1
|
Martinez MX, Mahler SV. Potential roles for microglia in drug addiction: Adolescent neurodevelopment and beyond. J Neuroimmunol 2025; 404:578600. [PMID: 40199197 DOI: 10.1016/j.jneuroim.2025.578600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/14/2025] [Accepted: 03/27/2025] [Indexed: 04/10/2025]
Abstract
Adolescence is a sensitive period for development of addiction-relevant brain circuits, and it is also when people typically start experimenting with drugs. Unfortunately, such substance use may cause lasting impacts on the brain, and might increase vulnerability to later-life addictions. Microglia are the brain's immune cells, but their roles in shaping neural connectivity and synaptic plasticity, especially in developmental sensitive periods like adolescence, may also contribute to addiction-related phenomena. Here, we overview how drugs of abuse impact microglia, and propose that they may play poorly-understood, but important roles in addiction vulnerability and progression.
Collapse
Affiliation(s)
- Maricela X Martinez
- Department of Neurobiology and Behavior, University of California, 2221 McGaugh Hall, Irvine, CA 92697, USA.
| | - Stephen V Mahler
- Department of Neurobiology and Behavior, University of California, 2221 McGaugh Hall, Irvine, CA 92697, USA
| |
Collapse
|
2
|
Hutchinson MR, Milligan ED, Grace PM. Dr. Linda R. Watkins: A pioneer who rewrote the science of pain and neuroimmune signaling. Brain Behav Immun 2025; 128:S0889-1591(25)00190-4. [PMID: 40381745 DOI: 10.1016/j.bbi.2025.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2025] [Revised: 05/07/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025] Open
Abstract
Dr. Linda R. Watkins, a Distinguished Professor at the University of Colorado Boulder, fundamentally altered the understanding of pain and neuroimmune signaling. As she concludes her tenure as Associate Editor of Brain, Behavior, and Immunity, this tribute reflectson her revolutionary discoveries. She pioneered the concept that glial cells actively participate in pain states, challenging neuron-centric dogma. Her work elucidated the roles of cytokines like IL-1β and IL-10, the chemokine fractalkine (CX3CL1), and the Toll-Like Receptor 4 (TLR4) in glial reactivity, sickness behavior, and unwanted opioid effects (tolerance, hyperalgesia). As a dedicated mentor and collaborator, particularly with Steve Maier, she fosters interdisciplinary research. Watkins champions translational science, co-founding Xalud Therapeutics to develop immune therapies like IL-10 gene therapy, leaving a profound legacy in neuroscience.
Collapse
Affiliation(s)
- Mark R Hutchinson
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Erin D Milligan
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
| | - Peter M Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Wang F, Liu H, Ke Y, Huang X, Chen S, Zhuang D, Zhou Y, Wu M, Wang Y, Lai M, Liu H, Zhou W. Ibudilast-Mediated Suppression of Neuronal TLR4 in the Prefrontal Cortex Mitigates Methamphetamine-Induced Neuroinflammation and Addictive Behaviours. Addict Biol 2025; 30:e70033. [PMID: 40237256 PMCID: PMC12001051 DOI: 10.1111/adb.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 02/26/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025]
Abstract
Methamphetamine (METH) use leads to addiction, neurotoxicity, and neuroinflammation. Ibudilast, a toll-like receptor 4 (TLR4) inhibitor, has been shown to reduce METH-induced neuroinflammation and self-administration, but its specific role in neuronal TLR4 signalling and associated behavioural outcomes remains poorly understood. This study examined Ibudilast's effects on METH reward, drug-seeking behaviour, and TLR4 signalling in a rat self-administration model. Ibudilast was found to dose-dependently reduce METH intake and motivation for the drug, as evidenced by a downward shift in the dose-response curve and a decrease in breakpoint. Additionally, Ibudilast suppressed both cue- and METH priming-induced drug-seeking behaviours. Western blot analysis revealed elevated TLR4, p-NF-κB and IL-6 in the prefrontal cortex after 14 days of METH self-administration. These increases were significantly attenuated by Ibudilast treatment. Furthermore, local administration of Ibudilast in the prefrontal cortex led to a reduction in METH intake and motivation, as well as decreased TLR4 expression in this brain region. Immunofluorescence staining was revealed that TLR4 was expressed predominantly in neurons and microglia, with METH-induced upregulation of neuronal TLR4 being linked to apoptosis. Ibudilast restored normal spatial interactions between neurons and microglia, thereby mitigating neuroinflammation and neuronal damage. Furthermore, local injection of Ibudilast in the prefrontal cortex led to a reduction in METH intake and motivation, as well as decreased expression of TLR4 in the brain region. These findings underscore the critical role of neuronal TLR4 in METH addiction and highlight Ibudilast's therapeutic potential in addressing METH-related neuroinflammation and behavioural dysregulation.
Collapse
Affiliation(s)
- Fangmin Wang
- Zhejiang Provincial Key Lab of Addiction ResearchThe Affiliated Kangning Hospital of Ningbo UniversityNingboPeople's Republic of China
- Department of PsychiatryThe Affiliated Kangning Hospital of Ningbo UniversityPeople's Republic of China
| | - Huizhen Liu
- Zhejiang Provincial Key Lab of Addiction ResearchThe Affiliated Kangning Hospital of Ningbo UniversityNingboPeople's Republic of China
| | - Yuting Ke
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Xiaolei Huang
- Department of ObstetricsThe Affiliated Lihuili Hospital of Ningbo UniversityNingboP. R. China
| | - Shanshan Chen
- Zhejiang Provincial Key Lab of Addiction ResearchThe Affiliated Kangning Hospital of Ningbo UniversityNingboPeople's Republic of China
- Department of PsychiatryThe Affiliated Kangning Hospital of Ningbo UniversityPeople's Republic of China
| | - Dingding Zhuang
- Zhejiang Provincial Key Lab of Addiction ResearchThe Affiliated Kangning Hospital of Ningbo UniversityNingboPeople's Republic of China
- Department of PsychiatryThe Affiliated Kangning Hospital of Ningbo UniversityPeople's Republic of China
| | - Yiying Zhou
- Zhejiang Provincial Key Lab of Addiction ResearchThe Affiliated Kangning Hospital of Ningbo UniversityNingboPeople's Republic of China
| | - Manqing Wu
- Shanghai Mental Health CenterShanghaiPeople's Republic of China
| | - Yuting Wang
- Zhejiang Provincial Key Lab of Addiction ResearchThe Affiliated Kangning Hospital of Ningbo UniversityNingboPeople's Republic of China
| | - Miaojun Lai
- Zhejiang Provincial Key Lab of Addiction ResearchThe Affiliated Kangning Hospital of Ningbo UniversityNingboPeople's Republic of China
- Department of PsychiatryThe Affiliated Kangning Hospital of Ningbo UniversityPeople's Republic of China
| | - Huifen Liu
- Zhejiang Provincial Key Lab of Addiction ResearchThe Affiliated Kangning Hospital of Ningbo UniversityNingboPeople's Republic of China
- Department of PsychiatryThe Affiliated Kangning Hospital of Ningbo UniversityPeople's Republic of China
| | - Wenhua Zhou
- Department of PsychiatryThe Affiliated Kangning Hospital of Ningbo UniversityPeople's Republic of China
| |
Collapse
|
4
|
Siemsen BM, Franco D, Lobo MK. Corticostriatal contributions to dysregulated motivated behaviors in stress, depression, and substance use disorders. Neurosci Res 2025; 211:37-48. [PMID: 36565858 DOI: 10.1016/j.neures.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Coordinated network activity, particularly in circuits arising from the prefrontal cortex innervating the ventral striatum, is crucial for normal processing of reward-related information which is perturbed in several psychiatric disorders characterized by dysregulated reward-related behaviors. Stress-induced depression and substance use disorders (SUDs) both share this common underlying pathology, manifested as deficits in perceived reward in depression, and increased attribution of positive valence to drug-predictive stimuli and dysfunctional cognition in SUDs. Here we review preclinical and clinical data that support dysregulation of motivated and reward-related behaviors as a core phenotype shared between these two disorders. We posit that altered processing of reward-related stimuli arises from dysregulated control of subcortical circuits by upstream regions implicated in executive control. Although multiple circuits are directly involved in reward processing, here we focus specifically on the role of corticostriatal circuit dysregulation. Moreover, we highlight the growing body of evidence indicating that such abnormalities may be due to heightened neuroimmune signaling by microglia, and that targeting the neuroimmune system may be a viable approach to treating this shared symptom.
Collapse
Affiliation(s)
| | - Daniela Franco
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mary Kay Lobo
- University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Wang T, Huang X, Sun S, Wang Y, Han L, Zhang T, Zhang T, Chen X. Recent Advances in the Mechanisms of Postoperative Neurocognitive Dysfunction: A Narrative Review. Biomedicines 2025; 13:115. [PMID: 39857699 PMCID: PMC11762480 DOI: 10.3390/biomedicines13010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Postoperative neurocognitive dysfunction (PND) is a prevalent and debilitating complication in elderly surgical patients, characterized by persistent cognitive decline that negatively affects recovery and quality of life. As the aging population grows, the rising number of elderly surgical patients has made PND an urgent clinical challenge. Despite increasing research efforts, the pathophysiological mechanisms underlying PND remain inadequately characterized, underscoring the need for a more integrated framework to guide targeted interventions. To better understand the molecular mechanisms and therapeutic targets of PND, this narrative review synthesized evidence from peer-reviewed studies, identified through comprehensive searches of PubMed, Embase, Cochrane Library, and Web of Science. Key findings highlight neuroinflammation, oxidative stress, mitochondrial dysfunction, neurotransmitter imbalances, microvascular changes, and white matter lesions as central to PND pathophysiology, with particular parallels to encephalocele- and sepsis-associated cognitive impairments. Among these, neuroinflammation, mediated by pathways such as the NLRP3 inflammasome and blood-brain barrier disruption, emerges as a pivotal driver, triggering cascades that exacerbate neuronal injury. Oxidative stress and mitochondrial dysfunction synergistically amplify these effects, while neurotransmitter imbalances and microvascular alterations, including white matter lesions, contribute to synaptic dysfunction and cognitive decline. Anesthetic agents modulate these interconnected pathways, exhibiting both protective and detrimental effects. Propofol and dexmedetomidine demonstrate neuroprotective properties by suppressing neuroinflammation and microglial activation, whereas inhalational anesthetics like sevoflurane intensify oxidative stress and inflammatory responses. Ketamine, with its anti-inflammatory potential, offers promise but requires further evaluation to determine its long-term safety and efficacy. By bridging molecular insights with clinical practice, this review highlights the critical role of personalized anesthetic strategies in mitigating PND and improving cognitive recovery in elderly surgical patients. It aims to inform future research and clinical decision-making to address this multifaceted challenge.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (T.W.); (X.H.); (S.S.); (Y.W.); (L.H.); (T.Z.); (T.Z.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
| | - Xin Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (T.W.); (X.H.); (S.S.); (Y.W.); (L.H.); (T.Z.); (T.Z.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
| | - Shujun Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (T.W.); (X.H.); (S.S.); (Y.W.); (L.H.); (T.Z.); (T.Z.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
| | - Yafeng Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (T.W.); (X.H.); (S.S.); (Y.W.); (L.H.); (T.Z.); (T.Z.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
| | - Linlin Han
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (T.W.); (X.H.); (S.S.); (Y.W.); (L.H.); (T.Z.); (T.Z.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
| | - Tao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (T.W.); (X.H.); (S.S.); (Y.W.); (L.H.); (T.Z.); (T.Z.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (T.W.); (X.H.); (S.S.); (Y.W.); (L.H.); (T.Z.); (T.Z.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (T.W.); (X.H.); (S.S.); (Y.W.); (L.H.); (T.Z.); (T.Z.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
| |
Collapse
|
6
|
Castro EM, Lotfipour S, Leslie FM. Neuroglia in substance use disorders. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:347-369. [PMID: 40148055 DOI: 10.1016/b978-0-443-19102-2.00014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Substance use disorders (SUD) remain a major public health concern in which individuals are unable to control their use of substances despite significant harm and negative consequences. Drugs of abuse dysregulate major brain and behavioral functions. Glial cells, primarily microglia and astrocytes, play a crucial role in these drug-induced molecular and behavioral changes. This review explores preclinical and clinical studies of how neuroglia and their associated neuroinflammatory responses contribute to SUD and reward-related properties. We evaluate preclinical and clinical evidence for targeting neuroglia as therapeutic interventions. In addition, we evaluate the literature on the gut microbiome and its role in SUD. Clinical treatments are most effective for reducing drug cravings, and some have yielded promising results in other measures of drug use. N-Acetylcysteine, through modulation of cysteine-glutamate antiporter of glial cells, shows encouraging results across a variety of drug classes. Neuroglia and gut microbiome interactions are important factors to consider with regard to SUD and could lead to novel therapeutic avenues. Age- and sex-dependent properties of neuroglia, gut microbiome, and drug use behaviors are important areas in need of further investigation.
Collapse
Affiliation(s)
- Emily M Castro
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
| | - Shahrdad Lotfipour
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States; Department of Emergency Medicine, School of Medicine, University of California, Irvine, Irvine, CA, United States; Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Frances M Leslie
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States.
| |
Collapse
|
7
|
Rosa CP, de Andrade DC, Barreto ESR, Antunes Júnior CR, Alencar VB, Lins-Kusterer LEF, Kraychete DC, Teixeira MJ. Immune response and cytokine profiles in post-laminectomy pain syndrome: comparative analysis after treatment with intrathecal opioids, oral opioids, and non-opioid therapies. Inflammopharmacology 2024:10.1007/s10787-024-01521-z. [PMID: 39039349 DOI: 10.1007/s10787-024-01521-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION This study explores the interaction between cytokines, cell-mediated immunity (T cells, B cells, and NK cells), and prolonged morphine administration in chronic neuropathic pain patients without cancer-related issues. Despite evidence of opioid immunomodulation, few studies have compared these interactions. METHODS In a cross-sectional and comparative study, 50 patients with chronic low back radicular pain ("Failed Back Surgery Syndrome") were categorized into intrathecal morphine infusion (IT group, n = 18), oral morphine (PO group, n = 17), and non-opioid treatment (NO group, n = 15). Various parameters, including plasma and cerebrospinal fluid (CSF) cytokine concentrations, lymphocyte immunophenotyping, opioid escalation indices, cumulative morphine dose, and treatment duration, were assessed. RESULTS CSF IL-8 and IL-1β concentrations exceeded plasma levels in all patients. No differences in T, B, and NK lymphocyte numbers were observed between morphine-treated and non-treated patients. Higher plasma IL-5 and GM-CSF concentrations were noted in IT and PO groups compared to NO. CSF IFNγ concentrations were higher in PO and NO than IT. Positive correlations included CD4 concentrations with opioid escalation indices, and negative correlations involved NK cell concentrations, CSF TNFα concentrations, and opioid escalation indices. Positive correlations were identified between certain cytokines and pain intensity in IT patients, and between NK cells and cumulative morphine dose. Negative correlations were observed between CSF IL-5 concentrations and pain intensity in IT and PO, and between opioid escalation indices and CSF cytokine concentrations in PO and IT. CONCLUSION Associations between cytokines, cellular immunity, and prolonged morphine treatment, administered orally and intrathecally were identified.
Collapse
Affiliation(s)
| | | | - Eduardo Silva Reis Barreto
- Federal University of Bahia, Av. Reitor Miguel Calmon, S/N - Vale Do Canela, Salvador, Bahia State, 40110-100, Brazil.
| | - César Romero Antunes Júnior
- Federal University of Bahia, Av. Reitor Miguel Calmon, S/N - Vale Do Canela, Salvador, Bahia State, 40110-100, Brazil
| | - Vinicius Borges Alencar
- Federal University of Bahia, Av. Reitor Miguel Calmon, S/N - Vale Do Canela, Salvador, Bahia State, 40110-100, Brazil
| | | | - Durval Campos Kraychete
- Federal University of Bahia, Av. Reitor Miguel Calmon, S/N - Vale Do Canela, Salvador, Bahia State, 40110-100, Brazil
| | | |
Collapse
|
8
|
Gao J, Zhang C, Xu H, Zhang T, Wang H, Wang Y, Wang X. Dissecting the Role of the Hydroxyl Moiety at C14 in (+)-Opioid-Based TLR4 Antagonists via Wet-Lab Experiments and Molecular Dynamics Simulations. J Chem Inf Model 2024; 64:5273-5284. [PMID: 38921627 DOI: 10.1021/acs.jcim.4c00692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Toll-like receptor 4 (TLR4) is pivotal as an innate immune receptor, playing a critical role in mediating neuropathic pain and drug addiction through its regulation of the neuroinflammatory response. The nonclassical (+)-opioid isomers represent a unique subset of TLR4 antagonists known for their effective blood-brain barrier permeability. Despite growing interest in the structure-activity relationship of these (+)-opioid-based TLR4 antagonists, the specific impact of heteroatoms on their TLR4 antagonistic activities has not been fully explored. This study investigated the influence of the hydroxyl group at C14 in six (+)-opioid TLR4 antagonists (1-6) using wet-lab experiments and in silico simulations. The corresponding C14-deoxy derivatives (7-12) were synthesized, and upon comparison with their corresponding counterparts (1-6), it was discovered that their TLR4 antagonistic activities were significantly diminished. Molecular dynamics simulations showed that the (+)-opioid TLR4 antagonists (1-6) possessed more negative binding free energies to the TLR4 coreceptor MD2, which was responsible for ligand recognition. This was primarily attributed to the formation of a hydrogen bond between the hydroxyl group at the C-14 position of the antagonists (1-6) and the R90 residue of MD2 during the binding process. Such an interaction facilitated the entry and subsequent binding of these molecules within the MD2 cavity. In contrast, the C14-deoxy derivatives (7-12), lacking the hydroxyl group at the C-14 position, missed this crucial hydrogen bond interaction with the R90 residue of MD2, leading to their egression from the MD2 cavity during simulations. This study underscores the significant role of the C14 hydroxyl moiety in enhancing the effectiveness of (+)-opioid TLR4 antagonists, which provides insightful guidance for designing future (+)-isomer opioid-derived TLR4 antagonists.
Collapse
Affiliation(s)
- Jingwei Gao
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Cong Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Hangyu Xu
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| | - Tianshu Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Hongshuang Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
9
|
Li H, Watkins LR, Wang X. Microglia in neuroimmunopharmacology and drug addiction. Mol Psychiatry 2024; 29:1912-1924. [PMID: 38302560 DOI: 10.1038/s41380-024-02443-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
Drug addiction is a chronic and debilitating disease that is considered a global health problem. Various cell types in the brain are involved in the progression of drug addiction. Recently, the xenobiotic hypothesis has been proposed, which frames substances of abuse as exogenous molecules that are responded to by the immune system as foreign "invaders", thus triggering protective inflammatory responses. An emerging body of literature reveals that microglia, the primary resident immune cells in the brain, play an important role in the progression of addiction. Repeated cycles of drug administration cause a progressive, persistent induction of neuroinflammation by releasing microglial proinflammatory cytokines and their metabolic products. This contributes to drug addiction via modulation of neuronal function. In this review, we focus on the role of microglia in the etiology of drug addiction. Then, we discuss the dynamic states of microglia and the correlative and causal evidence linking microglia to drug addiction. Finally, possible mechanisms of how microglia sense drug-related stimuli and modulate the addiction state and how microglia-targeted anti-inflammation therapies affect addiction are reviewed. Understanding the role of microglia in drug addiction may help develop new treatment strategies to fight this devastating societal challenge.
Collapse
Affiliation(s)
- Hongyuan Li
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Linda R Watkins
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China.
| |
Collapse
|
10
|
Acuña AM, Park C, Leyrer-Jackson JM, Olive MF. Promising immunomodulators for management of substance and alcohol use disorders. Expert Opin Pharmacother 2024; 25:867-884. [PMID: 38803314 PMCID: PMC11216154 DOI: 10.1080/14656566.2024.2360653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
INTRODUCTION The neuroimmune system has emerged as a novel target for the treatment of substance use disorders (SUDs), with immunomodulation producing encouraging therapeutic benefits in both preclinical and clinical settings. AREAS COVERED In this review, we describe the mechanism of action and immune response to methamphetamine, opioids, cocaine, and alcohol. We then discuss off-label use of immunomodulators as adjunctive therapeutics in the treatment of neuropsychiatric disorders, demonstrating their potential efficacy in affective and behavioral disorders. We then discuss in detail the mechanism of action and recent findings regarding the use of ibudilast, minocycline, probenecid, dexmedetomidine, pioglitazone, and cannabidiol to treat (SUDs). These immunomodulators are currently being investigated in clinical trials described herein, specifically for their potential to decrease substance use, withdrawal severity, central and peripheral inflammation, comorbid neuropsychiatric disorder symptomology, as well as their ability to improve cognitive outcomes. EXPERT OPINION We argue that although mixed, findings from recent preclinical and clinical studies underscore the potential benefit of immunomodulation in the treatment of the behavioral, cognitive, and inflammatory processes that underlie compulsive substance use.
Collapse
Affiliation(s)
- Amanda M. Acuña
- Department of Psychology, Behavioral Neuroscience and Comparative Psychology Area, Arizona State University, Tempe, Arizona, USA
| | - Connor Park
- Department of Biomedical Sciences, Creighton University School of Medicine – Phoenix, Phoenix, Arizona, USA
| | - Jonna M. Leyrer-Jackson
- Department of Biomedical Sciences, Creighton University School of Medicine – Phoenix, Phoenix, Arizona, USA
| | - M. Foster Olive
- Department of Psychology, Behavioral Neuroscience and Comparative Psychology Area, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
11
|
Cannella N, Tambalo S, Lunerti V, Scuppa G, de Vivo L, Abdulmalek S, Kinen A, Mackle J, Kuhn B, Solberg Woods LC, Chung D, Kalivas P, Soverchia L, Ubaldi M, Hardiman G, Bifone A, Ciccocioppo R. Long-access heroin self-administration induces region specific reduction of grey matter volume and microglia reactivity in the rat. Brain Behav Immun 2024; 118:210-220. [PMID: 38452987 DOI: 10.1016/j.bbi.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/08/2024] [Accepted: 03/02/2024] [Indexed: 03/09/2024] Open
Abstract
In opioid use disorder (OUD) patients, a decrease in brain grey matter volume (GMV) has been reported. It is unclear whether this is the consequence of prolonged exposure to opioids or is a predisposing causal factor in OUD development. To investigate this, we conducted a structural MRI longitudinal study in NIH Heterogeneous Stock rats exposed to heroin self-administration and age-matched naïve controls housed in the same controlled environment. Structural MRI scans were acquired before (MRI1) and after (MRI2) a prolonged period of long access heroin self-administration resulting in escalation of drug intake. Heroin intake resulted in reduced GMV in various cortical and sub-cortical brain regions. In drug-naïve controls no difference was found between MRI1 and MRI2. Notably, the degree of GMV reduction in the medial prefrontal cortex (mPFC) and the insula positively correlated with the amount of heroin consumed and the escalation of heroin use. In a preliminary gene expression analysis, we identified a number of transcripts linked to immune response and neuroinflammation. This prompted us to hypothesize a link between changes in microglia homeostasis and loss of GMV. For this reason, we analyzed the number and morphology of microglial cells in the mPFC and insula. The number of neurons and their morphology was also evaluated. The primary motor cortex, where no GMV change was observed, was used as negative control. We found no differences in the number of neurons and microglia cells following heroin. However, in the same regions where reduced GMV was detected, we observed a shift towards a rounder shape and size reduction in microglia, suggestive of their homeostatic change towards a reactive state. Altogether these findings suggest that escalation of heroin intake correlates with loss of GMV in specific brain regions and that this phenomenon is linked to changes in microglial morphology.
Collapse
Affiliation(s)
- Nazzareno Cannella
- School of Pharmacy, Pharmacology Unit, Center for Neuroscience, University of Camerino, Camerino, Italy.
| | - Stefano Tambalo
- CIMeC, Center for Mind/Brain Science, University of Trento, Trento, Italy
| | - Veronica Lunerti
- School of Pharmacy, Pharmacology Unit, Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Giulia Scuppa
- Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Luisa de Vivo
- School of Pharmacy, Pharmacology Unit, Center for Neuroscience, University of Camerino, Camerino, Italy
| | | | - Analia Kinen
- School of Pharmacy, Pharmacology Unit, Center for Neuroscience, University of Camerino, Camerino, Italy; Faculty of Medicine, Queen's University Belfast, UK
| | - James Mackle
- Faculty of Medicine, Queen's University Belfast, UK
| | - Brittany Kuhn
- Department of Neuroscience, Medical University of South Carolina (MUSC), Charleston (SC), USA
| | | | - Dongjun Chung
- Department of Biomedical Informatics, The Ohio State University, Columbus (OH), USA
| | - Peter Kalivas
- Department of Neuroscience, Medical University of South Carolina (MUSC), Charleston (SC), USA
| | - Laura Soverchia
- School of Pharmacy, Pharmacology Unit, Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, Center for Neuroscience, University of Camerino, Camerino, Italy
| | | | - Angelo Bifone
- Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy; Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, Center for Neuroscience, University of Camerino, Camerino, Italy
| |
Collapse
|
12
|
Quezada M, Ponce C, Berríos‐Cárcamo P, Santapau D, Gallardo J, De Gregorio C, Quintanilla ME, Morales P, Ezquer M, Herrera‐Marschitz M, Israel Y, Andrés‐Herrera P, Hipólito L, Ezquer F. Amelioration of morphine withdrawal syndrome by systemic and intranasal administration of mesenchymal stem cell-derived secretome in preclinical models of morphine dependence. CNS Neurosci Ther 2024; 30:e14517. [PMID: 37927136 PMCID: PMC11017443 DOI: 10.1111/cns.14517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/21/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Morphine is an opiate commonly used in the treatment of moderate to severe pain. However, prolonged administration can lead to physical dependence and strong withdrawal symptoms upon cessation of morphine use. These symptoms can include anxiety, irritability, increased heart rate, and muscle cramps, which strongly promote morphine use relapse. The morphine-induced increases in neuroinflammation, brain oxidative stress, and alteration of glutamate levels in the hippocampus and nucleus accumbens have been associated with morphine dependence and a higher severity of withdrawal symptoms. Due to its rich content in potent anti-inflammatory and antioxidant factors, secretome derived from human mesenchymal stem cells (hMSCs) is proposed as a preclinical therapeutic tool for the treatment of this complex neurological condition associated with neuroinflammation and brain oxidative stress. METHODS Two animal models of morphine dependence were used to evaluate the therapeutic efficacy of hMSC-derived secretome in reducing morphine withdrawal signs. In the first model, rats were implanted subcutaneously with mini-pumps which released morphine at a concentration of 10 mg/kg/day for seven days. Three days after pump implantation, animals were treated with a simultaneous intravenous and intranasal administration of hMSC-derived secretome or vehicle, and withdrawal signs were precipitated on day seven by i.p. naloxone administration. In this model, brain alterations associated with withdrawal were also analyzed before withdrawal precipitation. In the second animal model, rats voluntarily consuming morphine for three weeks were intravenously and intranasally treated with hMSC-derived secretome or vehicle, and withdrawal signs were induced by morphine deprivation. RESULTS In both animal models secretome administration induced a significant reduction of withdrawal signs, as shown by a reduction in a combined withdrawal score. Secretome administration also promoted a reduction in morphine-induced neuroinflammation in the hippocampus and nucleus accumbens, while no changes were observed in extracellular glutamate levels in the nucleus accumbens. CONCLUSION Data presented from two animal models of morphine dependence suggest that administration of secretome derived from hMSCs reduces the development of opioid withdrawal signs, which correlates with a reduction in neuroinflammation in the hippocampus and nucleus accumbens.
Collapse
Affiliation(s)
- Mauricio Quezada
- Center for Regenerative Medicine, Faculty of MedicineClínica Alemana‐Universidad del DesarrolloSantiagoChile
| | - Carolina Ponce
- Department of Neuroscience, Faculty of MedicineUniversidad de ChileSantiagoChile
| | - Pablo Berríos‐Cárcamo
- Center for Regenerative Medicine, Faculty of MedicineClínica Alemana‐Universidad del DesarrolloSantiagoChile
| | - Daniela Santapau
- Center for Regenerative Medicine, Faculty of MedicineClínica Alemana‐Universidad del DesarrolloSantiagoChile
| | - Javiera Gallardo
- Center for Regenerative Medicine, Faculty of MedicineClínica Alemana‐Universidad del DesarrolloSantiagoChile
| | - Cristian De Gregorio
- Center for Regenerative Medicine, Faculty of MedicineClínica Alemana‐Universidad del DesarrolloSantiagoChile
| | - María Elena Quintanilla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of MedicineUniversidad de ChileSantiagoChile
| | - Paola Morales
- Department of Neuroscience, Faculty of MedicineUniversidad de ChileSantiagoChile
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of MedicineUniversidad de ChileSantiagoChile
| | - Marcelo Ezquer
- Center for Regenerative Medicine, Faculty of MedicineClínica Alemana‐Universidad del DesarrolloSantiagoChile
| | - Mario Herrera‐Marschitz
- Department of Neuroscience, Faculty of MedicineUniversidad de ChileSantiagoChile
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of MedicineUniversidad de ChileSantiagoChile
| | - Yedy Israel
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of MedicineUniversidad de ChileSantiagoChile
| | - Paula Andrés‐Herrera
- Department of Pharmacy and Pharmaceutical Technology and ParasitologyUniversity of ValenciaValenciaSpain
- University Institute of Biotechnology and Biomedicine (BIOTECMED)University of ValenciaValenciaSpain
| | - Lucia Hipólito
- Department of Pharmacy and Pharmaceutical Technology and ParasitologyUniversity of ValenciaValenciaSpain
- University Institute of Biotechnology and Biomedicine (BIOTECMED)University of ValenciaValenciaSpain
| | - Fernando Ezquer
- Center for Regenerative Medicine, Faculty of MedicineClínica Alemana‐Universidad del DesarrolloSantiagoChile
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use DisordersSantiagoChile
| |
Collapse
|
13
|
Duque MAL, Vallavoju N, Zhang T, Yvon R, Pan YX, Woo CM. Photo-affinity and Metabolic Labeling Probes Based on the Opioid Alkaloids. Chembiochem 2024; 25:e202300841. [PMID: 38289703 PMCID: PMC11298156 DOI: 10.1002/cbic.202300841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/01/2024]
Abstract
The opioids are powerful analgesics yet possess contingencies that can lead to opioid-use disorder. Chemical probes derived from the opioid alkaloids can provide deeper insight into the molecular interactions in a cellular context. Here, we designed and developed photo-click morphine (PCM-2) as a photo-affinity probe based on morphine and dialkynyl-acetyl morphine (DAAM) as a metabolic acetate reporter based on heroin. Application of these probes to SH-SY5Y, HEK293T, and U2OS cells revealed that PCM-2 and DAAM primarily localize to the lysosome amongst other locations inside the cell by confocal microscopy and chemical proteomics. Interaction site identification by mass spectrometry revealed the mitochondrial phosphate carrier protein, solute carrier family 25 member 3, SLC25A3, and histone H2B as acylation targets of DAAM. These data illustrate the utility of chemical probes to measure localization and protein interactions in a cellular context and will inform the design of probes based on the opioids in the future.
Collapse
Affiliation(s)
| | | | - Tiffany Zhang
- Department of Neurology, Memorial Sloan-Kettering Cancer Center
| | - Robert Yvon
- Department of Chemistry of Chemical Biology, Harvard University
| | - Ying-Xian Pan
- Department of Neurology, Memorial Sloan-Kettering Cancer Center
- Department of Anesthesiology, Rutgers New Jersey Medical School
| | - Christina M Woo
- Department of Chemistry of Chemical Biology, Harvard University
| |
Collapse
|
14
|
Grodin EN. Neuroimmune modulators as novel pharmacotherapies for substance use disorders. Brain Behav Immun Health 2024; 36:100744. [PMID: 38435721 PMCID: PMC10906159 DOI: 10.1016/j.bbih.2024.100744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/20/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
One promising avenue of research is the use of neuroimmune modulators to treat substance use disorders (SUDs). Neuroimmune modulators target the interactions between the nervous system and immune system, which have been found to play a crucial role in the development and maintenance of SUDs. Multiple classes of substances produce alterations to neuroimmune signaling and peripheral immune function, including alcohol, opioids, and psychostimulants Preclinical studies have shown that neuroimmune modulators can reduce drug-seeking behavior and prevent relapse in animal models of SUDs. Additionally, early-phase clinical trials have demonstrated the safety and feasibility of using neuroimmune modulators as a treatment for SUDs in humans. These therapeutics can be used as stand-alone treatments or as adjunctive. This review summarizes the current state of the field and provides future directions with a specific focus on personalized medicine.
Collapse
Affiliation(s)
- Erica N. Grodin
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA
- Cousins Center for Psychoneuroimmunology, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
15
|
Cannella N, Tambalo S, Lunerti V, Scuppa G, de Vivo L, Abdulmalek S, Kinen A, Mackle J, Kuhn B, Solberg Woods LC, Chung D, Kalivas P, Soverchia L, Ubaldi M, Hardiman G, Bifone A, Ciccocioppo R. Long-access heroin self-administration induces region specific reduction of grey matter volume and microglia reactivity in the rat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582024. [PMID: 38463974 PMCID: PMC10925188 DOI: 10.1101/2024.02.26.582024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
In opioid use disorder (OUD) patients, a decrease in brain grey matter volume (GMV) has been reported. It is unclear whether this is the consequence of prolonged exposure to opioids or is a predisposing causal factor in OUD development. To investigate this, we conducted a structural MRI longitudinal study in NIH Heterogeneous Stock rats exposed to heroin self-administration and age-matched naïve controls housed in the same controlled environment. Structural MRI scans were acquired before (MRI 1 ) and after (MRI 2 ) a prolonged period of long access heroin self-administration resulting in escalation of drug intake. Heroin intake resulted in reduced GMV in various cortical and sub-cortical brain regions. In drug-naïve controls no difference was found between MRI 1 and MRI 2 . Notably, the degree of GMV reduction in the medial prefrontal cortex (mPFC) and the insula positively correlated with the amount of heroin consumed and the escalation of heroin use. In a preliminary gene expression analysis, we identified a number of transcripts linked to immune response and neuroinflammation. This prompted us to hypothesize a link between changes in microglia homeostasis and loss of GMV. For this reason, we analyzed the number and morphology of microglial cells in the mPFC and insula. The number of neurons and their morphology was also evaluated. The primary motor cortex, where no GMV change was observed, was used as negative control. We found no differences in the number of neurons and microglia cells following heroin. However, in the same regions where reduced GMV was detected, we observed a shift towards a rounder shape and size reduction in microglia, suggestive of their homeostatic change towards a reactive state. Altogether these findings suggest that escalation of heroin intake correlates with loss of GMV in specific brain regions and that this phenomenon is linked to changes in microglial morphology.
Collapse
|
16
|
Gao J, Lin C, Zhang C, Zhang X, Wang Y, Xu H, Zhang T, Li H, Wang H, Wang X. Exploring the Function of (+)-Naltrexone Precursors: Their Activity as TLR4 Antagonists and Potential in Treating Morphine Addiction. J Med Chem 2024; 67:3127-3143. [PMID: 38306598 DOI: 10.1021/acs.jmedchem.3c02316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Disruptions in the toll-like receptor 4 (TLR4) signaling pathway are linked to chronic inflammation, neuropathic pain, and drug addiction. (+)-Naltrexone, an opioid-derived TLR4 antagonist with a (+)-isomer configuration, does not interact with classical opioid receptors and has moderate blood-brain barrier permeability. Herein, we developed a concise 10-step synthesis for (+)-naltrexone and explored its precursors, (+)-14-hydroxycodeinone (1) and (+)-14-hydroxymorphinone (3). These precursors exhibited TLR4 antagonistic activities 100 times stronger than (+)-naltrexone, particularly inhibiting the TLR4-TRIF pathway. In vivo studies showed that these precursors effectively reduced behavioral effects of morphine, like sensitization and conditioned place preference by suppressing microglial activation and TNF-α expression in the medial prefrontal cortex and ventral tegmental area. Additionally, 3 displayed a longer half-life and higher oral bioavailability than 1. Overall, this research optimized (+)-naltrexone synthesis and identified its precursors as potent TLR4 antagonists, offering potential treatments for morphine addiction.
Collapse
Affiliation(s)
- Jingwei Gao
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Cong Lin
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Cong Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaozheng Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Hangyu Xu
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Tianshu Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Haohong Li
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, Zhejiang 311121, China
| | - Hongshuang Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
17
|
Lee YK, Gold MS, Blum K, Thanos PK, Hanna C, Fuehrlein BS. Opioid use disorder: current trends and potential treatments. Front Public Health 2024; 11:1274719. [PMID: 38332941 PMCID: PMC10850316 DOI: 10.3389/fpubh.2023.1274719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/29/2023] [Indexed: 02/10/2024] Open
Abstract
Opioid use disorder (OUD) is a major public health threat, contributing to morbidity and mortality from addiction, overdose, and related medical conditions. Despite our increasing knowledge about the pathophysiology and existing medical treatments of OUD, it has remained a relapsing and remitting disorder for decades, with rising deaths from overdoses, rather than declining. The COVID-19 pandemic has accelerated the increase in overall substance use and interrupted access to treatment. If increased naloxone access, more buprenorphine prescribers, greater access to treatment, enhanced reimbursement, less stigma and various harm reduction strategies were effective for OUD, overdose deaths would not be at an all-time high. Different prevention and treatment approaches are needed to reverse the concerning trend in OUD. This article will review the recent trends and limitations on existing medications for OUD and briefly review novel approaches to treatment that have the potential to be more durable and effective than existing medications. The focus will be on promising interventional treatments, psychedelics, neuroimmune, neutraceutical, and electromagnetic therapies. At different phases of investigation and FDA approval, these novel approaches have the potential to not just reduce overdoses and deaths, but attenuate OUD, as well as address existing comorbid disorders.
Collapse
Affiliation(s)
- Yu Kyung Lee
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, MA, United States
| | - Mark S. Gold
- Department of Psychiatry, Washington University in St. Louis Euclid Ave, St. Louis, MO, United States
| | - Kenneth Blum
- Division of Addiction Research and Education, Center for Sports, Exercise, and Mental Health, Western University Health Sciences, Pomona, CA, United States
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, Clinical Research Institute on Addictions, State University of New York at Buffalo, Buffalo, NY, United States
| | - Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, Clinical Research Institute on Addictions, State University of New York at Buffalo, Buffalo, NY, United States
| | | |
Collapse
|
18
|
Khomula EV, Araldi D, Green PG, Levine JD. Sensitization of human and rat nociceptors by low dose morphine is toll-like receptor 4-dependent. Mol Pain 2024; 20:17448069241227922. [PMID: 38195088 PMCID: PMC10851754 DOI: 10.1177/17448069241227922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/06/2024] [Indexed: 01/11/2024] Open
Abstract
While opioids remain amongst the most effective treatments for moderate-to-severe pain, their substantial side effect profile remains a major limitation to broader clinical use. One such side effect is opioid-induced hyperalgesia (OIH), which includes a transition from opioid-induced analgesia to pain enhancement. Evidence in rodents supports the suggestion that OIH may be produced by the action of opioids at Toll-like Receptor 4 (TLR4) either on immune cells that, in turn, produce pronociceptive mediators to act on nociceptors, or by a direct action at nociceptor TLR4. And, sub-analgesic doses of several opioids have been shown to induce hyperalgesia in rodents by their action as TLR4 agonists. In the present in vitro patch-clamp electrophysiology experiments, we demonstrate that low dose morphine directly sensitizes human as well as rodent dorsal root ganglion (DRG) neurons, an effect of this opioid analgesic that is antagonized by LPS-RS Ultrapure, a selective TLR4 antagonist. We found that low concentration (100 nM) of morphine reduced rheobase in human (by 36%) and rat (by 26%) putative C-type nociceptors, an effect of morphine that was markedly attenuated by preincubation with LPS-RS Ultrapure. Our findings support the suggestion that in humans, as in rodents, OIH is mediated by the direct action of opioids at TLR4 on nociceptors.
Collapse
Affiliation(s)
- Eugen V Khomula
- Department of Oral & Maxillofacial Surgery, University of California at San Francisco, San Francisco, CA, USA
| | - Dionéia Araldi
- Department of Oral & Maxillofacial Surgery, University of California at San Francisco, San Francisco, CA, USA
| | - Paul G Green
- Department of Oral & Maxillofacial Surgery, University of California at San Francisco, San Francisco, CA, USA
- Department of Preventative & Restorative Dental Sciences, and Division of Neuroscience, University of California at San Francisco, San Francisco, CA, USA
| | - Jon D Levine
- Department of Oral & Maxillofacial Surgery, University of California at San Francisco, San Francisco, CA, USA
- Department of Medicine, Division of Neuroscience, and UCSF Pain and Addiction Research Center, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
19
|
Khomula EV, Levine JD. Sensitization of Human and Rat Nociceptors by Low Dose Morphine is TLR4-dependent. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572472. [PMID: 38187676 PMCID: PMC10769211 DOI: 10.1101/2023.12.19.572472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
While opioids remain amongst the most effective treatments for moderate-to-severe pain, their substantial side effect profile remains a major limitation to broader clinical use. One such side effect is opioid-induced hyperalgesia (OIH), which includes a transition from opioid-induced analgesia to pain enhancement. Evidence in rodents supports the suggestion that OIH may be produced by the action of opioids at Toll-like Receptor 4 (TLR4) either on immune cells that, in turn, produce pronociceptive mediators to act on nociceptors, or by a direct action at nociceptor TLR4. And, sub-analgesic doses of several opioids have been shown to induce hyperalgesia in rodents by their action as TLR4 agonists. In the present in vitro patch-clamp electrophysiology experiments, we demonstrate that low dose morphine directly sensitizes human as well as rodent dorsal root ganglion (DRG) neurons, an effect of this opioid analgesic that is antagonized by LPS-RS Ultrapure, a selective TLR4 antagonist. We found that morphine (100 nM) reduced rheobase in human (by 36%) and rat (by 26%) putative C-type nociceptors, an effect of morphine that was markedly attenuated by preincubation with LPS-RS Ultrapure. Our findings support the suggestion that in humans, as well as in rodents, OIH is mediated by the direct action of opioids at TLR4 on nociceptors.
Collapse
|
20
|
King'uyu DN, Nti-Kyemereh L, Bonin JL, Feustel PJ, Tram M, MacNamara KC, Kopec AM. The effect of morphine on rat microglial phagocytic activity: An in vitro study of brain region-, plating density-, sex-, morphine concentration-, and receptor-dependency. J Neuroimmunol 2023; 384:578204. [PMID: 37774553 DOI: 10.1016/j.jneuroim.2023.578204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/24/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
Opioids have long been used for clinical pain management, but also have addictive properties that have contributed to the ongoing opioid epidemic. While opioid activation of opioid receptors is well known to contribute to reward and reinforcement, data now also suggest that opioid activation of immune signaling via toll-like receptor 4 (TLR4) may also play a role in addiction-like processes. TLR4 expression is enriched in immune cells, and in the nervous system is primarily expressed in microglia. Microglial phagocytosis is important for developmental, homeostatic, and pathological processes. To examine how morphine impacts microglial phagocytosis, we isolated microglia from adult male and female rat cortex and striatum and plated them in vitro at 10,000 (10K) or 50,000 cells/well densities. Microglia were incubated with neutral fluorescent microbeads to stimulate phagocytosis in the presence of one of four morphine concentrations. We found that the brain region from which microglia are isolated and plating density, but not morphine concentration, impacts cell survival in vitro. We found that 10-12 M morphine, but not higher concentrations, increases phagocytosis in striatal microglia in vitro independent of sex and plating density, while 10-12 M morphine increased phagocytosis in cortical microglia in vitro independent of sex, but contingent on a plating density. Finally, we demonstrate that the effect of 10-12 M morphine in striatal microglia plated at 10 K density is mediated via TLR4, and not μORs. Overall, our data suggest that in rats, a morphine-TLR4 signaling pathway increases phagocytic activity in microglia independent of sex. This may is useful information for better understanding the possible neural outcomes associated with morphine exposures.
Collapse
Affiliation(s)
- David N King'uyu
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, United States of America.
| | - Lily Nti-Kyemereh
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, United States of America; Siena College, Loudonville, NY 12211, United States of America
| | - Jesse L Bonin
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, United States of America
| | - Paul J Feustel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, United States of America
| | - Michelle Tram
- Siena College, Loudonville, NY 12211, United States of America
| | - Katherine C MacNamara
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, United States of America
| | - Ashley M Kopec
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, United States of America
| |
Collapse
|
21
|
Zhang X, Li R, Xu H, Wu G, Wu S, Wang H, Wang Y, Wang X. Dissecting the innate immune recognition of morphine and its metabolites by TLR4/MD2: an in silico simulation study. Phys Chem Chem Phys 2023; 25:29656-29663. [PMID: 37882236 DOI: 10.1039/d3cp03715k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
A toll-like receptor 4/myeloid differentiation factor 2 complex (TLR4/MD2) has been identified as a non-classical opioid receptor capable of recognizing morphine isomers and activating microglia in a non-enantioselective manner. Additionally, morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G), the major metabolites of morphine, possess similar chemical structures but exhibit distinct effects on TLR4 signaling. However, the specific mechanisms by which morphine isomers and morphine metabolites are recognized by the innate immune receptor TLR4/MD2 are not well understood. Herein, molecular dynamics simulations were performed to dissect the molecular recognition of TLR4/MD2 with morphine isomers, M3G and M6G. Morphine and its (+)-enantiomer, dextro-morphine ((+)-morphine), were found to have comparable binding free energies as well as similar interaction modes when interacting with (TLR4/MD2)2. Binding with morphine and (+)-morphine caused the motion of the F126 loop towards the inside of the MD2 cavity, which stabilizes (TLR4/MD2)2 with similar dimerization interfaces. The binding free energies of M3G and M6G with (TLR4/MD2)2, while lower than those of morphine isomers, were comparable to each other. However, the binding behaviors of M3G and M6G exhibited contrasting patterns when interacting with (TLR4/MD2)2. The glucuronide group of M3G bound to the gating loop of MD2 and formed strong interactions with TLR4*, which stabilizes the active heterotetrameric complex. In contrast, M6G was situated in cavity A of MD2, where the critical interactions between M6G and the residues of TLR4* were lost, resulting in fluctuation of (TLR4/MD2)2 away from the active conformation. These results indicate that the pivotal interactions at the dimerization interface between MD2 and TLR4* in M6G-bound (TLR4/MD2)2 were considerably weaker than those in M3G-bound (TLR4/MD2)2, which partially explains why M6G fails to activate TLR4 signaling. The discoveries from this study will offer valuable insights for the advancement of next-generation TLR4 small molecule modulators based on opioids.
Collapse
Affiliation(s)
- Xiaozheng Zhang
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Ran Li
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Haoran Xu
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Guicai Wu
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Siru Wu
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Hongshuang Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| |
Collapse
|
22
|
Huerta-Canseco C, Caba M, Camacho-Morales A. Obesity-mediated Lipoinflammation Modulates Food Reward Responses. Neuroscience 2023; 529:37-53. [PMID: 37591331 DOI: 10.1016/j.neuroscience.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Accumulation of white adipose tissue (WAT) during obesity is associated with the development of chronic low-grade inflammation, a biological process known as lipoinflammation. Systemic and central lipoinflammation accumulates pro-inflammatory cytokines including IL-6, IL-1β and TNF-α in plasma and also in brain, disrupting neurometabolism and cognitive behavior. Obesity-mediated lipoinflammation has been reported in brain regions of the mesocorticolimbic reward circuit leading to alterations in the perception and consumption of ultra-processed foods. While still under investigation, lipoinflammation targets two major outcomes of the mesocorticolimbic circuit during food reward: perception and motivation ("Wanting") and the pleasurable feeling of feeding ("Liking"). This review will provide experimental and clinical evidence supporting the contribution of obesity- or overnutrition-related lipoinflammation affecting the mesocorticolimbic reward circuit and enhancing food reward responses. We will also address neuroanatomical targets of inflammatory profiles that modulate food reward responses during obesity and describe potential cellular and molecular mechanisms of overnutrition linked to addiction-like behavior favored by brain lipoinflammation.
Collapse
Affiliation(s)
| | - Mario Caba
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Mexico
| | - Alberto Camacho-Morales
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico; Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico.
| |
Collapse
|
23
|
Zhou X, Li Q, Luo Q, Wang L, Chen J, Xiong Y, Wu G, Chang L, Liu P, Shu H. A single dose of ketamine relieves fentanyl-induced-hyperalgesia by reducing inflammation initiated by the TLR4/NF-κB pathway in rat spinal cord neurons. Drug Discov Ther 2023; 17:279-288. [PMID: 37558466 DOI: 10.5582/ddt.2023.01029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
A large amount of clinical evidence has revealed that ketamine can relieve fentanyl-induced hyperalgesia. However, the underlying mechanism is still unclear. In the current study, a single dose of ketamine (5 mg/kg or 10 mg/kg), TAK-242 (3 mg/kg), or saline was intraperitoneally injected into rats 15 min before four subcutaneous injections of fentanyl. Results revealed that pre-administration of ketamine alleviated fentanyl-induced hyperalgesia according to hind paw-pressure and paw-withdrawal tests. High-dose ketamine can reverse the expression of toll-like receptor-dimer (d-TLR4), phospho- nuclear factor kappa-B (p-NF-κB, p-p65), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) 1 d after fentanyl injection in the spinal cord. Moreover, fentany-linduced-hyperalgesia and changes in the expression of the aforementioned proteins can be attenuated by TAK-242, an inhibitor of TLR4, as well as ketamine. Importantly, TLR4, p-p65, COX-2, and IL-1β were expressed in neurons but not in glial cells in the spinal cord 1 d after fentanyl injection. In conclusion, results suggested that a single dose of ketamine can relieve fentanyl-induced-hyperalgesia via the TLR4/NF-κB pathway in spinal cord neurons.
Collapse
Affiliation(s)
- Xin Zhou
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Qianyi Li
- Guangzhou Kingmylab Pharmaceutical Research Co., Ltd., Guangzhou, Guangdong, China
- Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou, Guangdong, China
| | - Quehua Luo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Le Wang
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaxin Chen
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine South China University of Technology, Guangzhou, Guangdong, China
| | - Ying Xiong
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Guiyun Wu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lu Chang
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Pingping Liu
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Haihua Shu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
24
|
Wang L, Qin Y, Li X, Li X, Liu Y, Li W, Wang Y. Glymphatic-System Function Is Associated with Addiction and Relapse in Heroin Dependents Undergoing Methadone Maintenance Treatment. Brain Sci 2023; 13:1292. [PMID: 37759893 PMCID: PMC10526898 DOI: 10.3390/brainsci13091292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
This study investigates the impact of methadone maintenance treatment (MMT) on the brain glymphatic system (GS) in opioid addiction in China. A total of 51 male MMT patients, 48 demographically matched healthy controls (HCs), and 20 heroin dependents (HDs) were recruited for this study. The GS functioning was assessed using diffusion-tensor-imaging analysis along perivascular spaces (DTI-ALPS index) and the bilateral ALPS divergency (DivALPS). Group differences were analyzed utilizing ANOVA and two-sample t-tests. The relationship between DivALPS and relapse rate was explored using regression analysis. The DTI-ALPS index was significantly higher for the left-side brain than the right side in all three groups. There was a significant difference for the right side (p = 0.0098) between the groups. The MMT and HD groups showed significantly higher DTI-ALPS than the HC group (p = 0.018 and 0.016, respectively). The DivALPS varied significantly among the three groups (p = 0.04), with the HD group showing the lowest and the HC group the highest values. Significant negative relationships were found between relapse count, DivALPS (p < 0.0001, Exp(B) = 0.6047), and age (p < 0.0001, Exp(B) = 0.9142). The findings suggest that MMT may contribute to promoting brain GS recovery in heroin addicts, and modulation of the GS may serve as a potential biomarker for relapse risk, providing insights into novel therapeutic strategies.
Collapse
Affiliation(s)
- Lei Wang
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (L.W.); (Y.Q.)
- Department of Radiology, Xi’an Daxing Hospital, Xi’an 710016, China
| | - Yue Qin
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (L.W.); (Y.Q.)
- Department of Radiology, Xi’an Daxing Hospital, Xi’an 710016, China
| | - Xiaoshi Li
- Department of Radiology, Xi’an Daxing Hospital, Xi’an 710016, China
| | - Xin Li
- Department of Radiology, Xi’an Daxing Hospital, Xi’an 710016, China
| | - Yuwei Liu
- Department of Medical Imaging, People’s Hospital of Tongchuan City, Tongchuan 727000, China
| | - Wei Li
- Department of Radiology, Tangdu Hospital, Air Force Military Medical University, Xi’an 710038, China
| | - Yarong Wang
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (L.W.); (Y.Q.)
| |
Collapse
|
25
|
Bird MF, Hebbes CP, Tamang A, Willets JM, Thompson JP, Guerrini R, Calo G, Lambert DG. In vitro sepsis up-regulates Nociceptin/Orphanin FQ receptor expression and function on human T- but not B-cells. Br J Pharmacol 2023; 180:2298-2314. [PMID: 37021779 PMCID: PMC10953342 DOI: 10.1111/bph.16088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/24/2023] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND AND PURPOSE In animal models of sepsis, increased activation of the Nociceptin/Orphanin FQ (N/OFQ) receptor NOP is associated with mortality and NOP antagonists improved survival. We have explored the role of the N/OFQ-NOP system in freshly isolated volunteer human B- and T-cells incubated with lipopolysaccharide (LPS) and peptidoglycan G (PepG) as a model of in vitro sepsis. EXPERIMENTAL APPROACH B- and T-cell NOP expression was measured using the NOP fluorescent probe N/OFQATTO594 , N/OFQ content was measured using immunofluorescence, N/OFQ release was tracked using a CHOhNOPGαiq5 biosensor assay and NOP function was measured using transwell migration and cytokine/chemokine release using a 25-plex assay format. Cells were challenged with LPS/PepG. KEY RESULTS CD19-positive B-cells bound N/OFQATTO594 ; they also contain N/OFQ. Stimulation with CXCL13/IL-4 increased N/OFQ release. N/OFQ trended to reduced migration to CXCL13/IL-4. Surface NOP expression was unaffected by LPS/PepG, but this treatment increased GM-CSF release in an N/OFQ sensitive manner. CD3-positive T-cells did not bind N/OFQATTO594 ; they did contain N/OFQ. Stimulation with CXCL12/IL-6 increased N/OFQ release. When incubated with LPS/PepG, NOP surface expression was induced leading to N/OFQATTO594 binding. In LPS/PepG-treated cells, N/OFQ reduced migration to CXCL12/IL-6. LPS/PepG increased GM-CSF release in an N/OFQ sensitive manner. CONCLUSIONS AND IMPLICATIONS We suggest both a constitutive and sepsis-inducible N/OFQ-NOP receptor autocrine regulation of B- and T-cell function, respectively. These NOP receptors variably inhibit migration and reduce GM-CSF release. These data provide mechanistic insights to the detrimental role for increased N/OFQ signalling in sepsis and suggest a potential role for NOP antagonists as treatments.
Collapse
Affiliation(s)
- Mark F. Bird
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain ManagementUniversity of LeicesterLeicesterUK
| | - Christopher P. Hebbes
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain ManagementUniversity of LeicesterLeicesterUK
| | | | | | - Jonathan P. Thompson
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain ManagementUniversity of LeicesterLeicesterUK
| | - Remo Guerrini
- Department of Chemical, Pharmaceutical and Agricultural SciencesUniversity of FerraraFerraraItaly
| | - Girolamo Calo
- Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaPaduaItaly
| | - David G. Lambert
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain ManagementUniversity of LeicesterLeicesterUK
| |
Collapse
|
26
|
Jin S, Lin C, Wang Y, Wang H, Wen X, Xiao P, Li X, Peng Y, Sun J, Lu Y, Wang X. Cannabidiol Analogue CIAC001 for the Treatment of Morphine-Induced Addiction by Targeting PKM2. J Med Chem 2023; 66:11498-11516. [PMID: 37531582 DOI: 10.1021/acs.jmedchem.3c01029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Opioid addiction is a chronically relapsing disorder that causes critical public health problems. Currently, there is a lack of effective drug treatment. Herein, one cannabidiol derivative, CIAC001, was discovered as an effective agent for treating morphine-induced addiction. In vitro, CIAC001 exhibited significantly improved anti-neuroinflammatory activity with lower toxicity. In vivo, CIAC001 ameliorated the morphine-induced withdrawal reaction, behavioral sensitization, and conditional position preference by inhibiting morphine-induced microglia activation and neuroinflammation. Target fishing for CIAC001 by activity-based protein profiling led to the identification of pyruvate kinase M2 (PKM2) as the target protein. CIAC001 bound to the protein-protein interface of the PKM2 dimer and promoted the tetramerization of PKM2. Moreover, CIAC001 exhibited an anti-neuroinflammatory effect by reversing the decrease of the PKM2 tetramer and inhibiting the nuclear translocation of PKM2. In summary, this study identified CIAC001 as a lead compound in targeting PKM2 to treat morphine-induced addiction.
Collapse
Affiliation(s)
- Sha Jin
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Cong Lin
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Hongshuang Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xin Wen
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaodong Li
- Beijing Changping Huayou Hospital, Beijing 102299, China
| | - Yinghua Peng
- State Key Laboratory for Molecular Biology of Special Economic Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China
| | - Jinpeng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuyuan Lu
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xiaohui Wang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
27
|
Miller SM, Crouse B, Hicks L, Amin H, Cole S, Bazin HG, Burkhart DJ, Pravetoni M, Evans JT. A lipidated TLR7/8 adjuvant enhances the efficacy of a vaccine against fentanyl in mice. NPJ Vaccines 2023; 8:97. [PMID: 37429853 PMCID: PMC10333387 DOI: 10.1038/s41541-023-00694-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/22/2023] [Indexed: 07/12/2023] Open
Abstract
Opioid use disorders (OUD) and opioid-related fatal overdoses are a public health concern in the United States. Approximately 100,000 fatal opioid-related overdoses occurred annually from mid-2020 to the present, the majority of which involved fentanyl or fentanyl analogs. Vaccines have been proposed as a therapeutic and prophylactic strategy to offer selective and long-lasting protection against accidental or deliberate exposure to fentanyl and closely related analogs. To support the development of a clinically viable anti-opioid vaccine suitable for human use, the incorporation of adjuvants will be required to elicit high titers of high-affinity circulating antibodies specific to the target opioid. Here we demonstrate that the addition of a synthetic TLR7/8 agonist, INI-4001, but not a synthetic TLR4 agonist, INI-2002, to a candidate conjugate vaccine consisting of a fentanyl-based hapten, F1, conjugated to the diphtheria cross-reactive material (CRM), significantly increased generation of high-affinity F1-specific antibody concentrations, and reduced drug distribution to the brain after fentanyl administration in mice.
Collapse
Affiliation(s)
- Shannon M Miller
- Department of Biomedical and Pharmaceutical Sciences, Center for Translational Medicine, University of Montana, Missoula, MT, USA
- Inimmune Corporation, Missoula, MT, USA
| | - Bethany Crouse
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Linda Hicks
- Department of Biomedical and Pharmaceutical Sciences, Center for Translational Medicine, University of Montana, Missoula, MT, USA
| | - Hardik Amin
- Department of Biomedical and Pharmaceutical Sciences, Center for Translational Medicine, University of Montana, Missoula, MT, USA
| | - Shelby Cole
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Helene G Bazin
- Department of Biomedical and Pharmaceutical Sciences, Center for Translational Medicine, University of Montana, Missoula, MT, USA
- Inimmune Corporation, Missoula, MT, USA
| | - David J Burkhart
- Department of Biomedical and Pharmaceutical Sciences, Center for Translational Medicine, University of Montana, Missoula, MT, USA
- Inimmune Corporation, Missoula, MT, USA
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Jay T Evans
- Department of Biomedical and Pharmaceutical Sciences, Center for Translational Medicine, University of Montana, Missoula, MT, USA.
- Inimmune Corporation, Missoula, MT, USA.
| |
Collapse
|
28
|
Brown KT, Levis SC, O'Neill CE, Levy C, Rice KC, Watkins LR, Bachtell RK. Toll-like receptor 4 antagonists reduce cocaine-primed reinstatement of drug seeking. Psychopharmacology (Berl) 2023; 240:1587-1600. [PMID: 37286899 PMCID: PMC10732226 DOI: 10.1007/s00213-023-06392-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023]
Abstract
RATIONALE Cocaine can increase inflammatory neuroimmune markers, including chemokines and cytokines characteristic of innate inflammatory responding. Prior work indicates that the Toll-like receptor 4 (TLR4) initiates this response, and administration of TLR4 antagonists provides mixed evidence that TLR4 contributes to cocaine reward and reinforcement. OBJECTIVE These studies utilize (+)-naltrexone, the TLR4 antagonist, and mu-opioid inactive enantiomer to examine the role of TLR4 on cocaine self-administration and cocaine seeking in rats. METHODS (+)-Naltrexone was continuously administered via an osmotic mini-pump during the acquisition or maintenance of cocaine self-administration. The motivation to acquire cocaine was assessed using a progressive ratio schedule following either continuous and acute (+)-naltrexone administration. The effects of (+)-naltrexone on cocaine seeking were assessed using both a cue craving model and a drug-primed reinstatement model. The highly selective TLR4 antagonist, lipopolysaccharide from Rhodobacter sphaeroides (LPS-Rs), was administered into the nucleus accumbens to determine the effectiveness of TLR4 blockade on cocaine-primed reinstatement. RESULTS (+)-Naltrexone administration did not alter the acquisition or maintenance of cocaine self-administration. Similarly, (+)-naltrexone was ineffective at altering the progressive ratio responding. Continuous administration of (+)-naltrexone during forced abstinence did not impact cued cocaine seeking. Acute systemic administration of (+)-naltrexone dose-dependently decreased cocaine-primed reinstatement of previously extinguished cocaine seeking, and administration of LPS-Rs into the nucleus accumbens shell also reduced cocaine-primed reinstatement of cocaine seeking. DISCUSSION These results complement previous studies suggesting that the TLR4 plays a role in cocaine-primed reinstatement of cocaine seeking, but may have a more limited role in cocaine reinforcement.
Collapse
Affiliation(s)
- Kyle T Brown
- Department of Psychology and Neuroscience and Center for Neuroscience, Boulder, CO, USA
| | - Sophia C Levis
- Department of Psychology and Neuroscience and Center for Neuroscience, Boulder, CO, USA
| | - Casey E O'Neill
- Department of Psychology and Neuroscience and Center for Neuroscience, Boulder, CO, USA
| | - Catherine Levy
- Department of Psychology and Neuroscience and Center for Neuroscience, Boulder, CO, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Linda R Watkins
- Department of Psychology and Neuroscience and Center for Neuroscience, Boulder, CO, USA
| | - Ryan K Bachtell
- Department of Psychology and Neuroscience and Center for Neuroscience, Boulder, CO, USA.
- Institute for Behavioral Genetics University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
29
|
Yu Z, Chen W, Zhang L, Chen Y, Chen W, Meng S, Lu L, Han Y, Shi J. Gut-derived bacterial LPS attenuates incubation of methamphetamine craving via modulating microglia. Brain Behav Immun 2023; 111:101-115. [PMID: 37004759 DOI: 10.1016/j.bbi.2023.03.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/16/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND The microbiota-gut-brain axis plays a critical role in the pathophysiology of neuropsychiatric disorders, and the compositions of gut microbiota are altered by addictive drugs. However, the role of gut microbiota in the incubation of methamphetamine (METH) craving remains poorly understood. METHODS 16S rRNA gene sequencing was performed to assess the richness and diversity of gut microbiota in METH self-administration model. Hematoxylin and eosin staining was performed to evaluate the integrity of intestinal barrier. Immunofluorescence and three-dimensional reconstruction were performed to assess the morphologic changes of microglia. Serum levels of lipopolysaccharide (LPS) were determined using the rat enzyme-linked immunosorbent assay kits. Quantitative real-time PCR was performed to assess transcript levels of dopamine receptor, glutamate ionotropic AMPA receptor 3 and brain-derived neurotrophic factor. RESULTS METH self-administration induced gut microbiota dysbiosis, intestinal barrier damage and microglia activation in the nucleus accumbens core (NAcc), which was partially recovered after prolonged withdrawal. Microbiota depletion via antibiotic treatment increased LPS levels and induced a marked change in the microglial morphology in the NAcc, as indicated by the decreases in the lengths and numbers of microglial branches. Depleting the gut microbiota also prevented the incubation of METH craving and increased the population of Klebsiella oxytoca. Furthermore, Klebsiella oxytoca treatment or exogenous administration of the gram-negative bacterial cell wall component LPS increased serum and central LPS levels, induced microglial morphological changes and reduced the dopamine receptor transcription in the NAcc. Both treatments and NAcc microinjections of gut-derived bacterial LPS significantly decreased METH craving after prolonged withdrawal. CONCLUSIONS These data suggest that LPS from gut gram-negative bacteria may enter circulating blood, activate microglia in the brain and consequently decrease METH craving after withdrawal, which may have important implications for novel strategies to prevent METH addiction and relapse.
Collapse
Affiliation(s)
- Zhoulong Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Wenjun Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Libo Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yun Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Wenxi Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Shiqiu Meng
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China.
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Peking University Shenzhen Hospital, Shenzhen 518036, China; The Key Laboratory for Neuroscience of the Ministry of Education and Health, Peking University, Beijing 100191, China; The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| |
Collapse
|
30
|
Mahintamani T, Basu D, Ghosh A, Luthra-Guptasarma M. The toll of opioid dependence: A research report on the possible role of Toll-like receptor-4 and related immune markers in opioid dependence. Indian J Psychiatry 2023; 65:626-634. [PMID: 37485408 PMCID: PMC10358820 DOI: 10.4103/indianjpsychiatry.indianjpsychiatry_314_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 07/25/2023] Open
Abstract
Background The opioid receptors in the central nervous system and immune system contribute to its reinforcing effect. Xenobiotics-associated molecular pattern of opioids interacts with Toll-like receptor-4 (TLR-4) on the glial cell surface and increases dopaminergic activity in the nucleus accumbens in preclinical studies. We wanted to examine whether treatment with buprenorphine-naloxone (BNX) might be associated with changes in immunological markers in individuals with opioid dependence (OD). Methods We recruited 30 individuals with OD on buprenorphine and 30 age- and sex-matched healthy controls (HCs). We measured the neutrophil (N), lymphocyte (L), CD-4, and CD-8 T-cell count and estimated plasma TLR-4 level in the HC group once. We measured the immunological markers, craving, pain, and perceived stress in the OD group at the treatment initiation (baseline) and after 4 weeks (±2 weeks) of treatment with BNX. Results The mean severity score on the OD questionnaire was 72.8 (SD 5.4). At baseline, OD had a higher N: L ratio and lower lymphocyte percentage than HC. Plasma TLR-4 concentration increased significantly after 1 month of treatment (t = -3.09, P = 0.004). Craving, pain, and perceived stress correlated with absolute neutrophil count, N: L ratio, and CD-8 T-cell count, although lost significance after corrections for multiple comparisons. Conclusion The increase in TLR-4 after treatment with BNX may indicate the rescue from nonprescription opioid-induced immunosuppression or the introduction of a novel xenobiotics-associated molecular pattern of BNX.
Collapse
Affiliation(s)
- Tathagata Mahintamani
- Department of Psychiatry, Drug Deaddiction and Treatment Centre, Chandigarh, India
- Department of Addiction Medicine and Department of Psychiatry, Lokopriya Gopinath Bordoloi Regional Institute of Mental Health, Tezpur, Assam, India
| | - Debasish Basu
- Department of Psychiatry, Drug Deaddiction and Treatment Centre, Chandigarh, India
| | - Abhishek Ghosh
- Department of Psychiatry, Drug Deaddiction and Treatment Centre, Chandigarh, India
| | - Manni Luthra-Guptasarma
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
31
|
Leon Duque MA, Vallavoju N, Woo CM. Chemical tools for the opioids. Mol Cell Neurosci 2023; 125:103845. [PMID: 36948231 PMCID: PMC10247539 DOI: 10.1016/j.mcn.2023.103845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023] Open
Abstract
The opioids are potent and widely used pain management medicines despite also possessing severe liabilities that have fueled the opioid crisis. The pharmacological properties of the opioids primarily derive from agonism or antagonism of the opioid receptors, but additional effects may arise from specific compounds, opioid receptors, or independent targets. The study of the opioids, their receptors, and the development of remediation strategies has benefitted from derivatization of the opioids as chemical tools. While these studies have primarily focused on the opioids in the context of the opioid receptors, these chemical tools may also play a role in delineating mechanisms that are independent of the opioid receptors. In this review, we describe recent advances in the development and applications of opioid derivatives as chemical tools and highlight opportunities for the future.
Collapse
Affiliation(s)
- Mark Anthony Leon Duque
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, United States of America
| | - Nandini Vallavoju
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, United States of America
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, United States of America.
| |
Collapse
|
32
|
Gano A, Deak T, Pautassi RM. A review on the reciprocal interactions between neuroinflammatory processes and substance use and misuse, with a focus on alcohol misuse. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2023; 49:269-282. [PMID: 37148274 PMCID: PMC10524510 DOI: 10.1080/00952990.2023.2201944] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 05/08/2023]
Abstract
Background: The last decade has witnessed a surge of findings implicating neuroinflammatory processes as pivotal players in substance use disorders. The directionality of effects began with the expectation that the neuroinflammation associated with prolonged substance misuse contributes to long-term neuropathological consequences. As the literature grew, however, it became evident that the interactions between neuroinflammatory processes and alcohol and drug intake were reciprocal and part of a pernicious cycle in which disease-relevant signaling pathways contributed to an escalation of drug intake, provoking further inflammation-signaling and thereby exacerbating the neuropathological effects of drug misuse.Objectives: The goal of this review and its associated special issue is to provide an overview of the emergent findings relevant to understanding these reciprocal interactions. The review highlights the importance of preclinical and clinical studies in testing and validation of immunotherapeutics as viable targets for curtailing substance use and misuse, with a focus on alcohol misuse.Methods: A narrative review of the literature on drug and neuroinflammation was conducted, as well as articles published in this Special Issue on Alcohol- and Drug-induced Neuroinflammation: Insights from Pre-clinical Models and Clinical Research.Results: We argue that (a) demographic variables and genetic background contribute unique sensitivity to drug-related neuroinflammation; (b) co-morbidities between substance use disorders and affect dysfunction may share common inflammation-related signatures that predict the efficacy of immunotherapeutic drugs; and (c) examination of polydrug interactions with neuroinflammation is a critical area where greater research emphasis is needed.Conclusions: This review provides an accessible and example-driven review of the relationship between drug misuse, neuroinflammatory processes, and their resultant neuropathological outcomes.
Collapse
Affiliation(s)
- Anny Gano
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY 13902-6000, United States of America
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY 13902-6000, United States of America
| | - Ricardo Marcos Pautassi
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC – CONICET-Universidad Nacional de Córdoba), Córdoba, 5000, Argentina
| |
Collapse
|
33
|
Sayson LV, Ortiz DM, Lee HJ, Kim M, Custodio RJP, Yun J, Lee CH, Lee YS, Cha HJ, Cheong JH, Kim HJ. Deletion of Cryab increases the vulnerability of mice to the addiction-like effects of the cannabinoid JWH-018 via upregulation of striatal NF-κB expression. Front Pharmacol 2023; 14:1135929. [PMID: 37007015 PMCID: PMC10060981 DOI: 10.3389/fphar.2023.1135929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Synthetic cannabinoids have exhibited unpredictable abuse liabilities, especially self-administration (SA) responses in normal rodent models, despite seemingly inducing addiction-like effects in humans. Thus, an efficient pre-clinical model must be developed to determine cannabinoid abuse potential in animals and describe the mechanism that may mediate cannabinoid sensitivity. The Cryab knockout (KO) mice were recently discovered to be potentially sensitive to the addictive effects of psychoactive drugs. Herein, we examined the responses of Cryab KO mice to JWH-018 using SA, conditioned place preference, and electroencephalography. Additionally, the effects of repeated JWH-018 exposure on endocannabinoid- and dopamine-related genes in various addiction-associated brain regions were examined, along with protein expressions involving neuroinflammation and synaptic plasticity. Cryab KO mice exhibited greater cannabinoid-induced SA responses and place preference, along with divergent gamma wave alterations, compared to wild-type (WT) mice, implying their higher sensitivity to cannabinoids. Endocannabinoid- or dopamine-related mRNA expressions and accumbal dopamine concentrations after repeated JWH-018 exposure were not significantly different between the WT and Cryab KO mice. Further analyses revealed that repeated JWH-018 administration led to possibly greater neuroinflammation in Cryab KO mice, which may arise from upregulated NF-κB, accompanied by higher expressions of synaptic plasticity markers, which might have contributed to the development of cannabinoid addiction-related behavior in Cryab KO mice. These findings signify that increased neuroinflammation via NF-κB may mediate the enhanced addiction-like responses of Cryab KO mice to cannabinoids. Altogether, Cryab KO mice may be a potential model for cannabinoid abuse susceptibility.
Collapse
Affiliation(s)
- Leandro Val Sayson
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
| | - Darlene Mae Ortiz
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
| | - Hyun Jun Lee
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
| | - Mikyung Kim
- Department of Chemistry and Life Science, Sahmyook University, Seoul, Republic of Korea
| | - Raly James Perez Custodio
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors—IfADo, Dortmund, Germany
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Chae Hyeon Lee
- Medicinal Chemistry Laboratory, Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Hye Jin Cha
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam–do, Republic of Korea
| | - Jae Hoon Cheong
- Institute for New Drug Development, School of Pharmacy, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
- *Correspondence: Jae Hoon Cheong, ; Hee Jin Kim,
| | - Hee Jin Kim
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
- *Correspondence: Jae Hoon Cheong, ; Hee Jin Kim,
| |
Collapse
|
34
|
Karimi-Haghighi S, Chavoshinezhad S, Mozafari R, Noorbakhsh F, Borhani-Haghighi A, Haghparast A. Neuroinflammatory Response in Reward-Associated Psychostimulants and Opioids: A Review. Cell Mol Neurobiol 2023; 43:649-682. [PMID: 35461410 PMCID: PMC11415174 DOI: 10.1007/s10571-022-01223-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/26/2022] [Indexed: 11/03/2022]
Abstract
Substance abuse is one of the significant problems in social and public health worldwide. Vast numbers of evidence illustrate that motivational and reinforcing impacts of addictive drugs are primarily attributed to their ability to change dopamine signaling in the reward circuit. However, the roles of classic neurotransmitters, especially dopamine and neuromodulators, monoamines, and neuropeptides, in reinforcing characteristics of abused drugs have been extensively investigated. It has recently been revealed that central immune signaling includes cascades of chemokines and proinflammatory cytokines released by neurons and glia via downstream intracellular signaling pathways that play a crucial role in mediating rewarding behavioral effects of drugs. More interestingly, inflammatory responses in the central nervous system modulate the mesolimbic dopamine signaling and glutamate-dependent currents induced by addictive drugs. This review summarized researches in the alterations of inflammatory responses accompanied by rewarding and reinforcing properties of addictive drugs, including cocaine, methamphetamine, and opioids that were evaluated by conditioned place preference and self-administration procedures as highly common behavioral tests to investigate the motivational and reinforcing impacts of addictive drugs. The neuroinflammatory responses affect the rewarding properties of psychostimulants and opioids.
Collapse
Affiliation(s)
- Saeideh Karimi-Haghighi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 19615-1178, Tehran, Iran
| | - Sara Chavoshinezhad
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Roghayeh Mozafari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 19615-1178, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | | | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 19615-1178, Tehran, Iran.
| |
Collapse
|
35
|
Chin EM, Kitase Y, Madurai NK, Robinson S, Jantzie LL. In utero methadone exposure permanently alters anatomical and functional connectivity: A preclinical evaluation. Front Pediatr 2023; 11:1139378. [PMID: 36911026 PMCID: PMC9995894 DOI: 10.3389/fped.2023.1139378] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
The opioid epidemic is an ongoing public health crisis, and children born following prenatal opioid exposure (POE) have increased risk of long-term cognitive and behavioral sequelae. Clinical studies have identified reduced gray matter volume and abnormal white matter microstructure in children with POE but impacts on whole-brain functional brain connectivity (FC) have not been reported. To define effects of POE on whole brain FC and white matter injury in adult animals, we performed quantitative whole-brain structural and functional MRI. We used an established rat model of POE in which we have previously reported impaired executive function in adult rats analogous to persistent neurocognitive symptoms described in humans with POE. Pregnant Sprague-Dawley rat dams received continuous methadone (12 mg/kg/day) vs. saline infusion for 28 days via osmotic mini-pumps, exposing rats to pre- and postnatal opioid until weaning. At young adult age (P60), POE and saline exposed offspring underwent in vivo MRI included diffusion tensor imaging and functional MRI (fMRI). Results indicate that fractional anisotropy (FA) was decreased in adult animals with POE [n = 11] compared to animals that received saline [n = 9] in major white matter tracts, including the corpus callosum (p < 0.001) and external capsule (p < 0.01). This change in FA was concomitant with reduced axial diffusivity in the external capsule (p < 0.01) and increased radial diffusivity in the corpus callosum (p < 0.01). fMRI analyses reveal brainwide FC was diffusely lower in POE (p < 10-6; 10% of variance explained by group). Decreased connectivity in cortical-cortical and cortico-basal ganglia circuitry was particularly prominent with large effect sizes (Glass's Δ > 1). Taken together, these data confirm POE reduces brainwide functional connectivity as well as microstructural integrity of major white matter tracts. Altered neural circuitry, dysregulated network refinement, and diffuse network dysfunction have been implicated in executive function deficits that are common in children with POE. FC may serve as a translatable biomarker in children with POE.
Collapse
Affiliation(s)
- Eric M. Chin
- Department of Neurodevelopmental Medicine, Phelps Center for Cerebral Palsy and Neurodevelopmental Medicine, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yuma Kitase
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nethra K. Madurai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shenandoah Robinson
- Department of Neurodevelopmental Medicine, Phelps Center for Cerebral Palsy and Neurodevelopmental Medicine, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lauren L. Jantzie
- Department of Neurodevelopmental Medicine, Phelps Center for Cerebral Palsy and Neurodevelopmental Medicine, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
36
|
Liu X, Gong R, Peng L, Zhao J. Toll-like receptor 4 signaling pathway in sensory neurons mediates remifentanil-induced postoperative hyperalgesia via transient receptor potential ankyrin 1. Mol Pain 2023; 19:17448069231158290. [PMID: 36733260 PMCID: PMC9926008 DOI: 10.1177/17448069231158290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Background: Remifentanil-induced postoperative hyperalgesia (RIH) refers to a state of hyperalgesia or aggravated pre-existing pain after remifentanil exposure. There has been considerable interest in understanding and preventing RIH. However, the mechanisms responsible for RIH are still not completely understood. Toll-like receptor 4 (TLR4), a classic innate immune receptor, has been detected in sensory neurons and participates in various nociceptive conditions, whereas its role in RIH remains unclear. Transient receptor potential ankyrin 1 (TRPA1) always serves as a nociceptive channel, whereas its role in RIH has not yet been investigated. This study aimed to determine whether the TLR4 signaling pathway in sensory neurons engaged in the development of RIH and the possible involvement of TRPA1 during this process. Methods: A rat model of remifentanil-induced postoperative hyperalgesia (RIH) was established, which presented decreased paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL). The mRNA and protein expression levels of TLR4, phosphorylated NF-κB, and TRPA1 in the dorsal root ganglion (DRG) from RIH model were analyzed by real-time PCR, western blot, and immunofluorescence. The TLR4 antagonist TAK-242 and the TRPA1 antagonist HC-030031 were applied to determine the role of sensory neuron TLR4 signaling and TRPA1 in RIH. Results: Compared with control, PWMT and PWTL were significantly decreased in RIH model. Moreover, the mRNA and protein expression of TLR4 and TRPA1 in DRG were upregulated after remifentanil exposure together with increased NF-κB phosphorylation. TLR4 antagonist TAK-242 mitigated mechanical pain in RIH together with downregulated expression of TLR4, phosphorylated NF-κB, and TRPA1 in DRG neurons. In addition, TRPA1 antagonist HC-030031 also alleviated mechanical pain and decreased TRPA1 expression in RIH without affecting TLR4 signaling in DRG. Conclusions: Taken together, these results suggested that activation of TLR4 signaling pathway engaged in the development of RIH by regulating TRPA1 in DRG neurons. Blocking TLR4 and TRPA1 might serve as a promising therapeutic strategy for RIH.
Collapse
Affiliation(s)
- Xiaowen Liu
- Department of Anesthesiology,
China-Japan Friendship Hospital,
Beijing, China
| | - Ruisong Gong
- Department of Anesthesiology,
Peking
Union Medical College Hospital,
Beijing, China
| | - Liang Peng
- Beijing Key Laboratory for
Immune-Mediated Inflammatory Diseases, Institute of Medical Science,
China-Japan Friendship Hospital,
Beijing, China
| | - Jing Zhao
- Department of Anesthesiology,
China-Japan Friendship Hospital,
Beijing, China,Jing Zhao, Department of Anesthesiology,
China-Japan Friendship Hospital, 2 Yinghua Dongjie, Hepingli, Beijing 100029,
China.
| |
Collapse
|
37
|
Yen E, Gaddis N, Jantzie L, Davis JM. A review of the genomics of neonatal abstinence syndrome. Front Genet 2023; 14:1140400. [PMID: 36845389 PMCID: PMC9950123 DOI: 10.3389/fgene.2023.1140400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Neonatal abstinence syndrome (NAS) is a constellation of signs of withdrawal occurring after birth following in utero exposure to licit or illicit opioids. Despite significant research and public health efforts, NAS remains challenging to diagnose, predict, and manage due to highly variable expression. Biomarker discovery in the field of NAS is crucial for stratifying risk, allocating resources, monitoring longitudinal outcomes, and identifying novel therapeutics. There is considerable interest in identifying important genetic and epigenetic markers of NAS severity and outcome that can guide medical decision making, research efforts, and public policy. A number of recent studies have suggested that genetic and epigenetic changes are associated with NAS severity, including evidence of neurodevelopmental instability. This review will provide an overview of the role of genetics and epigenetics in short and longer-term NAS outcomes. We will also describe novel research efforts using polygenic risk scores for NAS risk stratification and salivary gene expression to understand neurobehavioral modulation. Finally, emerging research focused on neuroinflammation from prenatal opioid exposure may elucidate novel mechanisms that could lead to development of future novel therapeutics.
Collapse
Affiliation(s)
- Elizabeth Yen
- Department of Pediatrics, Tufts Medical Center, Boston, MA, United States
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, United States
- Tufts University School of Medicine, Boston, MA, United States
| | - Nathan Gaddis
- Research Triangle Institute International, Research Triangle Park, Durham, NC, United States
| | - Lauren Jantzie
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jonathan M. Davis
- Department of Pediatrics, Tufts Medical Center, Boston, MA, United States
- Tufts University School of Medicine, Boston, MA, United States
- Tufts Clinical and Translational Sciences Institute, Boston, MA, United States
| |
Collapse
|
38
|
Sex-specific inflammatory and white matter effects of prenatal opioid exposure: a pilot study. Pediatr Res 2023; 93:604-611. [PMID: 36280708 PMCID: PMC9998341 DOI: 10.1038/s41390-022-02357-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/01/2022] [Accepted: 10/11/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Preclinical data demonstrate that opioids modulate brain reward signaling through an inflammatory cascade, but this relationship has yet to be studied in opioid-exposed neonates. METHODS Saliva samples of 54 opioid-exposed and sex- and age-matched non-exposed neonates underwent transcriptomic analysis of inflammatory and reward genes. A subset of 22 neonates underwent brain magnetic resonance imaging (MRI) to evaluate white matter injury commonly associated with inflammatory response. Gene expression and brain MRI were compared between opioid- and non-exposed neonates and further stratified by sex and pharmacotherapy need. RESULTS Opioid-exposed females regardless of pharmacotherapy need had higher expression of inflammatory genes than their male counterparts, with notable differences in the expression of CCL2 and CXCL1 in females requiring pharmacotherapy (p = 0.01 and 0.06, respectively). Opioid-exposed males requiring pharmacotherapy had higher expression of DRD2 than exposed females (p = 0.07), validating our prior research. Higher expression of IL1β, IL6, TNFα, and IL10 was seen in opioid-exposed neonates with T1 white matter hyperintensity (WMH) compared to exposed neonates without WMH (p < 0.05). CONCLUSION Prenatal opioid exposure may promote inflammation resulting in changes in reward signaling and white matter injury in the developing brain, with unique sex-specific effects. The actions of opioids through non-neuronal pathways need further investigation. IMPACT Opioid-exposed neonates are at risk for punctate T1 white matter hyperintensity (WMH). Females carry a greater propensity for WMH. Salivary transcriptomic data showed significantly higher expression of inflammatory genes in opioid-exposed neonates with WMH than those without WMH, irrespective of pharmacotherapy need. Adding to prior studies, our findings suggest that prenatal opioid exposure may modulate white matter injury and reward signaling through a pro-inflammatory process that is sex specific. This novel study highlights the short-term molecular and structural effects of prenatal opioids and the need to elucidate the long-term impact of prenatal opioid exposure.
Collapse
|
39
|
Kurexi S, Wang K, Chen T. Knowledge Mapping of Opioids and Immunomodulation: A Bibliometric Analysis (2000-2022). J Pain Res 2023; 16:1499-1515. [PMID: 37179815 PMCID: PMC10171226 DOI: 10.2147/jpr.s401326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Background Increasing evidence indicates that opioids markedly affect the immune system. However, there are few studies on opioids and immunomodulation using bibliometric analysis. Purpose We aimed to provide a comprehensive overview of the research status and trends of the influence of opioids on immunomodulation using a bibliometric approach. Methods Articles related to opioids and immunomodulation published from 2000 to 2022 were obtained from the Science Citation Index Expanded of the Web of Science Core Collection by searching keywords related to opioids and immunomodulation. Bibliometric analyses and visualizations were conducted using the CiteSpace and VOSviewer software programs. Results From 2000 to 2022, a total of 3242 research articles on opioids and immunomodulation were published in 1126 academic journals by 16,555 authors in 3368 institutions from 102 countries/regions. A majority of publications were from the US and China, and the University of Minnesota System and Chinese Academy of Sciences were the most active institutions. Tsong-long Hwang had published the most papers, while Sabita Roy had the most cocitations. The Journal of Ethnopharmacology published the most papers on opioids and immunomodulation, the Journal of Immunology was the top cocited journal, and the major area of these publications were molecular, biological, and genetic. The top three keywords were "expression", "activation", and "inflammation." Conclusion The number of studies on opioids and immunomodulation has increased sharply all over the world in the last two decades. This is the first bibliometric study to comprehensively summarize the collaboration network in this field. It will help scholars to understand not only the basic knowledge structure but also potential collaborations, research trend topics, and hot directions.
Collapse
Affiliation(s)
- Subinuer Kurexi
- Department of Cardiothoracic Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Ke Wang
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Ke Wang, Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, People’s Republic of China, Email
| | - Tongyu Chen
- Department of Cardiothoracic Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Correspondence: Tongyu Chen, Department of Cardiothoracic Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, People’s Republic of China, Email
| |
Collapse
|
40
|
Madurai NK, Kitase Y, Hamimi S, Kirk SE, Sevensky R, Ramachandra S, Muthukumar S, Vasan V, Ozen M, Gerner G, Robinson S, Jantzie LL. Methadone alters the peripheral inflammatory and central immune landscape following prenatal exposure in rats. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 2:10792. [PMID: 37396628 PMCID: PMC10312988 DOI: 10.3389/adar.2022.10792] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Opioid use during pregnancy continues to rise at alarming rates with a parallel trend in the number of infants and children exposed to opioid medications each year. Prenatal opioid exposure (POE) occurs at a critical timepoint in neurodevelopment disrupting intricate pathways essential for neural-immune maturation with the potential for devastating long-term consequences. Understanding the mechanisms underlying injury associated with POE is essential to address long-term outcomes and identify diagnostic and therapeutic biomarkers in this vulnerable patient population. Using an established preclinical model of POE, we investigated changes in cerebral and peripheral inflammation and peripheral blood mononuclear cell (PBMC) activity. We hypothesized that neuroinflammation, as defined by changes in specific cerebral immune cell populations, would exist in adult rats following POE concomitant with sustained peripheral immune hyperreactivity (SPIHR). Our data demonstrated alterations in cerebral immune cells at postnatal day 60 (P60) typified by increased regulatory T cells (p < 0.01) and neutrophils (p < 0.05) in rats with POE compared to controls. Evaluation of serum revealed increased levels of IL-6 (p < 0.05) and CXCL1 (p < 0.05) at P21 in rats with POE compared to controls with no significant difference in cytokine or chemokine levels between the two groups at P60. Additionally, PBMCs isolated from rats with POE at P21 demonstrated baseline hypersecretion of IL-6 (p < 0.01) and SPIHR with increased levels of TNF-α (p < 0.05) and CXCL1 (p < 0.05) following stimulation with LPS. At P60, however, there was no significant difference found in cytokine or chemokine levels secreted by PBMCs isolated from rats with POE at baseline or with LPS stimulation when compared to controls. Taken together, these data demonstrate cerebral inflammation months after prenatal opioid exposure and long after the resolution of systemic inflammation and SPIHR seen at toddler age equivalent. Chronic alterations in the cerebral immune cell populations secondary to prenatal opioid exposure may underly long-term consequences of developmental brain injury including deficits in cognition and attention. These findings may be invaluable to further investigations of precise biomarkers of injury and targeted therapeutics for this vulnerable population.
Collapse
Affiliation(s)
- Nethra K. Madurai
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Yuma Kitase
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Sarah Hamimi
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Division of Pediatric Neurosurgery, Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Shannon E. Kirk
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Riley Sevensky
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Sindhu Ramachandra
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Sankar Muthukumar
- Division of Pediatric Neurosurgery, Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Vikram Vasan
- Division of Pediatric Neurosurgery, Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Maide Ozen
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Gwendolyn Gerner
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Shenandoah Robinson
- Division of Pediatric Neurosurgery, Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Lauren L. Jantzie
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Division of Pediatric Neurosurgery, Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
41
|
Smiley CE, Wood SK. Stress- and drug-induced neuroimmune signaling as a therapeutic target for comorbid anxiety and substance use disorders. Pharmacol Ther 2022; 239:108212. [PMID: 35580690 DOI: 10.1016/j.pharmthera.2022.108212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
Abstract
Stress and substance use disorders remain two of the most highly prevalent psychiatric conditions and are often comorbid. While individually these conditions have a debilitating impact on the patient and a high cost to society, the symptomology and treatment outcomes are further exacerbated when they occur together. As such, there are few effective treatment options for these patients, and recent investigation has sought to determine the neural processes underlying the co-occurrence of these disorders to identify novel treatment targets. One such mechanism that has been linked to stress- and addiction-related conditions is neuroimmune signaling. Increases in inflammatory factors across the brain have been heavily implicated in the etiology of these disorders, and this review seeks to determine the nature of this relationship. According to the "dual-hit" hypothesis, also referred to as neuroimmune priming, prior exposure to either stress or drugs of abuse can sensitize the neuroimmune system to be hyperresponsive when exposed to these insults in the future. This review completes an examination of the literature surrounding stress-induced increases in inflammation across clinical and preclinical studies along with a summarization of the evidence regarding drug-induced alterations in inflammatory factors. These changes in neuroimmune profiles are also discussed within the context of their impact on the neural circuitry responsible for stress responsiveness and addictive behaviors. Further, this review explores the connection between neuroimmune signaling and susceptibility to these conditions and highlights the anti-inflammatory pharmacotherapies that may be used for the treatment of stress and substance use disorders.
Collapse
Affiliation(s)
- Cora E Smiley
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209, United States of America; WJB Dorn Veterans Administration Medical Center, Columbia, SC 29209, United States of America.
| | - Susan K Wood
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209, United States of America; WJB Dorn Veterans Administration Medical Center, Columbia, SC 29209, United States of America.
| |
Collapse
|
42
|
Small Molecules as Toll-like Receptor 4 Modulators Drug and In-House Computational Repurposing. Biomedicines 2022; 10:biomedicines10092326. [PMID: 36140427 PMCID: PMC9496124 DOI: 10.3390/biomedicines10092326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 12/05/2022] Open
Abstract
The innate immunity toll-like receptor 4 (TLR4) system is a receptor of paramount importance as a therapeutic target. Virtual screening following a “computer-aided drug repurposing” approach was applied to the discovery of novel TLR4 modulators with a non-lipopolysaccharide-like structure. We screened almost 29,000 approved drugs and drug-like molecules from commercial, public, and in-house academia chemical libraries and, after biological assays, identified several compounds with TLR4 antagonist activity. Our computational protocol showed to be a robust approach for the identification of hits with drug-like scaffolds as possible inhibitors of the TLR4 innate immune pathways. Our collaborative work broadens the chemical diversity for inspiration of new classes of TLR4 modulators.
Collapse
|
43
|
Zare N, Pourhadi M, Vaseghi G, Javanmard SH. The potential interplay between Opioid and the Toll-Like Receptor 4 (TLR-4). Immunopharmacol Immunotoxicol 2022; 45:240-252. [PMID: 36073178 DOI: 10.1080/08923973.2022.2122500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
CONTEXT Opioids are available for the management of severe and chronic pain. However, long-term use of high-dose opioids could lead to physiologic tolerance, hyperalgesia, gastrointestinal immobility, addiction, respiratory depression, tumor progression, and inhibition of the immune system. It seems some of these adverse effects of opioids might be induced by TLR-4 signaling. OBJECTIVE The review aims to investigate the potential interplay between opioids and TLR-4 in CNS, gastrointestinal, cancer, and immune system. METHODS The search of PubMed, Embase, Scopus, web of sciences, and Google scholar was performed for all relevant studies published. From a total of 513 papers obtained at the initial database search, publications including in silico, in vitro, and in vivo studies were selected for the review. RESULTS A comprehensive review of studies indicated that using opioids for the reduction of pain might induce adverse effects such as analgesic tolerance, hyperalgesia, cancer progression, and suppression of the immune system. Some studies have indicated these effects may be due to a change in the level of expression and signaling pathway of TLR-4. The generalizability of the results was limited due to the inconsistency of findings. CONCLUSIONS More studies are needed to clarify TLR-4-mediated opioid effects on the biology or stages of the disease as well as the role of different types of opioids, appropriate dosage, and exposure in various contexts. Designing the drug candidate and doing many formulation studies for different diseases and various stages of disease could be associated with effective treatment and pain management.
Collapse
Affiliation(s)
- Nasrin Zare
- School of Medicine, Najafabad Branch, Islamic Azad University, Najafabad, Iran.,Clinical research Development Centre, Najafabad branch, Islamic Azad university, Najafabad, Iran
| | - Marjan Pourhadi
- Applied Physiology Research Canter, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Golnaz Vaseghi
- Interventional Cardiology Research Canter, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Department of Physiology, School of Medicine and Applied Physiology Research Canter, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
44
|
Wang X, Lin C, Wu S, Zhang T, Wang Y, Jiang Y, Wang X. Cannabidivarin alleviates neuroinflammation by targeting TLR4 co-receptor MD2 and improves morphine-mediated analgesia. Front Immunol 2022; 13:929222. [PMID: 36032146 PMCID: PMC9399816 DOI: 10.3389/fimmu.2022.929222] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Toll-like receptor 4 (TLR4) is a pattern-recognition receptor (PRR) that regulates the activation of immune cells, which is a target for treating inflammation. In this study, Cannabidivarin (CBDV), an active component of Cannabis, was identified as an antagonist of TLR4. In vitro, intrinsic protein fluorescence titrations revealed that CBDV directly bound to TLR4 co-receptor myeloid differentiation protein 2 (MD2). Cellular thermal shift assay (CETSA) showed that CBDV binding decreased MD2 stability, which is consistent with in silico simulations that CBDV binding increased the flexibility of the internal loop of MD2. Moreover, CBDV was found to restrain LPS-induced activation of TLR4 signaling axes of NF-κB and MAPKs, therefore blocking LPS-induced pro-inflammatory factors NO, IL-1β, IL-6 and TNF-α. Hot plate test showed that CBDV potentiated morphine-induced antinociception. Furthermore, CBDV attenuated morphine analgesic tolerance as measured by the formalin test by specifically inhibiting chronic morphine-induced glial activation and pro-inflammatory factors expression in the nucleus accumbent. This study confirms that MD2 is a direct binding target of CBDV for the anti-neuroinflammatory effect and implies that CBDV has great translational potential in pain management.
Collapse
Affiliation(s)
- Xue Wang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Cong Lin
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- *Correspondence: Cong Lin, ; Yanfang Jiang, ; Xiaohui Wang,
| | - Siru Wu
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Tianshu Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yanfang Jiang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Genetic Diagnosis Centre, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Cong Lin, ; Yanfang Jiang, ; Xiaohui Wang,
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
- Beijing National Laboratory for Molecular Sciences, Beijing, China
- *Correspondence: Cong Lin, ; Yanfang Jiang, ; Xiaohui Wang,
| |
Collapse
|
45
|
Figueroa-Hall LK, Xu B, Kuplicki R, Ford BN, Burrows K, Teague TK, Sen S, Yeh HW, Irwin MR, Savitz J, Paulus MP. Psychiatric symptoms are not associated with circulating CRP concentrations after controlling for medical, social, and demographic factors. Transl Psychiatry 2022; 12:279. [PMID: 35821205 PMCID: PMC9276683 DOI: 10.1038/s41398-022-02049-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 01/08/2023] Open
Abstract
Elevated serum concentrations (>3 mg/L) of the acute-phase protein, C-reactive protein (CRP), is used as a clinical marker of inflammation and is reported to be a strong risk factor for cardiovascular disease. In psychiatric populations, CRP concentration is reported to be higher in depressed versus healthy individuals. Positive associations between CRP and depression have been established in both clinical and community samples, but effect sizes are attenuated after controlling for confounding variables. Similarly, emerging research has begun to draw a link between inflammation, symptoms of anxiety, and substance abuse. Given the high level of comorbid anxiety and substance use disorders in many depressed populations, this study examined whether depression (Patient Health Questionnaire 9 [PHQ-9]) and substance use-related (Drug Abuse Screening Test [DAST]) symptoms were associated with CRP concentrations in the blood after adjusting for relevant medical, social, and demographic covariates in a large sample undergoing screening for several transdiagnostic psychiatric research studies. A total of 1,724 participants were analyzed for association of CRP with variables using multivariate linear regression. An unadjusted model with no covariates showed that PHQ-9 was significantly associated with CRP in All (β = 0.125), Female (β = 0.091), and Male (β = 0.154) participants, but DAST was significantly associated with CRP in males only (β = 0.120). For the adjusted model, in both males and females, mood-stabilizer treatment (β = 0.630), opioid medication (β = 0.360), body mass index (β = 0.244), percent body fat (β = 0.289), nicotine use (β = 0.063), and self-reported sleep disturbance (β = 0.061) were significantly associated with increased CRP concentrations. In females, oral contraceptive use (β = 0.576), and waist-to-hip ratio (β = 0.086), and in males, non-steroidal anti-inflammatory drug use (β = 0.367) were also associated with increased CRP concentrations. There was no significant association between CRP and individual depressive, anxiety, or substance use-related symptoms when covariates were included in the regression models. These results suggest that associations between circulating CRP and the severity of psychiatric symptoms are dependent on the type of covariates controlled for in statistical analyses.
Collapse
Affiliation(s)
| | - Bohan Xu
- Laureate Institute for Brain Research, Tulsa, OK, 74136, USA
- Department of Computer Science, Tandy School of Computer Science, The University of Tulsa, Tulsa, OK, 74104, USA
| | - Rayus Kuplicki
- Laureate Institute for Brain Research, Tulsa, OK, 74136, USA
| | - Bart N Ford
- Department of Pharmacology & Physiology, Oklahoma State University, Center for Health Sciences, Tulsa, OK, 74107, USA
| | - Kaiping Burrows
- Laureate Institute for Brain Research, Tulsa, OK, 74136, USA
| | - T Kent Teague
- Department of Surgery and Department of Psychiatry, University of Oklahoma-School of Community Medicine, Tulsa, OK, 74135, USA
| | - Sandip Sen
- Department of Computer Science, Tandy School of Computer Science, The University of Tulsa, Tulsa, OK, 74104, USA
| | - Hung-Wen Yeh
- Division of Health Services & Outcomes Research, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Michael R Irwin
- Department of Psychiatry and Behavioral Sciences, UCLA Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK, 74136, USA
- Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, 74199, USA
| | - Martin P Paulus
- Laureate Institute for Brain Research, Tulsa, OK, 74136, USA
- Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, 74199, USA
| |
Collapse
|
46
|
Domingo IK, Latif A, Bhavsar AP. Pro-Inflammatory Signalling PRRopels Cisplatin-Induced Toxicity. Int J Mol Sci 2022; 23:7227. [PMID: 35806229 PMCID: PMC9266867 DOI: 10.3390/ijms23137227] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Cisplatin is a platinum-based chemotherapeutic that has long since been effective against a variety of solid-cancers, substantially improving the five-year survival rates for cancer patients. Its use has also historically been limited by its adverse drug reactions, or cisplatin-induced toxicities (CITs). Of these reactions, cisplatin-induced nephrotoxicity (CIN), cisplatin-induced peripheral neuropathy (CIPN), and cisplatin-induced ototoxicity (CIO) are the three most common of several CITs recognised thus far. While the anti-cancer activity of cisplatin is well understood, the mechanisms driving its toxicities have only begun to be defined. Most of the literature pertains to damage caused by oxidative stress that occurs downstream of cisplatin treatment, but recent evidence suggests that the instigator of CIT development is inflammation. Cisplatin has been shown to induce pro-inflammatory signalling in CIN, CIPN, and CIO, all of which are associated with persisting markers of inflammation, particularly from the innate immune system. This review covered the hallmarks of inflammation common and distinct between different CITs, the role of innate immune components in development of CITs, as well as current treatments targeting pro-inflammatory signalling pathways to conserve the use of cisplatin in chemotherapy and improve long-term health outcomes of cancer patients.
Collapse
Affiliation(s)
| | | | - Amit P. Bhavsar
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (I.K.D.); (A.L.)
| |
Collapse
|
47
|
Montalvo-Martínez L, Cruz-Carrillo G, Maldonado-Ruiz R, Trujillo-Villarreal LA, Cardenas-Tueme M, Viveros-Contreras R, Ortiz-López R, Camacho-Morales A. Transgenerational Susceptibility to Food Addiction-Like Behavior in Rats Associates to a Decrease of the Anti-Inflammatory IL-10 in Plasma. Neurochem Res 2022; 47:3093-3103. [PMID: 35767136 DOI: 10.1007/s11064-022-03660-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022]
Abstract
Maternal nutritional programming by energy-dense foods leads to the transgenerational heritance of addiction-like behavior. Exposure to energy-dense foods also activates systemic and central inflammation in the offspring. This study aimed to characterize pro- and anti-inflammatory cytokine profiles in blood and their correlation to the transgenerational heritance of the addiction-like behavior in rats. F1 offspring of male Wistar diagnosed with addiction-like behavior were mated with virgin females to generate the F2 and the F3 offspring, respectively. Diagnosis of addiction-like behavior was performed by the operant training schedule (FR1, FR5 and PR) and pro- and anti-inflammatory cytokine profiles in blood were measured by multiplex platform. Multiple linear models between behavior, fetal programming by diet and pro- and anti-inflammatory cytokine profiles were performed. We found that the addiction-like behavior found in the F1 male offspring exposed to energy-dense food (cafeteria, CAF) diet during fetal programing is transgenerational inherited to the F2 and F3 generations. Blood from addiction-like behavior subjects of F2 and F3 generations exposed to CAF diet during maternal programming showed decrease in the anti-inflammatory IL-10 in the plasma. Conversely, decreased levels of the pro-inflammatory MCP-1 was identified in non-addiction-like subjects. No changes were found in plasmatic TNF-α levels in the F2 and F3 offspring of non-addiction-like and addiction-like subjects. Finally, biological modeling between IL-10 or MCP-1 plasma levels and prenatal diet exposure on operant training responses confirmed an association of decreased IL-10 levels on addiction-like behavior in the F2 and F3 generations. Globally, we identified decreased anti-inflammatory IL-10 cytokine in the blood of F2 and F3 offspring subjects diagnosed with addiction-like behavior for food rewards.
Collapse
Affiliation(s)
- Larisa Montalvo-Martínez
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Monterrey, NL, Mexico
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico
| | - Gabriela Cruz-Carrillo
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Monterrey, NL, Mexico
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico
| | - Roger Maldonado-Ruiz
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Monterrey, NL, Mexico
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico
| | - Luis A Trujillo-Villarreal
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Monterrey, NL, Mexico
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico
| | - Marcela Cardenas-Tueme
- Institute for Obesity Research. Escuela de Medicina y Ciencias de la Salud, Instituto Tecnológico de Estudios Superiores Monterrey, Monterrey, NL, Mexico
| | | | - Rocío Ortiz-López
- Institute for Obesity Research. Escuela de Medicina y Ciencias de la Salud, Instituto Tecnológico de Estudios Superiores Monterrey, Monterrey, NL, Mexico
| | - Alberto Camacho-Morales
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Monterrey, NL, Mexico.
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico.
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Madero y Dr. Aguirre Pequeño. Col. Mitras Centro, S/N, C.P. 64460, Monterrey, NL, Mexico.
| |
Collapse
|
48
|
Simpson S, Mclellan R, Wellmeyer E, Matalon F, George O. Drugs and Bugs: The Gut-Brain Axis and Substance Use Disorders. J Neuroimmune Pharmacol 2022; 17:33-61. [PMID: 34694571 PMCID: PMC9074906 DOI: 10.1007/s11481-021-10022-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023]
Abstract
Substance use disorders (SUDs) represent a significant public health crisis. Worldwide, 5.4% of the global disease burden is attributed to SUDs and alcohol use, and many more use psychoactive substances recreationally. Often associated with comorbidities, SUDs result in changes to both brain function and physiological responses. Mounting evidence calls for a precision approach for the treatment and diagnosis of SUDs, and the gut microbiome is emerging as a contributor to such disorders. Over the last few centuries, modern lifestyles, diets, and medical care have altered the health of the microbes that live in and on our bodies; as we develop, our diets and lifestyle dictate which microbes flourish and which microbes vanish. An increase in antibiotic treatments, with many antibiotic interventions occurring early in life during the microbiome's normal development, transforms developing microbial communities. Links have been made between the microbiome and SUDs, and the microbiome and conditions that are often comorbid with SUDs such as anxiety, depression, pain, and stress. A better understanding of the mechanisms influencing behavioral changes and drug use is critical in developing novel treatments for SUDSs. Targeting the microbiome as a therapeutic and diagnostic tool is a promising avenue of exploration. This review will provide an overview of the role of the gut-brain axis in a wide range of SUDs, discuss host and microbe pathways that mediate changes in the brain's response to drugs, and the microbes and related metabolites that impact behavior and health within the gut-brain axis.
Collapse
Affiliation(s)
- Sierra Simpson
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US.
| | - Rio Mclellan
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US
| | - Emma Wellmeyer
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US
| | - Frederic Matalon
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US
| | - Olivier George
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US
| |
Collapse
|
49
|
Thomas JHL, Lui L, Abell A, Tieu W, Somogyi AA, Bajic JE, Hutchinson MR. Toll-like receptors change morphine-induced antinociception, tolerance and dependence: Studies using male and female TLR and signalling gene KO mice. Brain Behav Immun 2022; 102:71-85. [PMID: 35131445 DOI: 10.1016/j.bbi.2022.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/22/2021] [Accepted: 02/01/2022] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptors (TLR) have been proposed as a site of action that alters opioid pharmacodynamics. However, a comprehensive assessment of acute opioid antinociception, tolerance and withdrawal behaviours in genetic null mutant strains with altered innate immune signalling has not been performed. Nor has the impact of genetic deletion of TLR2/4 on high-affinity opioid receptor binding. Here we show that diminished TLR signalling potentiates acute morphine antinociception equally in male and female mice. However, only male TIR8 null mutant mice showed reduced morphine analgesia. Analgesic tolerance was prevented in TLR2 and TLR4 null mutants, but not MyD88 animals. Withdrawal behaviours were only protected in TLR2-/- mice. In silico docking simulations revealed opioid ligands bound preferentially to the LPS binding pocket of MD-2 rather than TLR4. There was no binding of [3H](-)-naloxone or [3H]diprenorphine to TLR4 in the concentrations explored. These data confirm that opioids have high efficacy activity at innate immune pattern recognition binding sites but do not bind to TLR4 and identify critical pathway and sex-specific effects of the complex innate immune signalling contributions to opioid pharmacodynamics. These data further support the behavioural importance of the TLR-opioid interaction but fail to demonstrate direct evidence for high-affinity binding of the TLR4 signalling complex to ligands.
Collapse
Affiliation(s)
- Jacob H L Thomas
- Discipline of Pharmacology, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; Discipline of Physiology, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Liang Lui
- Discipline of Pharmacology, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Andrew Abell
- Discipline of Physiology, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; ARC Centre for Nanoscale BioPhotonics, University of Adelaide, SA 5005, Australia
| | - William Tieu
- Discipline of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Andrew A Somogyi
- Discipline of Pharmacology, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Juliana E Bajic
- Discipline of Physiology, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; ARC Centre for Nanoscale BioPhotonics, University of Adelaide, SA 5005, Australia
| | - Mark R Hutchinson
- Discipline of Physiology, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; ARC Centre for Nanoscale BioPhotonics, University of Adelaide, SA 5005, Australia.
| |
Collapse
|
50
|
Non-Peptide Opioids Differ in Effects on Mu-Opioid (MOP) and Serotonin 1A (5-HT 1A) Receptors Heterodimerization and Cellular Effectors (Ca 2+, ERK1/2 and p38) Activation. Molecules 2022; 27:molecules27072350. [PMID: 35408749 PMCID: PMC9000251 DOI: 10.3390/molecules27072350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/24/2022] [Accepted: 04/02/2022] [Indexed: 11/17/2022] Open
Abstract
The importance of the dynamic interplay between the opioid and the serotonin neuromodulatory systems in chronic pain is well recognized. In this study, we investigated whether these two signalling pathways can be integrated at the single-cell level via direct interactions between the mu-opioid (MOP) and the serotonin 1A (5-HT1A) receptors. Using fluorescence cross-correlation spectroscopy (FCCS), a quantitative method with single-molecule sensitivity, we characterized in live cells MOP and 5-HT1A interactions and the effects of prolonged (18 h) exposure to selected non-peptide opioids: morphine, codeine, oxycodone and fentanyl, on the extent of these interactions. The results indicate that in the plasma membrane, MOP and 5-HT1A receptors form heterodimers that are characterized with an apparent dissociation constant Kdapp = (440 ± 70) nM). Prolonged exposure to all non-peptide opioids tested facilitated MOP and 5-HT1A heterodimerization and stabilized the heterodimer complexes, albeit to a different extent: Kd, Fentanylapp = (80 ± 70) nM), Kd,Morphineapp = (200 ± 70) nM, Kd, Codeineapp = (100 ± 70) nM and Kd, Oxycodoneapp = (200 ± 70) nM. The non-peptide opioids differed also in the extent to which they affected the mitogen-activated protein kinases (MAPKs) p38 and the extracellular signal-regulated kinase (Erk1/2), with morphine, codeine and fentanyl activating both pathways, whereas oxycodone activated p38 but not ERK1/2. Acute stimulation with different non-peptide opioids differently affected the intracellular Ca2+ levels and signalling dynamics. Hypothetically, targeting MOP−5-HT1A heterodimer formation could become a new strategy to counteract opioid induced hyperalgesia and help to preserve the analgesic effects of opioids in chronic pain.
Collapse
|