1
|
López-Madrona VJ, Trébuchon A, Bénar CG, Schön D, Morillon B. Different sustained and induced alpha oscillations emerge in the human auditory cortex during sound processing. Commun Biol 2024; 7:1570. [PMID: 39592826 PMCID: PMC11599602 DOI: 10.1038/s42003-024-07297-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Alpha oscillations in the auditory cortex have been associated with attention and the suppression of irrelevant information. However, their anatomical organization and interaction with other neural processes remain unclear. Do alpha oscillations function as a local mechanism within most neural sources to regulate their internal excitation/inhibition balance, or do they belong to separated inhibitory sources gating information across the auditory network? To address this question, we acquired intracerebral electrophysiological recordings from epilepsy patients during rest and tones listening. Thanks to independent component analysis, we disentangled the different neural sources and labeled them as "oscillatory" if they presented strong alpha oscillations at rest, and/or "evoked" if they displayed a significant evoked response to the stimulation. Our results show that 1) sources are condition-specific and segregated in the auditory cortex, 2) both sources have a high-gamma response followed by an induced alpha suppression, 3) only oscillatory sources present a sustained alpha suppression during all the stimulation period. We hypothesize that there are two different alpha oscillations in the auditory cortex: an induced bottom-up response indicating a selective engagement of the primary cortex to process the stimuli, and a sustained suppression reflecting a general disinhibited state of the network to process sensory information.
Collapse
Affiliation(s)
- Víctor J López-Madrona
- Institute of Language, Communication, and the Brain, Aix-Marseille Univ, Marseille, France.
- Aix-Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.
| | - Agnès Trébuchon
- APHM, Timone Hospital, Epileptology and cerebral rhythmology, Marseille, 13005, France
- APHM, Timone Hospital, Functional and stereotactic neurosurgery, Marseille, 13005, France
| | - Christian G Bénar
- Aix-Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Daniele Schön
- Aix-Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Benjamin Morillon
- Aix-Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| |
Collapse
|
2
|
Harlow TJ, Marquez SM, Bressler S, Read HL. Individualized Closed-Loop Acoustic Stimulation Suggests an Alpha Phase Dependence of Sound Evoked and Induced Brain Activity Measured with EEG Recordings. eNeuro 2024; 11:ENEURO.0511-23.2024. [PMID: 38834300 PMCID: PMC11181104 DOI: 10.1523/eneuro.0511-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024] Open
Abstract
Following repetitive visual stimulation, post hoc phase analysis finds that visually evoked response magnitudes vary with the cortical alpha oscillation phase that temporally coincides with sensory stimulus. This approach has not successfully revealed an alpha phase dependence for auditory evoked or induced responses. Here, we test the feasibility of tracking alpha with scalp electroencephalogram (EEG) recordings and play sounds phase-locked to individualized alpha phases in real-time using a novel end-point corrected Hilbert transform (ecHT) algorithm implemented on a research device. Based on prior work, we hypothesize that sound-evoked and induced responses vary with the alpha phase at sound onset and the alpha phase that coincides with the early sound-evoked response potential (ERP) measured with EEG. Thus, we use each subject's individualized alpha frequency (IAF) and individual auditory ERP latency to define target trough and peak alpha phases that allow an early component of the auditory ERP to align to the estimated poststimulus peak and trough phases, respectively. With this closed-loop and individualized approach, we find opposing alpha phase-dependent effects on the auditory ERP and alpha oscillations that follow stimulus onset. Trough and peak phase-locked sounds result in distinct evoked and induced post-stimulus alpha level and frequency modulations. Though additional studies are needed to localize the sources underlying these phase-dependent effects, these results suggest a general principle for alpha phase-dependence of sensory processing that includes the auditory system. Moreover, this study demonstrates the feasibility of using individualized neurophysiological indices to deliver automated, closed-loop, phase-locked auditory stimulation.
Collapse
Affiliation(s)
- Tylor J Harlow
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut 06269
- Brain-Computer Interface Core, University of Connecticut, Storrs, Connecticut 06269
- Institute of Brain and Cognitive Science (IBACS), University of Connecticut, Storrs, Connecticut 06269
| | - Samantha M Marquez
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut 06269
| | - Scott Bressler
- Elemind Technologies, Inc., Cambridge, Massachusetts 02139
| | - Heather L Read
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut 06269
- Brain-Computer Interface Core, University of Connecticut, Storrs, Connecticut 06269
- Institute of Brain and Cognitive Science (IBACS), University of Connecticut, Storrs, Connecticut 06269
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
3
|
Gulati D, Ray S. Auditory and Visual Gratings Elicit Distinct Gamma Responses. eNeuro 2024; 11:ENEURO.0116-24.2024. [PMID: 38604776 PMCID: PMC11046261 DOI: 10.1523/eneuro.0116-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Sensory stimulation is often accompanied by fluctuations at high frequencies (>30 Hz) in brain signals. These could be "narrowband" oscillations in the gamma band (30-70 Hz) or nonoscillatory "broadband" high-gamma (70-150 Hz) activity. Narrowband gamma oscillations, which are induced by presenting some visual stimuli such as gratings and have been shown to weaken with healthy aging and the onset of Alzheimer's disease, hold promise as potential biomarkers. However, since delivering visual stimuli is cumbersome as it requires head stabilization for eye tracking, an equivalent auditory paradigm could be useful. Although simple auditory stimuli have been shown to produce high-gamma activity, whether specific auditory stimuli can also produce narrowband gamma oscillations is unknown. We tested whether auditory ripple stimuli, which are considered an analog to visual gratings, could elicit narrowband oscillations in auditory areas. We recorded 64-channel electroencephalogram from male and female (18 each) subjects while they either fixated on the monitor while passively viewing static visual gratings or listened to stationary and moving ripples, played using loudspeakers, with their eyes open or closed. We found that while visual gratings induced narrowband gamma oscillations with suppression in the alpha band (8-12 Hz), auditory ripples did not produce narrowband gamma but instead elicited very strong broadband high-gamma response and suppression in the beta band (14-26 Hz). Even though we used equivalent stimuli in both modalities, our findings indicate that the underlying neuronal circuitry may not share ubiquitous strategies for stimulus processing.
Collapse
Affiliation(s)
- Divya Gulati
- Centre for Neuroscience, Indian Institute of Science, Bengaluru 560012, India
| | - Supratim Ray
- Centre for Neuroscience, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
4
|
Nourski KV, Steinschneider M, Rhone AE, Dappen ER, Kawasaki H, Howard MA. Processing of auditory novelty in human cortex during a semantic categorization task. Hear Res 2024; 444:108972. [PMID: 38359485 PMCID: PMC10984345 DOI: 10.1016/j.heares.2024.108972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
Auditory semantic novelty - a new meaningful sound in the context of a predictable acoustical environment - can probe neural circuits involved in language processing. Aberrant novelty detection is a feature of many neuropsychiatric disorders. This large-scale human intracranial electrophysiology study examined the spatial distribution of gamma and alpha power and auditory evoked potentials (AEP) associated with responses to unexpected words during performance of semantic categorization tasks. Participants were neurosurgical patients undergoing monitoring for medically intractable epilepsy. Each task included repeatedly presented monosyllabic words from different talkers ("common") and ten words presented only once ("novel"). Targets were words belonging to a specific semantic category. Novelty effects were defined as differences between neural responses to novel and common words. Novelty increased task difficulty and was associated with augmented gamma, suppressed alpha power, and AEP differences broadly distributed across the cortex. Gamma novelty effect had the highest prevalence in planum temporale, posterior superior temporal gyrus (STG) and pars triangularis of the inferior frontal gyrus; alpha in anterolateral Heschl's gyrus (HG), anterior STG and middle anterior cingulate cortex; AEP in posteromedial HG, lower bank of the superior temporal sulcus, and planum polare. Gamma novelty effect had a higher prevalence in dorsal than ventral auditory-related areas. Novelty effects were more pronounced in the left hemisphere. Better novel target detection was associated with reduced gamma novelty effect within auditory cortex and enhanced gamma effect within prefrontal and sensorimotor cortex. Alpha and AEP novelty effects were generally more prevalent in better performing participants. Multiple areas, including auditory cortex on the superior temporal plane, featured AEP novelty effect within the time frame of P3a and N400 scalp-recorded novelty-related potentials. This work provides a detailed account of auditory novelty in a paradigm that directly examined brain regions associated with semantic processing. Future studies may aid in the development of objective measures to assess the integrity of semantic novelty processing in clinical populations.
Collapse
Affiliation(s)
- Kirill V Nourski
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, United States; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242, United States.
| | - Mitchell Steinschneider
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, United States; Departments of Neurology, Neuroscience, and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Ariane E Rhone
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, United States
| | - Emily R Dappen
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, United States; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242, United States
| | - Hiroto Kawasaki
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, United States
| | - Matthew A Howard
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, United States; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242, United States; Pappajohn Biomedical Institute, The University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
5
|
Ahveninen J, Lee HJ, Yu HY, Lee CC, Chou CC, Ahlfors SP, Kuo WJ, Jääskeläinen IP, Lin FH. Visual Stimuli Modulate Local Field Potentials But Drive No High-Frequency Activity in Human Auditory Cortex. J Neurosci 2024; 44:e0890232023. [PMID: 38129133 PMCID: PMC10869150 DOI: 10.1523/jneurosci.0890-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023] Open
Abstract
Neuroimaging studies suggest cross-sensory visual influences in human auditory cortices (ACs). Whether these influences reflect active visual processing in human ACs, which drives neuronal firing and concurrent broadband high-frequency activity (BHFA; >70 Hz), or whether they merely modulate sound processing is still debatable. Here, we presented auditory, visual, and audiovisual stimuli to 16 participants (7 women, 9 men) with stereo-EEG depth electrodes implanted near ACs for presurgical monitoring. Anatomically normalized group analyses were facilitated by inverse modeling of intracranial source currents. Analyses of intracranial event-related potentials (iERPs) suggested cross-sensory responses to visual stimuli in ACs, which lagged the earliest auditory responses by several tens of milliseconds. Visual stimuli also modulated the phase of intrinsic low-frequency oscillations and triggered 15-30 Hz event-related desynchronization in ACs. However, BHFA, a putative correlate of neuronal firing, was not significantly increased in ACs after visual stimuli, not even when they coincided with auditory stimuli. Intracranial recordings demonstrate cross-sensory modulations, but no indication of active visual processing in human ACs.
Collapse
Affiliation(s)
- Jyrki Ahveninen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
- Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Hsin-Ju Lee
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Hsiang-Yu Yu
- Department of Epilepsy, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Cheng-Chia Lee
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chien-Chen Chou
- Department of Epilepsy, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Seppo P Ahlfors
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
- Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Wen-Jui Kuo
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Iiro P Jääskeläinen
- Brain and Mind Laboratory, Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, FI-00076 AALTO, Finland
- International Laboratory of Social Neurobiology, Institute of Cognitive Neuroscience, Higher School of Economics, Moscow 101000, Russia
| | - Fa-Hsuan Lin
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Brain and Mind Laboratory, Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, FI-00076 AALTO, Finland
| |
Collapse
|
6
|
Hamada T. Abrupt phase changes coupled with waning in amplitude of neural oscillation lead to phase-locking in the auditory evoked responses. Hear Res 2024; 442:108936. [PMID: 38103525 DOI: 10.1016/j.heares.2023.108936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Neural oscillations on the human auditory cortex measured with the magnetoencephalography were band-pass filtered between 3 and 16 Hz and then divided into instantaneous phases and amplitudes by the Hilbert transformation. Spontaneously, the amplitudes fluctuated, i.e. waxed and waned; The phases rotated at around 6 Hz most of the time, but abruptly accelerated or decelerated when the amplitudes waned close to zero. After auditory stimuli, the amplitudes and the phases were coupled in the same way as spontaneously. Amounts and directions of the accelerations or decelerations were thereby specific so that the phases subsequently took mostly the same value, i.e. were locked, at around the time of N100 peaks in the auditory evoked responses. In short, the auditory evoked responses emerged from spontaneous oscillations by abrupt phase changes coupled with waning in amplitudes and phase-locking thereafter.
Collapse
Affiliation(s)
- Takashi Hamada
- Department of Intelligence and Informatics, Konan University, Higashi-Nada, Kobe 658-8501, Japan.
| |
Collapse
|
7
|
Wisniewski MG, Joyner CN, Zakrzewski AC, Makeig S. Finding tau rhythms in EEG: An independent component analysis approach. Hum Brain Mapp 2024; 45:e26572. [PMID: 38339905 PMCID: PMC10823759 DOI: 10.1002/hbm.26572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 02/12/2024] Open
Abstract
Tau rhythms are largely defined by sound responsive alpha band (~8-13 Hz) oscillations generated largely within auditory areas of the superior temporal gyri. Studies of tau have mostly employed magnetoencephalography or intracranial recording because of tau's elusiveness in the electroencephalogram. Here, we demonstrate that independent component analysis (ICA) decomposition can be an effective way to identify tau sources and study tau source activities in EEG recordings. Subjects (N = 18) were passively exposed to complex acoustic stimuli while the EEG was recorded from 68 electrodes across the scalp. Subjects' data were split into 60 parallel processing pipelines entailing use of five levels of high-pass filtering (passbands of 0.1, 0.5, 1, 2, and 4 Hz), three levels of low-pass filtering (25, 50, and 100 Hz), and four different ICA algorithms (fastICA, infomax, adaptive mixture ICA [AMICA], and multi-model AMICA [mAMICA]). Tau-related independent component (IC) processes were identified from this data as being localized near the superior temporal gyri with a spectral peak in the 8-13 Hz alpha band. These "tau ICs" showed alpha suppression during sound presentations that was not seen for other commonly observed IC clusters with spectral peaks in the alpha range (e.g., those associated with somatomotor mu, and parietal or occipital alpha). The choice of analysis parameters impacted the likelihood of obtaining tau ICs from an ICA decomposition. Lower cutoff frequencies for high-pass filtering resulted in significantly fewer subjects showing a tau IC than more aggressive high-pass filtering. Decomposition using the fastICA algorithm performed the poorest in this regard, while mAMICA performed best. The best combination of filters and ICA model choice was able to identify at least one tau IC in the data of ~94% of the sample. Altogether, the data reveal close similarities between tau EEG IC dynamics and tau dynamics observed in MEG and intracranial data. Use of relatively aggressive high-pass filters and mAMICA decomposition should allow researchers to identify and characterize tau rhythms in a majority of their subjects. We believe adopting the ICA decomposition approach to EEG analysis can increase the rate and range of discoveries related to auditory responsive tau rhythms.
Collapse
Affiliation(s)
| | | | | | - Scott Makeig
- Swartz Center for Computational NeuroscienceUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
8
|
Nourski KV, Steinschneider M, Rhone AE, Berger JI, Dappen ER, Kawasaki H, Howard III MA. Intracranial electrophysiology of spectrally degraded speech in the human cortex. Front Hum Neurosci 2024; 17:1334742. [PMID: 38318272 PMCID: PMC10839784 DOI: 10.3389/fnhum.2023.1334742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/28/2023] [Indexed: 02/07/2024] Open
Abstract
Introduction Cochlear implants (CIs) are the treatment of choice for severe to profound hearing loss. Variability in CI outcomes remains despite advances in technology and is attributed in part to differences in cortical processing. Studying these differences in CI users is technically challenging. Spectrally degraded stimuli presented to normal-hearing individuals approximate input to the central auditory system in CI users. This study used intracranial electroencephalography (iEEG) to investigate cortical processing of spectrally degraded speech. Methods Participants were adult neurosurgical epilepsy patients. Stimuli were utterances /aba/ and /ada/, spectrally degraded using a noise vocoder (1-4 bands) or presented without vocoding. The stimuli were presented in a two-alternative forced choice task. Cortical activity was recorded using depth and subdural iEEG electrodes. Electrode coverage included auditory core in posteromedial Heschl's gyrus (HGPM), superior temporal gyrus (STG), ventral and dorsal auditory-related areas, and prefrontal and sensorimotor cortex. Analysis focused on high gamma (70-150 Hz) power augmentation and alpha (8-14 Hz) suppression. Results Chance task performance occurred with 1-2 spectral bands and was near-ceiling for clear stimuli. Performance was variable with 3-4 bands, permitting identification of good and poor performers. There was no relationship between task performance and participants demographic, audiometric, neuropsychological, or clinical profiles. Several response patterns were identified based on magnitude and differences between stimulus conditions. HGPM responded strongly to all stimuli. A preference for clear speech emerged within non-core auditory cortex. Good performers typically had strong responses to all stimuli along the dorsal stream, including posterior STG, supramarginal, and precentral gyrus; a minority of sites in STG and supramarginal gyrus had a preference for vocoded stimuli. In poor performers, responses were typically restricted to clear speech. Alpha suppression was more pronounced in good performers. In contrast, poor performers exhibited a greater involvement of posterior middle temporal gyrus when listening to clear speech. Discussion Responses to noise-vocoded speech provide insights into potential factors underlying CI outcome variability. The results emphasize differences in the balance of neural processing along the dorsal and ventral stream between good and poor performers, identify specific cortical regions that may have diagnostic and prognostic utility, and suggest potential targets for neuromodulation-based CI rehabilitation strategies.
Collapse
Affiliation(s)
- Kirill V. Nourski
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, United States
| | - Mitchell Steinschneider
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, United States
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ariane E. Rhone
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, United States
| | - Joel I. Berger
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, United States
| | - Emily R. Dappen
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, United States
| | - Hiroto Kawasaki
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, United States
| | - Matthew A. Howard III
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, United States
- Pappajohn Biomedical Institute, The University of Iowa, Iowa City, IA, United States
| |
Collapse
|
9
|
Wagner M, Rusiniak M, Higby E, Nourski KV. Sensory processing of native and non-native phonotactic patterns in the alpha and beta frequency bands. Neuropsychologia 2023; 189:108659. [PMID: 37579990 PMCID: PMC10602391 DOI: 10.1016/j.neuropsychologia.2023.108659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
The phonotactic patterns of one's native language are established within cortical network processing during development. Sensory processing of native language phonotactic patterns established in memory may be modulated by top-down signals within the alpha and beta frequency bands. To explore sensory processing of phonotactic patterns in the alpha and beta frequency bands, electroencephalograms (EEGs) were recorded from native Polish and native English-speaking adults as they listened to spoken nonwords within same and different nonword pairs. The nonwords contained three phonological sequence onsets that occur in the Polish and English languages (/pət/, /st/, /sət/) and one onset sequence /pt/, which occurs in Polish but not in English onsets. Source localization modeling was used to transform 64-channel EEGs into brain source-level channels. Spectral power values in the low frequencies (2-29 Hz) were analyzed in response to the first nonword in nonword pairs within the context of counterbalanced listening-task conditions, which were presented on separate testing days. For the with-task listening condition, participants performed a behavioral task to the second nonword in the pairs. For the without-task condition participants were only instructed to listen to the stimuli. Thus, in the with-task condition, the first nonword served as a cue for the second nonword, the target stimulus. The results revealed decreased spectral power in the beta frequency band for the with-task condition compared to the without-task condition in response to native language phonotactic patterns. In contrast, the task-related suppression effects in response to the non-native phonotactic pattern /pt/ for the English listeners extended into the alpha frequency band. These effects were localized to source channels in left auditory cortex, the left anterior temporal cortex and the occipital pole. This exploratory study revealed a pattern of results that, if replicated, suggests that native language speech perception is supported by modulations in the alpha and beta frequency bands.
Collapse
Affiliation(s)
- Monica Wagner
- St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA.
| | | | - Eve Higby
- California State University, East Bay, 25800 Carlos Bee Blvd, Hayward, CA, 94542, USA.
| | - Kirill V Nourski
- The University of Iowa, 200 Hawkins Dr., Iowa City, IA, 52242, USA.
| |
Collapse
|
10
|
Gunasekaran H, Azizi L, van Wassenhove V, Herbst SK. Characterizing endogenous delta oscillations in human MEG. Sci Rep 2023; 13:11031. [PMID: 37419933 PMCID: PMC10328979 DOI: 10.1038/s41598-023-37514-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/22/2023] [Indexed: 07/09/2023] Open
Abstract
Rhythmic activity in the delta frequency range (0.5-3 Hz) is a prominent feature of brain dynamics. Here, we examined whether spontaneous delta oscillations, as found in invasive recordings in awake animals, can be observed in non-invasive recordings performed in humans with magnetoencephalography (MEG). In humans, delta activity is commonly reported when processing rhythmic sensory inputs, with direct relationships to behaviour. However, rhythmic brain dynamics observed during rhythmic sensory stimulation cannot be interpreted as an endogenous oscillation. To test for endogenous delta oscillations we analysed human MEG data during rest. For comparison, we additionally analysed two conditions in which participants engaged in spontaneous finger tapping and silent counting, arguing that internally rhythmic behaviours could incite an otherwise silent neural oscillator. A novel set of analysis steps allowed us to show narrow spectral peaks in the delta frequency range in rest, and during overt and covert rhythmic activity. Additional analyses in the time domain revealed that only the resting state condition warranted an interpretation of these peaks as endogenously periodic neural dynamics. In sum, this work shows that using advanced signal processing techniques, it is possible to observe endogenous delta oscillations in non-invasive recordings of human brain dynamics.
Collapse
Affiliation(s)
- Harish Gunasekaran
- Cognitive Neuroimaging Unit, NeuroSpin, CEA, INSERM, CNRS, Université Paris-Saclay, 91191, Gif/Yvette, France
| | - Leila Azizi
- Cognitive Neuroimaging Unit, NeuroSpin, CEA, INSERM, CNRS, Université Paris-Saclay, 91191, Gif/Yvette, France
| | - Virginie van Wassenhove
- Cognitive Neuroimaging Unit, NeuroSpin, CEA, INSERM, CNRS, Université Paris-Saclay, 91191, Gif/Yvette, France
| | - Sophie K Herbst
- Cognitive Neuroimaging Unit, NeuroSpin, CEA, INSERM, CNRS, Université Paris-Saclay, 91191, Gif/Yvette, France.
| |
Collapse
|
11
|
Cusinato R, Alnes SL, van Maren E, Boccalaro I, Ledergerber D, Adamantidis A, Imbach LL, Schindler K, Baud MO, Tzovara A. Intrinsic Neural Timescales in the Temporal Lobe Support an Auditory Processing Hierarchy. J Neurosci 2023; 43:3696-3707. [PMID: 37045604 PMCID: PMC10198454 DOI: 10.1523/jneurosci.1941-22.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 04/14/2023] Open
Abstract
During rest, intrinsic neural dynamics manifest at multiple timescales, which progressively increase along visual and somatosensory hierarchies. Theoretically, intrinsic timescales are thought to facilitate processing of external stimuli at multiple stages. However, direct links between timescales at rest and sensory processing, as well as translation to the auditory system are lacking. Here, we measured intracranial EEG in 11 human patients with epilepsy (4 women), while listening to pure tones. We show that, in the auditory network, intrinsic neural timescales progressively increase, while the spectral exponent flattens, from temporal to entorhinal cortex, hippocampus, and amygdala. Within the neocortex, intrinsic timescales exhibit spatial gradients that follow the temporal lobe anatomy. Crucially, intrinsic timescales at baseline can explain the latency of auditory responses: as intrinsic timescales increase, so do the single-electrode response onset and peak latencies. Our results suggest that the human auditory network exhibits a repertoire of intrinsic neural dynamics, which manifest in cortical gradients with millimeter resolution and may provide a variety of temporal windows to support auditory processing.SIGNIFICANCE STATEMENT Endogenous neural dynamics are often characterized by their intrinsic timescales. These are thought to facilitate processing of external stimuli. However, a direct link between intrinsic timing at rest and sensory processing is missing. Here, with intracranial EEG, we show that intrinsic timescales progressively increase from temporal to entorhinal cortex, hippocampus, and amygdala. Intrinsic timescales at baseline can explain the variability in the timing of intracranial EEG responses to sounds: cortical electrodes with fast timescales also show fast- and short-lasting responses to auditory stimuli, which progressively increase in the hippocampus and amygdala. Our results suggest that a hierarchy of neural dynamics in the temporal lobe manifests across cortical and limbic structures and can explain the temporal richness of auditory responses.
Collapse
Affiliation(s)
- Riccardo Cusinato
- Institute of Computer Science, University of Bern, Bern 3012, Switzerland
- Center for Experimental Neurology, Sleep Wake Epilepsy Center, NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Sigurd L Alnes
- Institute of Computer Science, University of Bern, Bern 3012, Switzerland
- Center for Experimental Neurology, Sleep Wake Epilepsy Center, NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Ellen van Maren
- Center for Experimental Neurology, Sleep Wake Epilepsy Center, NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Ida Boccalaro
- Center for Experimental Neurology, Sleep Wake Epilepsy Center, NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | | | - Antoine Adamantidis
- Center for Experimental Neurology, Sleep Wake Epilepsy Center, NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Lukas L Imbach
- Swiss Epilepsy Center, Klinik Lengg, Zurich 8008, Switzerland
| | - Kaspar Schindler
- Center for Experimental Neurology, Sleep Wake Epilepsy Center, NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Maxime O Baud
- Center for Experimental Neurology, Sleep Wake Epilepsy Center, NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Athina Tzovara
- Institute of Computer Science, University of Bern, Bern 3012, Switzerland
- Center for Experimental Neurology, Sleep Wake Epilepsy Center, NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley 94720, California
| |
Collapse
|
12
|
Herrmann B, Maess B, Henry MJ, Obleser J, Johnsrude IS. Neural signatures of task-related fluctuations in auditory attention and age-related changes. Neuroimage 2023; 268:119883. [PMID: 36657693 DOI: 10.1016/j.neuroimage.2023.119883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
Listening in everyday life requires attention to be deployed dynamically - when listening is expected to be difficult and when relevant information is expected to occur - to conserve mental resources. Conserving mental resources may be particularly important for older adults who often experience difficulties understanding speech. In the current study, we use electro- and magnetoencephalography to investigate the neural and behavioral mechanics of attention regulation during listening and the effects that aging has on these. We first show in younger adults (17-31 years) that neural alpha oscillatory activity indicates when in time attention is deployed (Experiment 1) and that deployment depends on listening difficulty (Experiment 2). Experiment 3 investigated age-related changes in auditory attention regulation. Middle-aged and older adults (54-72 years) show successful attention regulation but appear to utilize timing information differently compared to younger adults (20-33 years). We show a notable age-group dissociation in recruited brain regions. In younger adults, superior parietal cortex underlies alpha power during attention regulation, whereas, in middle-aged and older adults, alpha power emerges from more ventro-lateral areas (posterior temporal cortex). This difference in the sources of alpha activity between age groups only occurred during task performance and was absent during rest (Experiment S1). In sum, our study suggests that middle-aged and older adults employ different neural control strategies compared to younger adults to regulate attention in time under listening challenges.
Collapse
Affiliation(s)
- Björn Herrmann
- Department of Psychology, The University of Western Ontario, London, ON N6A 3K7, Canada; Rotman Research Institute, Baycrest, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada.
| | - Burkhard Maess
- Brain Networks Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Molly J Henry
- Max Planck Research Group "Neural and Environmental Rhythms", Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Lübeck, Germany
| | - Ingrid S Johnsrude
- Department of Psychology, The University of Western Ontario, London, ON N6A 3K7, Canada; School of Communication Sciences & Disorders, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
13
|
Mercier MR, Dubarry AS, Tadel F, Avanzini P, Axmacher N, Cellier D, Vecchio MD, Hamilton LS, Hermes D, Kahana MJ, Knight RT, Llorens A, Megevand P, Melloni L, Miller KJ, Piai V, Puce A, Ramsey NF, Schwiedrzik CM, Smith SE, Stolk A, Swann NC, Vansteensel MJ, Voytek B, Wang L, Lachaux JP, Oostenveld R. Advances in human intracranial electroencephalography research, guidelines and good practices. Neuroimage 2022; 260:119438. [PMID: 35792291 PMCID: PMC10190110 DOI: 10.1016/j.neuroimage.2022.119438] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/23/2022] [Accepted: 06/30/2022] [Indexed: 12/11/2022] Open
Abstract
Since the second-half of the twentieth century, intracranial electroencephalography (iEEG), including both electrocorticography (ECoG) and stereo-electroencephalography (sEEG), has provided an intimate view into the human brain. At the interface between fundamental research and the clinic, iEEG provides both high temporal resolution and high spatial specificity but comes with constraints, such as the individual's tailored sparsity of electrode sampling. Over the years, researchers in neuroscience developed their practices to make the most of the iEEG approach. Here we offer a critical review of iEEG research practices in a didactic framework for newcomers, as well addressing issues encountered by proficient researchers. The scope is threefold: (i) review common practices in iEEG research, (ii) suggest potential guidelines for working with iEEG data and answer frequently asked questions based on the most widespread practices, and (iii) based on current neurophysiological knowledge and methodologies, pave the way to good practice standards in iEEG research. The organization of this paper follows the steps of iEEG data processing. The first section contextualizes iEEG data collection. The second section focuses on localization of intracranial electrodes. The third section highlights the main pre-processing steps. The fourth section presents iEEG signal analysis methods. The fifth section discusses statistical approaches. The sixth section draws some unique perspectives on iEEG research. Finally, to ensure a consistent nomenclature throughout the manuscript and to align with other guidelines, e.g., Brain Imaging Data Structure (BIDS) and the OHBM Committee on Best Practices in Data Analysis and Sharing (COBIDAS), we provide a glossary to disambiguate terms related to iEEG research.
Collapse
Affiliation(s)
- Manuel R Mercier
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France.
| | | | - François Tadel
- Signal & Image Processing Institute, University of Southern California, Los Angeles, CA United States of America
| | - Pietro Avanzini
- Institute of Neuroscience, National Research Council of Italy, Parma, Italy
| | - Nikolai Axmacher
- Department of Neuropsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Universitätsstraße 150, Bochum 44801, Germany; State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, 19 Xinjiekou Outer St, Beijing 100875, China
| | - Dillan Cellier
- Department of Cognitive Science, University of California, La Jolla, San Diego, United States of America
| | - Maria Del Vecchio
- Institute of Neuroscience, National Research Council of Italy, Parma, Italy
| | - Liberty S Hamilton
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States of America; Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States of America; Department of Speech, Language, and Hearing Sciences, Moody College of Communication, The University of Texas at Austin, Austin, TX, United States of America
| | - Dora Hermes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Robert T Knight
- Department of Psychology and the Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States of America
| | - Anais Llorens
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
| | - Pierre Megevand
- Department of Clinical neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lucia Melloni
- Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Grüneburgweg 14, Frankfurt am Main 60322, Germany; Department of Neurology, NYU Grossman School of Medicine, 145 East 32nd Street, Room 828, New York, NY 10016, United States of America
| | - Kai J Miller
- Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Vitória Piai
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; Department of Medical Psychology, Radboudumc, Donders Centre for Medical Neuroscience, Nijmegen, the Netherlands
| | - Aina Puce
- Department of Psychological & Brain Sciences, Programs in Neuroscience, Cognitive Science, Indiana University, Bloomington, IN, United States of America
| | - Nick F Ramsey
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, UMC Utrecht, the Netherlands
| | - Caspar M Schwiedrzik
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Göttingen, Germany; Perception and Plasticity Group, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Sydney E Smith
- Neurosciences Graduate Program, University of California, La Jolla, San Diego, United States of America
| | - Arjen Stolk
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States of America
| | - Nicole C Swann
- University of Oregon in the Department of Human Physiology, United States of America
| | - Mariska J Vansteensel
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, UMC Utrecht, the Netherlands
| | - Bradley Voytek
- Department of Cognitive Science, University of California, La Jolla, San Diego, United States of America; Neurosciences Graduate Program, University of California, La Jolla, San Diego, United States of America; Halıcıoğlu Data Science Institute, University of California, La Jolla, San Diego, United States of America; Kavli Institute for Brain and Mind, University of California, La Jolla, San Diego, United States of America
| | - Liang Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jean-Philippe Lachaux
- Lyon Neuroscience Research Center, EDUWELL Team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon F-69000, France
| | - Robert Oostenveld
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; NatMEG, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Hayat H, Marmelshtein A, Krom AJ, Sela Y, Tankus A, Strauss I, Fahoum F, Fried I, Nir Y. Reduced neural feedback signaling despite robust neuron and gamma auditory responses during human sleep. Nat Neurosci 2022; 25:935-943. [PMID: 35817847 PMCID: PMC9276533 DOI: 10.1038/s41593-022-01107-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/23/2022] [Indexed: 02/02/2023]
Abstract
During sleep, sensory stimuli rarely trigger a behavioral response or conscious perception. However, it remains unclear whether sleep inhibits specific aspects of sensory processing, such as feedforward or feedback signaling. Here, we presented auditory stimuli (for example, click-trains, words, music) during wakefulness and sleep in patients with epilepsy, while recording neuronal spiking, microwire local field potentials, intracranial electroencephalogram and polysomnography. Auditory stimuli induced robust and selective spiking and high-gamma (80-200 Hz) power responses across the lateral temporal lobe during both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. Sleep only moderately attenuated response magnitudes, mainly affecting late responses beyond early auditory cortex and entrainment to rapid click-trains in NREM sleep. By contrast, auditory-induced alpha-beta (10-30 Hz) desynchronization (that is, decreased power), prevalent in wakefulness, was strongly reduced in sleep. Thus, extensive auditory responses persist during sleep whereas alpha-beta power decrease, likely reflecting neural feedback processes, is deficient. More broadly, our findings suggest that feedback signaling is key to conscious sensory processing.
Collapse
Affiliation(s)
- Hanna Hayat
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Aaron J Krom
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Anesthesiology and Critical Care Medicine, Hadassah-Hebrew University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yaniv Sela
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Tankus
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Functional Neurosurgery Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ido Strauss
- Functional Neurosurgery Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Firas Fahoum
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- EEG and Epilepsy Unit, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Itzhak Fried
- Functional Neurosurgery Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA.
| | - Yuval Nir
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel.
- The Sieratzki-Sagol Center for Sleep Medicine, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.
| |
Collapse
|
15
|
Nourski KV, Steinschneider M, Rhone AE, Kovach CK, Kawasaki H, Howard MA. Gamma Activation and Alpha Suppression within Human Auditory Cortex during a Speech Classification Task. J Neurosci 2022; 42:5034-5046. [PMID: 35534226 PMCID: PMC9233444 DOI: 10.1523/jneurosci.2187-21.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/11/2022] [Accepted: 04/22/2022] [Indexed: 01/21/2023] Open
Abstract
The dynamics of information flow within the auditory cortical hierarchy associated with speech processing and the emergence of hemispheric specialization remain incompletely understood. To study these questions with high spatiotemporal resolution, intracranial recordings in 29 human neurosurgical patients of both sexes were obtained while subjects performed a semantic classification task. Neural activity was recorded from posteromedial portion of Heschl's gyrus (HGPM) and anterolateral portion of Heschl's gyrus (HGAL), planum temporale (PT), planum polare, insula, and superior temporal gyrus (STG). Responses to monosyllabic words exhibited early gamma power increases and a later suppression of alpha power, envisioned to represent feedforward activity and decreased feedback signaling, respectively. Gamma activation and alpha suppression had distinct magnitude and latency profiles. HGPM and PT had the strongest gamma responses with shortest onset latencies, indicating that they are the earliest auditory cortical processing stages. The origin of attenuated top-down influences in auditory cortex, as indexed by alpha suppression, was in STG and HGAL. Gamma responses and alpha suppression were typically larger to nontarget words than tones. Alpha suppression was uniformly greater to target versus nontarget stimuli. Hemispheric bias for words versus tones and for target versus nontarget words, when present, was left lateralized. Better task performance was associated with increased gamma activity in the left PT and greater alpha suppression in HGPM and HGAL bilaterally. The prominence of alpha suppression during semantic classification and its accessibility for noninvasive electrophysiologic studies suggests that this measure is a promising index of auditory cortical speech processing.SIGNIFICANCE STATEMENT Understanding the dynamics of cortical speech processing requires the use of active tasks. This is the first comprehensive intracranial electroencephalography study to examine cortical activity within the superior temporal plane, lateral superior temporal gyrus, and the insula during a semantic classification task. Distinct gamma activation and alpha suppression profiles clarify the functional organization of feedforward and feedback processing within the auditory cortical hierarchy. Asymmetries in cortical speech processing emerge at early processing stages. Relationships between cortical activity and task performance are interpreted in the context of current models of speech processing. Results lay the groundwork for iEEG studies using connectivity measures of the bidirectional information flow within the auditory processing hierarchy.
Collapse
Affiliation(s)
- Kirill V Nourski
- Department of Neurosurgery, University of Iowa, Iowa City, Iowa 52242
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| | - Mitchell Steinschneider
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Ariane E Rhone
- Department of Neurosurgery, University of Iowa, Iowa City, Iowa 52242
| | | | - Hiroto Kawasaki
- Department of Neurosurgery, University of Iowa, Iowa City, Iowa 52242
| | - Matthew A Howard
- Department of Neurosurgery, University of Iowa, Iowa City, Iowa 52242
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
16
|
Samaha J, Cohen MX. Power spectrum slope confounds estimation of instantaneous oscillatory frequency. Neuroimage 2022; 250:118929. [PMID: 35077852 DOI: 10.1016/j.neuroimage.2022.118929] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 01/12/2023] Open
Abstract
Oscillatory neural dynamics are highly non-stationary and require methods capable of quantifying time-resolved changes in oscillatory activity in order to understand neural function. Recently, a method termed 'frequency sliding' was introduced to estimate the instantaneous frequency of oscillatory activity, providing a means of tracking temporal changes in the dominant frequency within a sub-band of field potential recordings. Here, the ability of frequency sliding to recover ground-truth oscillatory frequency in simulated data is tested while the exponent (slope) of the 1/fx component of the signal power spectrum is systematically varied, mimicking real electrophysiological data. The results show that 1) in the presence of 1/f activity, frequency sliding systematically underestimates the true frequency of the signal, 2) the magnitude of underestimation is correlated with the steepness of the slope, suggesting that, if unaccounted for, slope changes could be misinterpreted as frequency changes, 3) the impact of slope on frequency estimates interacts with oscillation amplitude, indicating that changes in oscillation amplitude alone may also influence instantaneous frequency estimates in the presence of strong 1/f activity; and 4) analysis parameters such as filter bandwidth and location also mediate the influence of slope on estimated frequency, indicating that these settings should be considered when interpreting estimates obtained via frequency sliding. The origin of these biases resides in the output of the filtering step of frequency sliding, whose energy is biased towards lower frequencies precisely because of the 1/f structure of the data. We discuss several strategies to mitigate these biases and provide a proof-of-principle for a 1/f normalization strategy.
Collapse
Affiliation(s)
- Jason Samaha
- Psychology Department, University of California, Santa Cruz.
| | - Michael X Cohen
- Donders Centre for Medical Neuroscience, Radboud University Medical Centre
| |
Collapse
|
17
|
Broadband Dynamics Rather than Frequency-Specific Rhythms Underlie Prediction Error in the Primate Auditory Cortex. J Neurosci 2021; 41:9374-9391. [PMID: 34645605 DOI: 10.1523/jneurosci.0367-21.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 11/21/2022] Open
Abstract
Detection of statistical irregularities, measured as a prediction error response, is fundamental to the perceptual monitoring of the environment. We studied whether prediction error response is associated with neural oscillations or asynchronous broadband activity. Electrocorticography was conducted in three male monkeys, who passively listened to the auditory roving oddball stimuli. Local field potentials (LFPs) recorded over the auditory cortex underwent spectral principal component analysis, which decoupled broadband and rhythmic components of the LFP signal. We found that the broadband component captured the prediction error response, whereas none of the rhythmic components were associated with statistical irregularities of sounds. The broadband component displayed more stochastic, asymmetrical multifractal properties than the rhythmic components, which revealed more self-similar dynamics. We thus conclude that the prediction error response is captured by neuronal populations generating asynchronous broadband activity, defined by irregular dynamic states, which, unlike oscillatory rhythms, appear to enable the neural representation of auditory prediction error response.SIGNIFICANCE STATEMENT This study aimed to examine the contribution of oscillatory and asynchronous components of auditory local field potentials in the generation of prediction error responses to sensory irregularities, as this has not been directly addressed in the previous studies. Here, we show that mismatch negativity-an auditory prediction error response-is driven by the asynchronous broadband component of potentials recorded in the auditory cortex. This finding highlights the importance of nonoscillatory neural processes in the predictive monitoring of the environment. At a more general level, the study demonstrates that stochastic neural processes, which are often disregarded as neural noise, do have a functional role in the processing of sensory information.
Collapse
|
18
|
Alavash M, Tune S, Obleser J. Dynamic large-scale connectivity of intrinsic cortical oscillations supports adaptive listening in challenging conditions. PLoS Biol 2021; 19:e3001410. [PMID: 34634031 PMCID: PMC8530332 DOI: 10.1371/journal.pbio.3001410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 10/21/2021] [Accepted: 09/07/2021] [Indexed: 11/18/2022] Open
Abstract
In multi-talker situations, individuals adapt behaviorally to this listening challenge mostly with ease, but how do brain neural networks shape this adaptation? We here establish a long-sought link between large-scale neural communications in electrophysiology and behavioral success in the control of attention in difficult listening situations. In an age-varying sample of N = 154 individuals, we find that connectivity between intrinsic neural oscillations extracted from source-reconstructed electroencephalography is regulated according to the listener's goal during a challenging dual-talker task. These dynamics occur as spatially organized modulations in power-envelope correlations of alpha and low-beta neural oscillations during approximately 2-s intervals most critical for listening behavior relative to resting-state baseline. First, left frontoparietal low-beta connectivity (16 to 24 Hz) increased during anticipation and processing of a spatial-attention cue before speech presentation. Second, posterior alpha connectivity (7 to 11 Hz) decreased during comprehension of competing speech, particularly around target-word presentation. Connectivity dynamics of these networks were predictive of individual differences in the speed and accuracy of target-word identification, respectively, but proved unconfounded by changes in neural oscillatory activity strength. Successful adaptation to a listening challenge thus latches onto two distinct yet complementary neural systems: a beta-tuned frontoparietal network enabling the flexible adaptation to attentive listening state and an alpha-tuned posterior network supporting attention to speech.
Collapse
Affiliation(s)
- Mohsen Alavash
- Department of Psychology, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
- * E-mail: (MA); (JO)
| | - Sarah Tune
- Department of Psychology, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
- * E-mail: (MA); (JO)
| |
Collapse
|
19
|
Dheerendra P, Barascud N, Kumar S, Overath T, Griffiths TD. Dynamics underlying auditory-object-boundary detection in primary auditory cortex. Eur J Neurosci 2021; 54:7274-7288. [PMID: 34549472 DOI: 10.1111/ejn.15471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 11/28/2022]
Abstract
Auditory object analysis requires the fundamental perceptual process of detecting boundaries between auditory objects. However, the dynamics underlying the identification of discontinuities at object boundaries are not well understood. Here, we employed a synthetic stimulus composed of frequency-modulated ramps known as 'acoustic textures', where boundaries were created by changing the underlying spectrotemporal statistics. We collected magnetoencephalographic (MEG) data from human volunteers and observed a slow (<1 Hz) post-boundary drift in the neuromagnetic signal. The response evoking this drift signal was source localised close to Heschl's gyrus (HG) bilaterally, which is in agreement with a previous functional magnetic resonance imaging (fMRI) study that found HG to be involved in the detection of similar auditory object boundaries. Time-frequency analysis demonstrated suppression in alpha and beta bands that occurred after the drift signal.
Collapse
Affiliation(s)
- Pradeep Dheerendra
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.,Wellcome Centre for Human Neuroimaging, University College London, London, UK.,Institute of Neuroscience & Psychology, University of Glasgow, Glasgow, UK
| | - Nicolas Barascud
- LSCP, Département d'Etudes Cognitives, ENS, EHESS, CNRS, PSL Research University, Paris, France.,Ear Institute, University College London, London, UK
| | - Sukhbinder Kumar
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.,Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Tobias Overath
- Wellcome Centre for Human Neuroimaging, University College London, London, UK.,Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, USA
| | - Timothy D Griffiths
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.,Wellcome Centre for Human Neuroimaging, University College London, London, UK
| |
Collapse
|
20
|
Individual alpha peak frequency is slower in schizophrenia and related to deficits in visual perception and cognition. Sci Rep 2021; 11:17852. [PMID: 34497330 PMCID: PMC8426382 DOI: 10.1038/s41598-021-97303-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/24/2021] [Indexed: 12/02/2022] Open
Abstract
The brain at rest generates cycles of electrical activity that have been shown to be abnormal in people with schizophrenia. The alpha rhythm (~ 10 Hz) is the dominant resting state electrical cycle and each person has a propensity toward a particular frequency of oscillation for this rhythm. This individual alpha peak frequency (IAPF) is hypothesized to be central to visual perceptual processes and may have downstream influences on cognitive functions such as attention, working memory, or problem solving. In the current study we sought to determine whether IAPF was slower in schizophrenia, and whether lower IAPF predicted deficits in visual perception and cognition that are often observed in schizophrenia. Eyes-closed resting state EEG activity, visual attention, and global cognitive functioning were assessed in individuals with schizophrenia (N = 104) and a group of healthy controls (N = 101). Compared to controls, the schizophrenia group showed slower IAPF and was associated with poorer discrimination of visual targets and nontargets on a computerized attention task, as well as impaired global cognition measured using neuropsychological tests across groups. Notably, disruptions in visual attention fully mediated the relationship between IAPF and global cognition across groups. The current findings demonstrate that slower alpha oscillatory cycling accounts for global cognitive deficits in schizophrenia by way of impairments in perceptual discrimination measured during a visual attention task.
Collapse
|
21
|
Khalighinejad B, Patel P, Herrero JL, Bickel S, Mehta AD, Mesgarani N. Functional characterization of human Heschl's gyrus in response to natural speech. Neuroimage 2021; 235:118003. [PMID: 33789135 PMCID: PMC8608271 DOI: 10.1016/j.neuroimage.2021.118003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 01/11/2023] Open
Abstract
Heschl's gyrus (HG) is a brain area that includes the primary auditory cortex in humans. Due to the limitations in obtaining direct neural measurements from this region during naturalistic speech listening, the functional organization and the role of HG in speech perception remain uncertain. Here, we used intracranial EEG to directly record neural activity in HG in eight neurosurgical patients as they listened to continuous speech stories. We studied the spatial distribution of acoustic tuning and the organization of linguistic feature encoding. We found a main gradient of change from posteromedial to anterolateral parts of HG. We also observed a decrease in frequency and temporal modulation tuning and an increase in phonemic representation, speaker normalization, speech sensitivity, and response latency. We did not observe a difference between the two brain hemispheres. These findings reveal a functional role for HG in processing and transforming simple to complex acoustic features and inform neurophysiological models of speech processing in the human auditory cortex.
Collapse
Affiliation(s)
- Bahar Khalighinejad
- Mortimer B. Zuckerman Brain Behavior Institute, Columbia University, New York, NY, United States,Department of Electrical Engineering, Columbia University, New York, NY, United States
| | - Prachi Patel
- Mortimer B. Zuckerman Brain Behavior Institute, Columbia University, New York, NY, United States,Department of Electrical Engineering, Columbia University, New York, NY, United States
| | - Jose L. Herrero
- Hofstra Northwell School of Medicine, Manhasset, NY, United States,The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Stephan Bickel
- Hofstra Northwell School of Medicine, Manhasset, NY, United States,The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Ashesh D. Mehta
- Hofstra Northwell School of Medicine, Manhasset, NY, United States,The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Nima Mesgarani
- Mortimer B. Zuckerman Brain Behavior Institute, Columbia University, New York, NY, United States,Department of Electrical Engineering, Columbia University, New York, NY, United States,Corresponding author at: Department of Electrical Engineering, Columbia University, New York, NY, United States. (B. Khalighinejad), (P. Patel), (J.L. Herrero), (S. Bickel), (A.D. Mehta), (N. Mesgarani)
| |
Collapse
|
22
|
Kang H, Auksztulewicz R, An H, Abi Chacra N, Sutter ML, Schnupp JWH. Neural Correlates of Auditory Pattern Learning in the Auditory Cortex. Front Neurosci 2021; 15:610978. [PMID: 33790730 PMCID: PMC8005649 DOI: 10.3389/fnins.2021.610978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Abstract
Learning of new auditory stimuli often requires repetitive exposure to the stimulus. Fast and implicit learning of sounds presented at random times enables efficient auditory perception. However, it is unclear how such sensory encoding is processed on a neural level. We investigated neural responses that are developed from a passive, repetitive exposure to a specific sound in the auditory cortex of anesthetized rats, using electrocorticography. We presented a series of random sequences that are generated afresh each time, except for a specific reference sequence that remains constant and re-appears at random times across trials. We compared induced activity amplitudes between reference and fresh sequences. Neural responses from both primary and non-primary auditory cortical regions showed significantly decreased induced activity amplitudes for reference sequences compared to fresh sequences, especially in the beta band. This is the first study showing that neural correlates of auditory pattern learning can be evoked even in anesthetized, passive listening animal models.
Collapse
Affiliation(s)
- Hijee Kang
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
| | - Ryszard Auksztulewicz
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong.,Neuroscience Department, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
| | - Hyunjung An
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
| | - Nicolas Abi Chacra
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
| | - Mitchell L Sutter
- Center for Neuroscience and Section of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, United States
| | - Jan W H Schnupp
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
23
|
Rocchi F, Oya H, Balezeau F, Billig AJ, Kocsis Z, Jenison RL, Nourski KV, Kovach CK, Steinschneider M, Kikuchi Y, Rhone AE, Dlouhy BJ, Kawasaki H, Adolphs R, Greenlee JDW, Griffiths TD, Howard MA, Petkov CI. Common fronto-temporal effective connectivity in humans and monkeys. Neuron 2021; 109:852-868.e8. [PMID: 33482086 PMCID: PMC7927917 DOI: 10.1016/j.neuron.2020.12.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/02/2020] [Accepted: 12/30/2020] [Indexed: 01/24/2023]
Abstract
Human brain pathways supporting language and declarative memory are thought to have differentiated substantially during evolution. However, cross-species comparisons are missing on site-specific effective connectivity between regions important for cognition. We harnessed functional imaging to visualize the effects of direct electrical brain stimulation in macaque monkeys and human neurosurgery patients. We discovered comparable effective connectivity between caudal auditory cortex and both ventro-lateral prefrontal cortex (VLPFC, including area 44) and parahippocampal cortex in both species. Human-specific differences were clearest in the form of stronger hemispheric lateralization effects. In humans, electrical tractography revealed remarkably rapid evoked potentials in VLPFC following auditory cortex stimulation and speech sounds drove VLPFC, consistent with prior evidence in monkeys of direct auditory cortex projections to homologous vocalization-responsive regions. The results identify a common effective connectivity signature in human and nonhuman primates, which from auditory cortex appears equally direct to VLPFC and indirect to the hippocampus. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Francesca Rocchi
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK.
| | - Hiroyuki Oya
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA.
| | - Fabien Balezeau
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | | | - Zsuzsanna Kocsis
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK; Department of Neurosurgery, The University of Iowa, Iowa City, IA, USA
| | - Rick L Jenison
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI, USA
| | - Kirill V Nourski
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | | | - Mitchell Steinschneider
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yukiko Kikuchi
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Ariane E Rhone
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, USA
| | - Brian J Dlouhy
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - Hiroto Kawasaki
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, USA
| | - Ralph Adolphs
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jeremy D W Greenlee
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - Timothy D Griffiths
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK; Department of Neurosurgery, The University of Iowa, Iowa City, IA, USA; Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Matthew A Howard
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA; Pappajohn Biomedical Institute, The University of Iowa, Iowa City, IA, USA
| | - Christopher I Petkov
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK.
| |
Collapse
|
24
|
Nourski KV, Steinschneider M, Rhone AE, Krause BM, Kawasaki H, Banks MI. Cortical responses to auditory novelty across task conditions: An intracranial electrophysiology study. Hear Res 2021; 399:107911. [PMID: 32081413 PMCID: PMC7417283 DOI: 10.1016/j.heares.2020.107911] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 11/29/2022]
Abstract
Elucidating changes in sensory processing across attentional and arousal states is a major focus in neuroscience. The local/global deviant (LGD) stimulus paradigm engages auditory predictive coding over short (local deviance, LD) and long (global deviance, GD) time scales, and has been used to assay disruption of auditory predictive coding upon loss of consciousness. Our previous work (Nourski et al., 2018, J Neurosci 38:8441-52) examined effects of general anesthesia on short- and long-term novelty detection. GD effects were suppressed at subhypnotic doses of propofol, suggesting that they may be more related to task engagement than consciousness per se. The present study addressed this hypothesis by comparing cortical responses to auditory novelty during passive versus active listening conditions in awake listeners. Subjects were seven adult neurosurgical patients undergoing chronic invasive monitoring for medically intractable epilepsy. LGD stimuli were sequences of four identical vowels followed by a fifth identical or different vowel. In the passive condition, the stimuli were presented to subjects as they watched a silent TV program and were instructed to attend to its content. In the active condition, stimuli were presented in the absence of a TV program, and subjects were instructed to press a button in response to GD target stimuli. Intracranial recordings were made from multiple brain regions, including core and non-core auditory, auditory-related, prefrontal and sensorimotor cortex. Metrics of task performance included hit rate, sensitivity index, and reaction times. Cortical activity was measured as averaged auditory evoked potentials (AEPs) and event-related band power in high gamma (70-150 Hz) and alpha (8-14 Hz) frequency bands. The vowel stimuli and LD elicited robust AEPs in all studied brain areas in both passive and active conditions. High gamma responses to stimulus onset and LD were localized predominantly to the auditory cortex in the superior temporal plane and had a comparable prevalence and spatial extent between the two conditions. In contrast, GD effects (AEPs, high gamma and alpha suppression) were greatly enhanced during the active condition in all studied brain areas. The prevalence of high gamma GD effects was positively correlated with individual subjects' task performance. The data demonstrate distinct task engagement-related effects on responses to auditory novelty across the auditory cortical processing hierarchy. The results motivate a closer examination of effective connectivity underlying attentional modulation of cortical sensory responses, and serve as a foundation for examining changes in sensory processing associated with general anesthesia, sleep and disorders of consciousness.
Collapse
Affiliation(s)
- Kirill V Nourski
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, 52242, USA; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52242, USA.
| | - Mitchell Steinschneider
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ariane E Rhone
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, 52242, USA
| | - Bryan M Krause
- Department of Anesthesiology, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Hiroto Kawasaki
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, 52242, USA
| | - Matthew I Banks
- Department of Anesthesiology, University of Wisconsin - Madison, Madison, WI, 53705, USA; Department of Neuroscience, University of Wisconsin - Madison, Madison, WI, 53705, USA
| |
Collapse
|
25
|
Wöstmann M, Maess B, Obleser J. Orienting auditory attention in time: Lateralized alpha power reflects spatio-temporal filtering. Neuroimage 2020; 228:117711. [PMID: 33385562 PMCID: PMC7903158 DOI: 10.1016/j.neuroimage.2020.117711] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/27/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022] Open
Abstract
The deployment of neural alpha (8–12 Hz) lateralization in service of spatial attention is well-established: Alpha power increases in the cortical hemisphere ipsilateral to the attended hemifield, and decreases in the contralateral hemisphere, respectively. Much less is known about humans’ ability to deploy such alpha lateralization in time, and to thus exploit alpha power as a spatio-temporal filter. Here we show that spatially lateralized alpha power does signify – beyond the direction of spatial attention – the distribution of attention in time and thereby qualifies as a spatio-temporal attentional filter. Participants (N = 20) selectively listened to spoken numbers presented on one side (left vs right), while competing numbers were presented on the other side. Key to our hypothesis, temporal foreknowledge was manipulated via a visual cue, which was either instructive and indicated the to-be-probed number position (70% valid) or neutral. Temporal foreknowledge did guide participants’ attention, as they recognized numbers from the to-be-attended side more accurately following valid cues. In the magnetoencephalogram (MEG), spatial attention to the left versus right side induced lateralization of alpha power in all temporal cueing conditions. Modulation of alpha lateralization at the 0.8 Hz presentation rate of spoken numbers was stronger following instructive compared to neutral temporal cues. Critically, we found stronger modulation of lateralized alpha power specifically at the onsets of temporally cued numbers. These results suggest that the precisely timed hemispheric lateralization of alpha power qualifies as a spatio-temporal attentional filter mechanism susceptible to top-down behavioural goals.
Collapse
Affiliation(s)
- Malte Wöstmann
- Department of Psychology, University of Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany.
| | - Burkhard Maess
- Max-Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
26
|
Kumar S, Gander PE, Berger JI, Billig AJ, Nourski KV, Oya H, Kawasaki H, Howard MA, Griffiths TD. Oscillatory correlates of auditory working memory examined with human electrocorticography. Neuropsychologia 2020; 150:107691. [PMID: 33227284 PMCID: PMC7884909 DOI: 10.1016/j.neuropsychologia.2020.107691] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/23/2020] [Accepted: 11/16/2020] [Indexed: 02/08/2023]
Abstract
This work examines how sounds are held in auditory working memory (AWM) in humans by examining oscillatory local field potentials (LFPs) in candidate brain regions. Previous fMRI studies by our group demonstrated blood oxygenation level-dependent (BOLD) response increases during maintenance in auditory cortex, inferior frontal cortex and the hippocampus using a paradigm with a delay period greater than 10s. The relationship between such BOLD changes and ensemble activity in different frequency bands is complex, and the long delay period raised the possibility that long-term memory mechanisms were engaged. Here we assessed LFPs in different frequency bands in six subjects with recordings from all candidate brain regions using a paradigm with a short delay period of 3 s. Sustained delay activity was demonstrated in all areas, with different patterns in the different areas. Enhancement in low frequency (delta) power and suppression across higher frequencies (beta/gamma) were demonstrated in primary auditory cortex in medial Heschl’s gyrus (HG) whilst non-primary cortex showed patterns of enhancement and suppression that altered at different levels of the auditory hierarchy from lateral HG to superior- and middle-temporal gyrus. Inferior frontal cortex showed increasing suppression with increasing frequency. The hippocampus and parahippocampal gyrus showed low frequency increases and high frequency decreases in oscillatory activity. This work demonstrates sustained activity patterns during AWM maintenance, with prominent low-frequency increases in medial temporal lobe regions. Local field potentials recorded in humans while they keep sound in working memory. Sustained increase in delta power observed in primary auditory cortex. Pattern of change in power in non-primary cortex depends on the hierarchical level. Hippocampus and parahippocampus showed increase in low frequency power.
Collapse
Affiliation(s)
- Sukhbinder Kumar
- Newcastle University Medical School, Newcastle Upon Tyne, Tyne and Wear NE2 4HH, UK.
| | - Phillip E Gander
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, 52242, USA
| | - Joel I Berger
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, 52242, USA
| | | | - Kirill V Nourski
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, 52242, USA; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52242, USA
| | - Hiroyuki Oya
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, 52242, USA
| | - Hiroto Kawasaki
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, 52242, USA
| | - Matthew A Howard
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, 52242, USA; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52242, USA; Pappajohn Biomedical Institute, The University of Iowa, Iowa City, IA, 52242, USA
| | - Timothy D Griffiths
- Newcastle University Medical School, Newcastle Upon Tyne, Tyne and Wear NE2 4HH, UK; Department of Neurosurgery, The University of Iowa, Iowa City, IA, 52242, USA; Wellcome Centre for Human Neuroimaging, University College London, London, WC1N 3BG, UK
| |
Collapse
|
27
|
Li X, Zhao P, Qiu X, Ding H, Lv H, Yang Z, Gong S, Wang Z. Lateralization Effects on Cerebral Blood Flow in Patients With Unilateral Pulsatile Tinnitus Measured With Arterial Spin Labeling. Front Hum Neurosci 2020; 14:591260. [PMID: 33281587 PMCID: PMC7705237 DOI: 10.3389/fnhum.2020.591260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/26/2020] [Indexed: 12/26/2022] Open
Abstract
Purpose: To investigate cerebral blood flow (CBF) differences in patients with left- and right-sided pulsatile tinnitus (LPT and RPT) and healthy controls (HCs) to further explore the lateralization effects of PT using arterial spin labeling (ASL). Methods: ASL data from 21 RPT patients, 17 LPT patients and 21 HCs were reviewed. Voxel-wise analysis and region of interest analysis were performed to explore differences in CBF among the three groups. Tinnitus Handicap Inventory (THI) score and tinnitus duration were obtained from each patient. Results: Voxel-wise analysis showed that the CBF of the left inferior parietal gyrus was increased in both RPT and LPT patients compared with HCs (P < 0.001). Region of interest analysis revealed that the CBF of the left primary auditory cortex (PAC) was higher than that of the right, while the CBF of the right secondary auditory cortex (SAC) and auditory association cortex was higher than that of the left. These lateralization effects were present in all three groups. Compared with HCs, RPT patients showed increased CBF in the left PAC and SAC (PAC: P = 0.036; SAC: P = 0.012). No significant correlations were found between PT duration or THI score and altered CBF in above regions. Conclusion: Increased CBF in the left inferior parietal gyrus is a common feature in both RPT and LPT patients, regardless of the perceived side of PT. The lateralization effects of auditory cortices may be a physiological characteristic of the normal brain. These findings may provide a new perspective for understanding the neurological pathophysiology of PT.
Collapse
Affiliation(s)
- Xiaoshuai Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoyu Qiu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Heyu Ding
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Tomassini A, Maris E, Hilt P, Fadiga L, D’Ausilio A. Visual detection is locked to the internal dynamics of cortico-motor control. PLoS Biol 2020; 18:e3000898. [PMID: 33079930 PMCID: PMC7598921 DOI: 10.1371/journal.pbio.3000898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/30/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Movements overtly sample sensory information, making sensory analysis an active-sensing process. In this study, we show that visual information sampling is not just locked to the (overt) movement dynamics but to the internal (covert) dynamics of cortico-motor control. We asked human participants to perform continuous isometric contraction while detecting unrelated and unpredictable near-threshold visual stimuli. The motor output (force) shows zero-lag coherence with brain activity (recorded via electroencephalography) in the beta-band, as previously reported. In contrast, cortical rhythms in the alpha-band systematically forerun the motor output by 200 milliseconds. Importantly, visual detection is facilitated when cortico-motor alpha (not beta) synchronization is enhanced immediately before stimulus onset, namely, at the optimal phase relationship for sensorimotor communication. These findings demonstrate an ongoing coupling between visual sampling and motor control, suggesting the operation of an internal and alpha-cycling visuomotor loop.
Collapse
Affiliation(s)
- Alice Tomassini
- Istituto Italiano di Tecnologia, Center for Translational Neurophysiology of Speech and Communication (CTNSC), Ferrara, Italy
- * E-mail:
| | - Eric Maris
- Radboud University, Donders Institute for Brain, Cognition and Behavior, Centre for Cognition (DCC), Nijmegen, The Netherlands
| | - Pauline Hilt
- Istituto Italiano di Tecnologia, Center for Translational Neurophysiology of Speech and Communication (CTNSC), Ferrara, Italy
| | - Luciano Fadiga
- Istituto Italiano di Tecnologia, Center for Translational Neurophysiology of Speech and Communication (CTNSC), Ferrara, Italy
- Università di Ferrara, Dipartimento di Scienze Biomediche e Chirurgico Specialistiche, Ferrara, Italy
| | - Alessandro D’Ausilio
- Istituto Italiano di Tecnologia, Center for Translational Neurophysiology of Speech and Communication (CTNSC), Ferrara, Italy
- Università di Ferrara, Dipartimento di Scienze Biomediche e Chirurgico Specialistiche, Ferrara, Italy
| |
Collapse
|
29
|
Nourski KV, Steinschneider M, Rhone AE, Kovach CK, Banks MI, Krause BM, Kawasaki H, Howard MA. Electrophysiology of the Human Superior Temporal Sulcus during Speech Processing. Cereb Cortex 2020; 31:1131-1148. [PMID: 33063098 DOI: 10.1093/cercor/bhaa281] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/06/2020] [Accepted: 09/01/2020] [Indexed: 12/20/2022] Open
Abstract
The superior temporal sulcus (STS) is a crucial hub for speech perception and can be studied with high spatiotemporal resolution using electrodes targeting mesial temporal structures in epilepsy patients. Goals of the current study were to clarify functional distinctions between the upper (STSU) and the lower (STSL) bank, hemispheric asymmetries, and activity during self-initiated speech. Electrophysiologic properties were characterized using semantic categorization and dialog-based tasks. Gamma-band activity and alpha-band suppression were used as complementary measures of STS activation. Gamma responses to auditory stimuli were weaker in STSL compared with STSU and had longer onset latencies. Activity in anterior STS was larger during speaking than listening; the opposite pattern was observed more posteriorly. Opposite hemispheric asymmetries were found for alpha suppression in STSU and STSL. Alpha suppression in the STS emerged earlier than in core auditory cortex, suggesting feedback signaling within the auditory cortical hierarchy. STSL was the only region where gamma responses to words presented in the semantic categorization tasks were larger in subjects with superior task performance. More pronounced alpha suppression was associated with better task performance in Heschl's gyrus, superior temporal gyrus, and STS. Functional differences between STSU and STSL warrant their separate assessment in future studies.
Collapse
Affiliation(s)
- Kirill V Nourski
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA.,Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242, USA
| | - Mitchell Steinschneider
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ariane E Rhone
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA
| | | | - Matthew I Banks
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI 53705, USA.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Bryan M Krause
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hiroto Kawasaki
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA
| | - Matthew A Howard
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA.,Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242, USA.,Pappajohn Biomedical Institute, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
30
|
Posttraumatic Stress Disorder Is Associated with α Dysrhythmia across the Visual Cortex and the Default Mode Network. eNeuro 2020; 7:ENEURO.0053-20.2020. [PMID: 32690671 PMCID: PMC7405069 DOI: 10.1523/eneuro.0053-20.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 12/26/2022] Open
Abstract
Anomalies in default mode network (DMN) activity and α (8–12 Hz) oscillations have been independently observed in posttraumatic stress disorder (PTSD). Recent spatiotemporal analyses suggest that α oscillations support DMN functioning via interregional synchronization and sensory cortical inhibition. Therefore, we examined a unifying pathology of α deficits in the visual-cortex-DMN system in PTSD. Human patients with PTSD (N = 25) and two control groups, patients with generalized anxiety disorder (GAD; N = 24) and healthy controls (HCs; N = 20), underwent a standard eyes-open resting state (S-RS) and a modified resting state (M-RS) of passively viewing salient images (known to deactivate the DMN). High-density electroencephalogram (hdEEG) were recorded, from which intracortical α activity (power and connectivity/Granger causality) was extracted using the exact low-resolution electromagnetic tomography (eLORETA). Patients with PTSD (vs GAD/HC) demonstrated attenuated α power in the visual cortex (VC) and key hubs of the DMN [posterior cingulate cortex (PCC) and medial prefrontal cortex (mPFC)] at both states, the severity of which further correlated with hypervigilance symptoms. With increased visual input (at M-RS vs S-RS), patients with PTSD further demonstrated reduced α-frequency directed connectivity within the DMN (PCC→mPFC) and, importantly, from the VC to both DMN hubs (VC→PCC and VC→mPFC), linking α deficits in the two systems. These interrelated α deficits align with DMN hypoactivity/hypoconnectivity, sensory disinhibition, and hypervigilance in PTSD, representing a unifying neural underpinning of these anomalies. The identification of visual-cortex-DMN α dysrhythmia in PTSD further presents a novel therapeutic target, promoting network-based intervention of neural oscillations.
Collapse
|
31
|
Weisz N, Kraft NG, Demarchi G. Auditory cortical alpha/beta desynchronization prioritizes the representation of memory items during a retention period. eLife 2020; 9:55508. [PMID: 32378513 PMCID: PMC7242024 DOI: 10.7554/elife.55508] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
To-be-memorized information in working-memory could be protected against distracting influences by processes of functional inhibition or prioritization. Modulations of oscillations in the alpha to beta range in task-relevant sensory regions have been suggested to play an important role for both mechanisms. We adapted a Sternberg task variant to the auditory modality, with a strong or a weak distracting sound presented at a predictable time during the retention period. Using a time-generalized decoding approach, relatively decreased strength of memorized information was found prior to strong distractors, paralleled by decreased pre-distractor alpha/beta power in the left superior temporal gyrus (lSTG). Over the entire group, reduced beta power in lSTG was associated with relatively increased strength of memorized information. The extent of alpha power modulations within participants was negatively correlated with strength of memorized information. Overall, our results are compatible with a prioritization account, but point to nuanced differences between alpha and beta oscillations.
Collapse
Affiliation(s)
- Nathan Weisz
- Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron Universität Salzburg, Salzburg, Austria
| | - Nadine Gabriele Kraft
- Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron Universität Salzburg, Salzburg, Austria
| | - Gianpaolo Demarchi
- Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron Universität Salzburg, Salzburg, Austria
| |
Collapse
|
32
|
Oscillations in the auditory system and their possible role. Neurosci Biobehav Rev 2020; 113:507-528. [PMID: 32298712 DOI: 10.1016/j.neubiorev.2020.03.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 12/26/2022]
Abstract
GOURÉVITCH, B., C. Martin, O. Postal, J.J. Eggermont. Oscillations in the auditory system, their possible role. NEUROSCI BIOBEHAV REV XXX XXX-XXX, 2020. - Neural oscillations are thought to have various roles in brain processing such as, attention modulation, neuronal communication, motor coordination, memory consolidation, decision-making, or feature binding. The role of oscillations in the auditory system is less clear, especially due to the large discrepancy between human and animal studies. Here we describe many methodological issues that confound the results of oscillation studies in the auditory field. Moreover, we discuss the relationship between neural entrainment and oscillations that remains unclear. Finally, we aim to identify which kind of oscillations could be specific or salient to the auditory areas and their processing. We suggest that the role of oscillations might dramatically differ between the primary auditory cortex and the more associative auditory areas. Despite the moderate presence of intrinsic low frequency oscillations in the primary auditory cortex, rhythmic components in the input seem crucial for auditory processing. This allows the phase entrainment between the oscillatory phase and rhythmic input, which is an integral part of stimulus selection within the auditory system.
Collapse
|
33
|
Abstract
The alpha rhythm is the longest-studied brain oscillation and has been theorized to play a key role in cognition. Still, its physiology is poorly understood. In this study, we used microelectrodes and macroelectrodes in surgical epilepsy patients to measure the intracortical and thalamic generators of the alpha rhythm during quiet wakefulness. We first found that alpha in both visual and somatosensory cortex propagates from higher-order to lower-order areas. In posterior cortex, alpha propagates from higher-order anterosuperior areas toward the occipital pole, whereas alpha in somatosensory cortex propagates from associative regions toward primary cortex. Several analyses suggest that this cortical alpha leads pulvinar alpha, complicating prevailing theories of a thalamic pacemaker. Finally, alpha is dominated by currents and firing in supragranular cortical layers. Together, these results suggest that the alpha rhythm likely reflects short-range supragranular feedback, which propagates from higher- to lower-order cortex and cortex to thalamus. These physiological insights suggest how alpha could mediate feedback throughout the thalamocortical system.
Collapse
|