactive microglia (Cd74, C1qa, Stat1, Axl, Casp1, Il18, Lyz2) and reactive astrocytes (C3, Gbp2, Serping1) were significantly upregulated in the SN of PFF injected rats. Localization of gene expression to SNpc microglia near α-syn aggregates identified a unique α-syn aggregate microglial gene expression profile characterized by upregulation of Cd74, Cxcl10, Rt-1a2, Grn, Csf1r, Tyrobp, C3, C1qa, Serping1 and Fcer1g. Importantly, significant microglial upregulation of Cd74 and C3 were only observed following injection of α-syn PFFs, not α-syn monomer, confirming specificity to α-syn aggregation. Serping1 expression also localized to astrocytes in the SNpc. Interestingly, C3 expression in the SNpc localized to microglia at 2- and 4-months post-PFF, but to astrocytes at 6-months post-PFF. We also observed expression of Rt1-a2 and Cxcl10 in SNpc dopamine neurons. Cumulatively our results identify a dynamic, yet reproducible gene expression profile of reactive microglia and astrocytes associated with early synucleinopathy in the rat SNpc.
Collapse
Affiliation(s)
- Anna C Stoll
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Christopher J Kemp
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - Joseph R Patterson
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - Jacob W Howe
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - Kathy Steece-Collier
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - Kelvin C Luk
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Caryl E Sortwell
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - Matthew J Benskey
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA.
| |
Collapse
|
22
|
Chen J, Chen C, Ma S, Li J, Li M, Huang Q. An immunomodulatory role of Fc receptor γ chain independent of FcγR ligation by IgG in acute neuroinflammation triggered by MPTP intoxication. Neurochem Int 2023; 171:105638. [PMID: 37923297 DOI: 10.1016/j.neuint.2023.105638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Aberrant microglial activation is a prominent feature of neuroinflammation, which is implicated in the pathogenesis of neurological disorders. Fc receptor common γ-chain (FcRγ), one of the two immunoreceptor tyrosine-based activation motif-bearing adaptor proteins, is abundantly expressed in microglia. It couples with different receptors, such as receptors for the Fc portion of IgG. In this study, we observed increased FcRγ expression along with increased IgG-binding during acute neuroinflammation triggered by MPTP intoxication, where adaptive immune responses should not be involved. Notably, FcRγ was expressed not only in the cell membrane but also in the cytoplasm in the activated microglia. FcRγ deficiency exacerbated microglial activation, pro-inflammatory factor upregulation, nigral dopaminergic neuronal loss and motor deficits, implicating a beneficial role of FcRγ in this model. Blockade of Fcγ receptor ligation by IgG in mice by Endoglycosidase S treatment, a bacterial endo-β-N-acetylglucosaminidase cleaving specifically the Asn297-linked glycan of IgG, or by using the mice deficient in mature B cells (muMT) with IgG production defects, did not show similar phenotypes to those observed in FcRγ-deficient mice, indicating that the beneficial effect mediated by FcRγ did not depend on FcγR ligation by IgG. Further, FcRγ knockout aggravated the expression and activation of STAT1 in microglia, suggesting FcRγ modulated neuroinflammation by dampening STAT1 signaling. Collectively, these results revealed that FcRγ-associated receptors could function as negative regulators of neuroinflammation and dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- Junguo Chen
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Congmin Chen
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Shanshan Ma
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Junyu Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Mingtao Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Qiaoying Huang
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
23
|
Han W, Pu H, Li S, Liu Y, Zhao Y, Xu M, Chen C, Wu Y, Yang T, Ye Q, Wang H, Stetler RA, Chen J, Shi Y. Targeted ablation of signal transducer and activator of transduction 1 alleviates inflammation by microglia/macrophages and promotes long-term recovery after ischemic stroke. J Neuroinflammation 2023; 20:178. [PMID: 37516843 PMCID: PMC10385956 DOI: 10.1186/s12974-023-02860-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND Brain microglia and macrophages (Mi/MΦ) can shift to a harmful or advantageous phenotype following an ischemic stroke. Identification of key molecules that regulate the transformation of resting Mi/MΦ could aid in the development of innovative therapies for ischemic stroke. The transcription factor signal transducer and activator of transduction 1 (STAT1) has been found to contribute to acute neuronal death (in the first 24 h) following ischemic stroke, but its effects on Mi/MΦ and influence on long-term stroke outcomes have yet to be determined. METHODS We generated mice with tamoxifen-induced, Mi/MΦ-specific knockout (mKO) of STAT1 driven by Cx3cr1CreER. Expression of STAT1 was examined in the brain by flow cytometry and RNA sequencing after ischemic stroke induced by transient middle cerebral artery occlusion (MCAO). The impact of STAT1 mKO on neuronal cell death, Mi/MΦ phenotype, and brain inflammation profiles were examined 3-5 days after MCAO. Neurological deficits and the integrity of gray and white matter were assessed for 5 weeks after MCAO by various neurobehavioral tests and immunohistochemistry. RESULTS STAT1 was activated in Mi/MΦ at the subacute stage (3 days) after MCAO. Selective deletion of STAT1 in Mi/MΦ did not alter neuronal cell death or infarct size at 24 h after MCAO, but attenuated Mi/MΦ release of high mobility group box 1 and increased arginase 1-producing Mi/MΦ 3d after MCAO, suggesting boosted inflammation-resolving responses of Mi/MΦ. As a result, STAT1 mKO mice had mitigated brain inflammation at the subacute stage after MCAO and less white matter injury in the long term. Importantly, STAT1 mKO was sufficient to improve functional recovery for at least 5 weeks after MCAO in both male and female mice. CONCLUSIONS Mi/MΦ-targeted STAT1 KO does not provide immediate neuroprotection but augments inflammation-resolving actions of Mi/MΦ, thereby facilitating long-term functional recovery after stroke. STAT1 is, therefore, a promising therapeutic target to harness beneficial Mi/MΦ responses and improve long-term outcomes after ischemic stroke.
Collapse
Affiliation(s)
- Wenxuan Han
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Hongjian Pu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Sicheng Li
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Yaan Liu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Yongfang Zhao
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Mingyue Xu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Caixia Chen
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Yun Wu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Tuo Yang
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Qing Ye
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - R Anne Stetler
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
| | - Yejie Shi
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA.
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA.
| |
Collapse
|