1
|
Warrington O, Graedel NN, Callaghan MF, Kok P. Communication of perceptual predictions from the hippocampus to the deep layers of the parahippocampal cortex. SCIENCE ADVANCES 2025; 11:eads4970. [PMID: 40397746 DOI: 10.1126/sciadv.ads4970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 04/17/2025] [Indexed: 05/23/2025]
Abstract
Current evidence suggests that the hippocampus is essential for exploiting predictive relationships during perception. However, it remains unclear whether the hippocampus drives the communication of predictions to sensory cortex or receives prediction signals from elsewhere. We collected 7-tesla fMRI data in the medial temporal lobe (MTL) while auditory cues predicted abstract shapes. Strikingly, neural patterns evoked by predicted shapes in CA2/3, pre/parasubiculum, and the parahippocampal cortex (PHC) were negatively correlated to patterns evoked by the same shapes when actually presented. Using layer-specific analyses, we ask: In which direction are predictions communicated between the hippocampus and neocortex? Superficial layers of the MTL cortex project to the hippocampus, while the deep layers receive feedback projections. Informational connectivity analyses revealed that communication between CA2/3 and PHC was specific to the deep layers of PHC. These findings suggest that the hippocampus generates predictions through pattern completion in CA2/3 and feeds these predictions back to the neocortex.
Collapse
Affiliation(s)
- Oliver Warrington
- Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Nadine N Graedel
- Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Martina F Callaghan
- Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Peter Kok
- Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
2
|
Yu W, Duncan KD, Schlichting ML. Using retrieval contingencies to understand memory integration and inference. Mem Cognit 2025:10.3758/s13421-025-01727-8. [PMID: 40360938 DOI: 10.3758/s13421-025-01727-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2025] [Indexed: 05/15/2025]
Abstract
Past work has yielded mixed insights into how people draw upon their memories to make new inferences. While some studies have shown memories can be combined during encoding to store never-experienced, inferential associations, others have emphasized a retrieval-based mechanism in which separate, high-quality memories are recombined as inferences are needed. We hypothesized that there might be important individual differences to consider when reconciling these seemingly disparate findings. We set out to quantify these differences by measuring contingencies in people's memory recall behaviour. In Experiment 1, we first compared the performance of three memory contingency metrics using simulations and data from a task known to induce dependency. In doing so, we developed a correction to remove biases associated with general memory performance to isolate the representational structure of memories, and we selected the highest-fidelity option - corrected dependency - for subsequent analyses. Experiment 2 tested the sensitivity of our chosen metric: We manipulated the similarity across experiences to encourage integration for half of the memories. Consistent with prior work, we found reliable recall dependency in the high similarity condition. Finally, in Experiment 3, we used memory dependencies to reveal individual differences in inference approaches in exploratory analyses: While "separators" relied upon high-fidelity individual memories to make speeded inferences, "integrators" drew inferences faster than separators, but their judgements were not sped by recalling constituent experience details. Together, these findings highlight the importance of considering individual differences in memory representations when characterizing the mechanisms underlying memory-based inference.
Collapse
Affiliation(s)
- Wangjing Yu
- Department of Psychology, University of Toronto, Toronto, Canada
- Department of Psychology, New York University, New York, NY, USA
| | | | | |
Collapse
|
3
|
Gardette J, Besson G, Baillet M, Rizzolo L, Narbutas J, Van Egroo M, Chylinski D, Maquet P, Salmon E, Vandewalle G, Collette F, Bastin C. Individual differences in anterograde memory for details relate to posterior hippocampal volume. Cortex 2025; 185:64-73. [PMID: 39985936 DOI: 10.1016/j.cortex.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/06/2024] [Accepted: 01/06/2025] [Indexed: 02/24/2025]
Abstract
In recent years, there has been a growing interest in individual differences in autobiographical memory. The ability to recall details from personal past events correlates with the volume of specific hippocampal subfields in healthy adults. Although the posterior hippocampus is believed to process detailed memory representations independently of the memory's age, little is known about individual differences in the ability to recall newly encoded events in detail, and how these differences relate to hippocampal subregions. In this preregistered study, we scored the story recalls from 89 healthy middle-aged participants with a newly designed method that allows to distinguish information recalled in detail from gist recall (i.e., when only the general idea is recalled). After a 20-min delay, detailed information was transformed into gists, which is in line with recent evidence that gists can emerge rapidly after a new experience. In addition, we segmented the anterior and posterior hippocampal subfields CA1, CA2/3, dentate gyrus, and subiculum from high-resolution structural MRI. As predicted, the volume of the posterior hippocampus was positively correlated with the detail score but not with the gist score, yet this effect was significant in the right hemisphere only. We also observed trends towards associations between the detail score and specific subfields of the right posterior hippocampus, but none survived statistical correction for multiple comparisons. Finally, we found no evidence for the expected age-related increase in the use of gists over details. Taken together, these results suggest that the posterior hippocampus supports detail memory in the recall of both remote and newly acquired memories.
Collapse
Affiliation(s)
- Jeremy Gardette
- GIGA Research, CRC Human Imaging, University of Liège, Belgium; Psychology and Cognitive Neuroscience, Department of Psychology, University of Liège, Belgium.
| | - Gabriel Besson
- GIGA Research, CRC Human Imaging, University of Liège, Belgium; Psychology and Cognitive Neuroscience, Department of Psychology, University of Liège, Belgium
| | - Marion Baillet
- GIGA Research, CRC Human Imaging, University of Liège, Belgium; Psychology and Cognitive Neuroscience, Department of Psychology, University of Liège, Belgium
| | - Lou Rizzolo
- GIGA Research, CRC Human Imaging, University of Liège, Belgium; Psychology and Cognitive Neuroscience, Department of Psychology, University of Liège, Belgium
| | - Justinas Narbutas
- GIGA Research, CRC Human Imaging, University of Liège, Belgium; Psychology and Cognitive Neuroscience, Department of Psychology, University of Liège, Belgium
| | - Maxime Van Egroo
- GIGA Research, CRC Human Imaging, University of Liège, Belgium; Psychology and Cognitive Neuroscience, Department of Psychology, University of Liège, Belgium
| | - Daphne Chylinski
- GIGA Research, CRC Human Imaging, University of Liège, Belgium; Psychology and Cognitive Neuroscience, Department of Psychology, University of Liège, Belgium
| | - Pierre Maquet
- GIGA Research, CRC Human Imaging, University of Liège, Belgium; Psychology and Cognitive Neuroscience, Department of Psychology, University of Liège, Belgium
| | - Eric Salmon
- GIGA Research, CRC Human Imaging, University of Liège, Belgium; Psychology and Cognitive Neuroscience, Department of Psychology, University of Liège, Belgium
| | - Gilles Vandewalle
- GIGA Research, CRC Human Imaging, University of Liège, Belgium; Psychology and Cognitive Neuroscience, Department of Psychology, University of Liège, Belgium
| | - Fabienne Collette
- GIGA Research, CRC Human Imaging, University of Liège, Belgium; Psychology and Cognitive Neuroscience, Department of Psychology, University of Liège, Belgium
| | - Christine Bastin
- GIGA Research, CRC Human Imaging, University of Liège, Belgium; Psychology and Cognitive Neuroscience, Department of Psychology, University of Liège, Belgium.
| |
Collapse
|
4
|
Sun L, Li S, Ren P, Liu Q, Li Z, Liang X. Pattern Separation and Pattern Completion Within the Hippocampal Circuit During Naturalistic Stimuli. Hum Brain Mapp 2025; 46:e70150. [PMID: 39878229 PMCID: PMC11775762 DOI: 10.1002/hbm.70150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/05/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025] Open
Abstract
Pattern separation and pattern completion in the hippocampus play a critical role in episodic learning and memory. However, there is limited empirical evidence supporting the role of the hippocampal circuit in these processes during complex continuous experiences. In this study, we analyzed high-resolution fMRI data from the "Forrest Gump" open-access dataset (16 participants) using a sliding-window temporal autocorrelation approach to investigate whether the canonical hippocampal circuit (DG-CA3-CA1-SUB) shows evidence consistent with the occurrence of pattern separation or pattern completion during a naturalistic audio movie task. Our results revealed that when processing continuous naturalistic stimuli, the DG-CA3 pair exhibited evidence consistent with the occurrence of the pattern separation process, whereas both the CA3-CA1 and CA1-SUB pairs showed evidence consistent with pattern completion. Moreover, during the latter half of the audio movie, we observed evidence consistent with a reduction in pattern completion in the CA3-CA1 pair and an increase in pattern completion in the CA1-SUB pair. Overall, these findings improve our understanding of the evidence related to the occurrence of pattern separation and pattern completion processes during natural experiences.
Collapse
Affiliation(s)
- Lili Sun
- School of Life Science and Technology, HIT Faculty of Life Science and MedicineHarbin Institute of TechnologyHarbinChina
- Research Center for Social Computing and Information RetrievalHarbin Institute of TechnologyHarbinChina
| | | | - Peng Ren
- Institute of Science and Technology for Brain‐Inspired Intelligence and Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Qiuyi Liu
- School of Life Science and Technology, HIT Faculty of Life Science and MedicineHarbin Institute of TechnologyHarbinChina
- Research Center for Social Computing and Information RetrievalHarbin Institute of TechnologyHarbinChina
| | - Zhipeng Li
- School of Life Science and Technology, HIT Faculty of Life Science and MedicineHarbin Institute of TechnologyHarbinChina
- Research Center for Social Computing and Information RetrievalHarbin Institute of TechnologyHarbinChina
| | - Xia Liang
- Research Center for Social Computing and Information RetrievalHarbin Institute of TechnologyHarbinChina
- Frontiers Science Center for Matter Behave in Space EnvironmentHarbin Institute of TechnologyHarbinChina
| |
Collapse
|
5
|
Andermane N, Moccia A, Zhai C, Henderson LM, Horner AJ. The holistic forgetting of events and the (sometimes) fragmented forgetting of objects. Cognition 2025; 255:106017. [PMID: 39615225 DOI: 10.1016/j.cognition.2024.106017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/09/2024]
Abstract
Episodic events are typically retrieved and forgotten holistically. If you recall one element (e.g., a person), you are more likely to recall other elements from the same event (e.g., the location), a pattern that is retained over time in the presence of forgetting. In contrast, representations of individual items, such as objects, may be less coherently bound, such that object features are forgotten at different rates and retrieval dependency decreases across delay. To test the theoretical prediction that forgetting qualitatively differs across levels in a representational hierarchy, we investigated the potential dissociation between event and item memory across five experiments. Participants encoded three-element events comprising images of famous people, locations, and objects. We measured retrieval accuracy and the dependency between the retrieval of event associations and object features, immediately after encoding and after various delays (5 h to 3 days). Across experiments, retrieval accuracy decreased for both events and objects over time, revealing forgetting. Retrieval dependency for event elements (i.e., people, locations, and objects) did not change over time, suggesting the holistic forgetting of events. Retrieval dependency for object features (i.e., state and colour) was more variable. Depending on encoding and delay conditions across the experiments, we observed both fragmentation and holistic forgetting of object features. Our results suggest that event representations remain coherent over time, whereas object representations can, but do not always, fragment. This provides support for our representational hierarchy framework of forgetting, however there are (still to be determined) boundary conditions in relation to the fragmentation of object representations.
Collapse
Affiliation(s)
- Nora Andermane
- Department of Psychology, University of York, UK; School of Psychology, University of Sussex, UK
| | | | - Chong Zhai
- Department of Psychology, University of York, UK
| | - Lisa M Henderson
- Department of Psychology, University of York, UK; York Biomedical Research Institute, University of York, UK
| | - Aidan J Horner
- Department of Psychology, University of York, UK; York Biomedical Research Institute, University of York, UK.
| |
Collapse
|
6
|
Parra D, Radvansky GA. A novel study: fragmented and holistic forgetting. Memory 2024; 32:1258-1266. [PMID: 39250347 DOI: 10.1080/09658211.2024.2401020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024]
Abstract
According to recent theoretical work, certain event memories are more likely to be remembered or forgotten in their entirety. This prior work focused on collections of concepts, such as person-location-object triples. To explore this idea with complex materials, we created triples of people, locations, objects, or activities from events in real-world novels. People who had read one of the included novels were provided with one element from these triples (the cue) and asked to identify which of six alternatives best went with it. The results revealed that memory for the narrative events remained stable across many years. Moreover, people recalled events in a more holistic manner than would be expected by chance. This was more likely the more causally important an event was. This pattern of performance also remained stable over time. Our results are consistent with the idea that event models involve integrating separate elements into a single coherent representation, and this is likely to stay integrated over long periods of time. However, the degree to which this is so appears to be related to how well-integrated the information is within a larger set of events.
Collapse
Affiliation(s)
- Dani Parra
- Department of Psychology, University of Notre Dame, Notre Dame, IN, USA
| | | |
Collapse
|
7
|
Lange LS, Chrysidou A, Liu P, Kuehn E. Tactile memory impairments in younger and older adults. Sci Rep 2024; 14:11766. [PMID: 38783038 PMCID: PMC11116509 DOI: 10.1038/s41598-024-62683-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Human tactile memory allows us to remember and retrieve the multitude of somatosensory experiences we undergo in everyday life. An unsolved question is how tactile memory mechanisms change with increasing age. We here use the ability to remember fine-grained tactile patterns passively presented to the fingertip to investigate age-related changes in tactile memory performance. In experiment 1, we varied the degree of similarity between one learned and several new tactile patterns to test on age-related changes in the "uniqueness" of a stored tactile memory trace. In experiment 2, we varied the degree of stimulus completeness of both known and new tactile patterns to test on age-related changes in the weighting between known and novel tactile information. Results reveal that older adults show only weak impairments in both precision and bias of tactile memories, however, they show specific deficits in reaching peak performance > 85% in both experiments. In addition, both younger and older adults show a pattern completion bias for touch, indicating a higher weighting of known compared to new information. These results allow us to develop new models on how younger and older adults store and recall tactile experiences of the past, and how this influences their everyday behavior.
Collapse
Affiliation(s)
- Lilith-Sophie Lange
- Institute for Cognitive Neurology and Dementia Research (IKND), Medical Faculty, Otto-Von-Guericke University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Anastasia Chrysidou
- Institute for Cognitive Neurology and Dementia Research (IKND), Medical Faculty, Otto-Von-Guericke University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Peng Liu
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller Straße 23, 72076, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Otfried-Müller-Straße 27, 72076, Tübingen, Germany
| | - Esther Kuehn
- Institute for Cognitive Neurology and Dementia Research (IKND), Medical Faculty, Otto-Von-Guericke University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller Straße 23, 72076, Tübingen, Germany.
- Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Otfried-Müller-Straße 27, 72076, Tübingen, Germany.
| |
Collapse
|
8
|
Joensen BH, Ashton JE, Berens SC, Gaskell MG, Horner AJ. An Enduring Role for Hippocampal Pattern Completion in Addition to an Emergent Nonhippocampal Contribution to Holistic Episodic Retrieval after a 24 h Delay. J Neurosci 2024; 44:e1740232024. [PMID: 38527810 PMCID: PMC11063816 DOI: 10.1523/jneurosci.1740-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/27/2024] Open
Abstract
Episodic memory retrieval is associated with the holistic neocortical reinstatement of all event information, an effect driven by hippocampal pattern completion. However, whether holistic reinstatement occurs, and whether hippocampal pattern completion continues to drive reinstatement, after a period of consolidation is unclear. Theories of systems consolidation predict either a time-variant or time-invariant role of the hippocampus in the holistic retrieval of episodic events. Here, we assessed whether episodic events continue to be reinstated holistically and whether hippocampal pattern completion continues to facilitate holistic reinstatement following a period of consolidation. Female and male human participants learned "events" that comprised multiple overlapping pairs of event elements (e.g., person-location, object-location, location-person). Importantly, encoding occurred either immediately before or 24 h before retrieval. Using fMRI during the retrieval of events, we show evidence for holistic reinstatement, as well as a correlation between reinstatement and hippocampal pattern completion, regardless of whether retrieval occurred immediately or 24 h after encoding. Thus, hippocampal pattern completion continues to contribute to holistic reinstatement after a delay. However, our results also revealed that some holistic reinstatement can occur without evidence for a corresponding signature of hippocampal pattern completion after a delay (but not immediately after encoding). We therefore show that hippocampal pattern completion, in addition to a nonhippocampal process, has a role in holistic reinstatement following a period of consolidation. Our results point to a consolidation process where the hippocampus and neocortex may work in an additive, rather than compensatory, manner to support episodic memory retrieval.
Collapse
Affiliation(s)
- Bárður H Joensen
- Department of Psychology, Lund University, Lund 221 00, Sweden
- Department of Psychology, University of York, York YO10 5DD, United Kingdom
| | - Jennifer E Ashton
- Department of Psychology, University of York, York YO10 5DD, United Kingdom
| | - Sam C Berens
- School of Psychology, University of Sussex, Falmer BN1 9QH, United Kingdom
| | - M Gareth Gaskell
- Department of Psychology, University of York, York YO10 5DD, United Kingdom
- York Biomedical Research Institute, University of York, York YO10 5NG, United Kingdom
| | - Aidan J Horner
- Department of Psychology, University of York, York YO10 5DD, United Kingdom
- York Biomedical Research Institute, University of York, York YO10 5NG, United Kingdom
| |
Collapse
|
9
|
Miller TD, Kennard C, Gowland PA, Antoniades CA, Rosenthal CR. Differential effects of bilateral hippocampal CA3 damage on the implicit learning and recognition of complex event sequences. Cogn Neurosci 2024; 15:27-55. [PMID: 38384107 PMCID: PMC11147457 DOI: 10.1080/17588928.2024.2315818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024]
Abstract
Learning regularities in the environment is a fundament of human cognition, which is supported by a network of brain regions that include the hippocampus. In two experiments, we assessed the effects of selective bilateral damage to human hippocampal subregion CA3, which was associated with autobiographical episodic amnesia extending ~50 years prior to the damage, on the ability to recognize complex, deterministic event sequences presented either in a spatial or a non-spatial configuration. In contrast to findings from related paradigms, modalities, and homologue species, hippocampal damage did not preclude recognition memory for an event sequence studied and tested at four spatial locations, whereas recognition memory for an event sequence presented at a single location was at chance. In two additional experiments, recognition memory for novel single-items was intact, whereas the ability to recognize novel single-items in a different location from that presented at study was at chance. The results are at variance with a general role of the hippocampus in the learning and recognition of complex event sequences based on non-adjacent spatial and temporal dependencies. We discuss the impact of the results on established theoretical accounts of the hippocampal contributions to implicit sequence learning and episodic memory.
Collapse
Affiliation(s)
- Thomas D. Miller
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Christopher Kennard
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Penny A. Gowland
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | | | - Clive R. Rosenthal
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Berron D, Glanz W, Clark L, Basche K, Grande X, Güsten J, Billette OV, Hempen I, Naveed MH, Diersch N, Butryn M, Spottke A, Buerger K, Perneczky R, Schneider A, Teipel S, Wiltfang J, Johnson S, Wagner M, Jessen F, Düzel E. A remote digital memory composite to detect cognitive impairment in memory clinic samples in unsupervised settings using mobile devices. NPJ Digit Med 2024; 7:79. [PMID: 38532080 DOI: 10.1038/s41746-024-00999-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/03/2024] [Indexed: 03/28/2024] Open
Abstract
Remote monitoring of cognition holds the promise to facilitate case-finding in clinical care and the individual detection of cognitive impairment in clinical and research settings. In the context of Alzheimer's disease, this is particularly relevant for patients who seek medical advice due to memory problems. Here, we develop a remote digital memory composite (RDMC) score from an unsupervised remote cognitive assessment battery focused on episodic memory and long-term recall and assess its construct validity, retest reliability, and diagnostic accuracy when predicting MCI-grade impairment in a memory clinic sample and healthy controls. A total of 199 participants were recruited from three cohorts and included as healthy controls (n = 97), individuals with subjective cognitive decline (n = 59), or patients with mild cognitive impairment (n = 43). Participants performed cognitive assessments in a fully remote and unsupervised setting via a smartphone app. The derived RDMC score is significantly correlated with the PACC5 score across participants and demonstrates good retest reliability. Diagnostic accuracy for discriminating memory impairment from no impairment is high (cross-validated AUC = 0.83, 95% CI [0.66, 0.99]) with a sensitivity of 0.82 and a specificity of 0.72. Thus, unsupervised remote cognitive assessments implemented in the neotiv digital platform show good discrimination between cognitively impaired and unimpaired individuals, further demonstrating that it is feasible to complement the neuropsychological assessment of episodic memory with unsupervised and remote assessments on mobile devices. This contributes to recent efforts to implement remote assessment of episodic memory for case-finding and monitoring in large research studies and clinical care.
Collapse
Affiliation(s)
- David Berron
- German Center for Neurodegenerative Diseases, Magdeburg, Germany.
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.
- neotiv GmbH, Magdeburg, Germany.
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases, Magdeburg, Germany
- Institute for Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
| | - Lindsay Clark
- Department of Medicine, Division of Geriatrics and Gerontology, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, US
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Kristin Basche
- Department of Medicine, Division of Geriatrics and Gerontology, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, US
| | - Xenia Grande
- German Center for Neurodegenerative Diseases, Magdeburg, Germany
- Institute for Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
| | - Jeremie Güsten
- German Center for Neurodegenerative Diseases, Magdeburg, Germany
- Institute for Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
| | | | | | | | | | - Michaela Butryn
- German Center for Neurodegenerative Diseases, Magdeburg, Germany
- Institute for Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases, Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Ageing Epidemiology Research Unit (AGE), Imperial College London, London, UK
| | - Anja Schneider
- German Center for Neurodegenerative Diseases, Bonn, Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Stefan Teipel
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
- German Center for Neurodegenerative Diseases, Rostock, Germany
| | - Jens Wiltfang
- German Center for Neurodegenerative Diseases, Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany
| | - Sterling Johnson
- Department of Medicine, Division of Geriatrics and Gerontology, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, US
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Michael Wagner
- German Center for Neurodegenerative Diseases, Bonn, Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases, Cologne, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases, Magdeburg, Germany.
- neotiv GmbH, Magdeburg, Germany.
- Institute for Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
11
|
Bein O, Davachi L. Event Integration and Temporal Differentiation: How Hierarchical Knowledge Emerges in Hippocampal Subfields through Learning. J Neurosci 2024; 44:e0627232023. [PMID: 38129134 PMCID: PMC10919070 DOI: 10.1523/jneurosci.0627-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Everyday life is composed of events organized by changes in contexts, with each event containing an unfolding sequence of occurrences. A major challenge facing our memory systems is how to integrate sequential occurrences within events while also maintaining their details and avoiding over-integration across different contexts. We asked if and how distinct hippocampal subfields come to hierarchically and, in parallel, represent both event context and subevent occurrences with learning. Female and male human participants viewed sequential events defined as sequences of objects superimposed on shared color frames while undergoing high-resolution fMRI. Importantly, these events were repeated to induce learning. Event segmentation, as indexed by increased reaction times at event boundaries, was observed in all repetitions. Temporal memory decisions were quicker for items from the same event compared to across different events, indicating that events shaped memory. With learning, hippocampal CA3 multivoxel activation patterns clustered to reflect the event context, with more clustering correlated with behavioral facilitation during event transitions. In contrast, in the dentate gyrus (DG), temporally proximal items that belonged to the same event became associated with more differentiated neural patterns. A computational model explained these results by dynamic inhibition in the DG. Additional similarity measures support the notion that CA3 clustered representations reflect shared voxel populations, while DG's distinct item representations reflect different voxel populations. These findings suggest an interplay between temporal differentiation in the DG and attractor dynamics in CA3. They advance our understanding of how knowledge is structured through integration and separation across time and context.
Collapse
Affiliation(s)
- Oded Bein
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08540
| | - Lila Davachi
- Department of Psychology, Columbia University, New York, New York 10027
- Center for Clinical Research, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| |
Collapse
|
12
|
Gellersen HM, McMaster J, Abdurahman A, Simons JS. Demands on perceptual and mnemonic fidelity are a key determinant of age-related cognitive decline throughout the lifespan. J Exp Psychol Gen 2024; 153:200-223. [PMID: 38236240 PMCID: PMC10795485 DOI: 10.1037/xge0001476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/07/2023] [Accepted: 07/16/2023] [Indexed: 01/19/2024]
Abstract
Aging results in less detailed memories, reflecting reduced fidelity of remembered compared to real-world representations. We tested whether poorer representational fidelity across perception, short-term memory (STM), and long-term memory (LTM) are among the earliest signs of cognitive aging. Our paradigm probed target-lure object mnemonic discrimination and precision of object-location binding. Across the lifespan, cognitive deficits were observed in midlife when detailed stimulus representations were required for perceptual and short/long-term forced choice mnemonic discrimination. A continuous metric of object-location source memory combined with computational modeling demonstrated that errors in STM and LTM in middle-aged adults were largely driven by a loss of precision for retrieved memories, not necessarily by forgetting. On a trial-by-trial basis, fidelity of item and spatial information was more tightly bound in LTM compared to STM with this association being unaffected by age. Standard neuropsychological tests without demands on memory quality (digit span, verbal learning) were less sensitive to age effects than STM and LTM precision. Perceptual discrimination predicted mnemonic discrimination. Neuropsychological proxies for prefrontal executive functions correlated with STM, but not LTM fidelity. Conversely, neuropsychological indicators of hippocampal integrity correlated with mnemonic discrimination and precision of both STM and LTM, suggesting partially dissociable mechanisms of interindividual variability in STM and LTM fidelity. These findings suggest that reduced representational fidelity is a hallmark of cognitive aging across perception, STM, and LTM and can be observed from midlife onward. Continuous memory precision tasks may be promising for the early detection of subtle age-related cognitive decline. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | | | - Jon S Simons
- Department of Psychology, University of Cambridge
| |
Collapse
|
13
|
Zhvania M, Japaridze N, Tizabi Y, Lomidze N, Pochkhidze N, Rzayev F, Gasimov E. Differential effects of aging on hippocampal ultrastructure in male vs. female rats. Biogerontology 2023; 24:925-935. [PMID: 37515624 DOI: 10.1007/s10522-023-10052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/09/2023] [Indexed: 07/31/2023]
Abstract
Age-related decline in physical and cognitive functions are facts of life that do not affect everyone to the same extent. We had reported earlier that such cognitive decline is both sex- and context-dependent. Moreover, age-associated ultrastructural changes were observed in the hippocampus of male rats. In this study, we sought to determine potential differences in ultrastructural changes between male and female rats at various stages of life. We performed quantitative electron microscopic evaluation of hippocampal CA1 region, an area intimately involved in cognitive behavior, in both male and female adolescent, adult and old Wistar rats. Specifically, we measured the number of docking synaptic vesicles in axo-dendritic synapses, the length of active zone as well as the total number of synaptic vesicles. Distinct age- and sex-dependent effects were observed in several parameters. Thus, adult female rats had the lowest synaptic active zone compared to both adolescent and old female rats. Moreover, the same parameter was significantly lower in adult and old female rats compared to their male counterparts. On the other hand, old male rats had significantly lower number of total synaptic vesicles compared to both adolescent and adult male rats as well as compared to their female counterparts. Taken together, it may be suggested that age- and sex-dependent ultrastructural changes in the hippocampus may underlie at least some of the differences in cognitive functions among these groups.
Collapse
Affiliation(s)
- Mzia Zhvania
- School of Natural Sciences and Medicine, Ilia State University, 3/5 K. Cholokashvili Avenue, 0162, Tbilisi, Georgia.
- Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia.
| | - Nadezhda Japaridze
- Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
- New Vision University, Tbilisi, Georgia
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Nino Lomidze
- School of Natural Sciences and Medicine, Ilia State University, 3/5 K. Cholokashvili Avenue, 0162, Tbilisi, Georgia
- Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| | - Nino Pochkhidze
- School of Natural Sciences and Medicine, Ilia State University, 3/5 K. Cholokashvili Avenue, 0162, Tbilisi, Georgia
- Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| | - Fuad Rzayev
- Department of Histology, Embryology and Cytology, Azerbaijan Medical University, Baku, Azerbaijan
| | - Eldar Gasimov
- Department of Histology, Embryology and Cytology, Azerbaijan Medical University, Baku, Azerbaijan
| |
Collapse
|
14
|
Bein O, Gasser C, Amer T, Maril A, Davachi L. Predictions transform memories: How expected versus unexpected events are integrated or separated in memory. Neurosci Biobehav Rev 2023; 153:105368. [PMID: 37619645 PMCID: PMC10591973 DOI: 10.1016/j.neubiorev.2023.105368] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Our brains constantly generate predictions about the environment based on prior knowledge. Many of the events we experience are consistent with these predictions, while others might be inconsistent with prior knowledge and thus violate our predictions. To guide future behavior, the memory system must be able to strengthen, transform, or add to existing knowledge based on the accuracy of our predictions. We synthesize recent evidence suggesting that when an event is consistent with our predictions, it leads to neural integration between related memories, which is associated with enhanced associative memory, as well as memory biases. Prediction errors, in turn, can promote both neural integration and separation, and lead to multiple mnemonic outcomes. We review these findings and how they interact with factors such as memory reactivation, prediction error strength, and task goals, to offer insight into what determines memory for events that violate our predictions. In doing so, this review brings together recent neural and behavioral research to advance our understanding of how predictions shape memory, and why.
Collapse
Affiliation(s)
- Oded Bein
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States.
| | - Camille Gasser
- Department of Psychology, Columbia University, New York, NY, United States.
| | - Tarek Amer
- Department of Psychology, University of Victoria, Victoria, Canada
| | - Anat Maril
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel; Department of Cognitive Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lila Davachi
- Center for Clinical Research, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| |
Collapse
|
15
|
Joensen BH, Bush D, Vivekananda U, Horner AJ, Bisby JA, Diehl B, Miserocchi A, McEvoy AW, Walker MC, Burgess N. Hippocampal theta activity during encoding promotes subsequent associative memory in humans. Cereb Cortex 2023; 33:8792-8802. [PMID: 37160345 PMCID: PMC10321091 DOI: 10.1093/cercor/bhad162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023] Open
Abstract
Hippocampal theta oscillations have been implicated in associative memory in humans. However, findings from electrophysiological studies using scalp electroencephalography or magnetoencephalography, and those using intracranial electroencephalography are mixed. Here we asked 10 pre-surgical epilepsy patients undergoing intracranial electroencephalography recording, along with 21 participants undergoing magnetoencephalography recordings, to perform an associative memory task, and examined whether hippocampal theta activity during encoding was predictive of subsequent associative memory performance. Across the intracranial electroencephalography and magnetoencephalography studies, we observed that theta power in the hippocampus increased during encoding, and that this increase differed as a function of subsequent memory, with greater theta activity for pairs that were successfully retrieved in their entirety compared with those that were not remembered. This helps to clarify the role of theta oscillations in associative memory formation in humans, and further, demonstrates that findings in epilepsy patients undergoing intracranial electroencephalography recordings can be extended to healthy participants undergoing magnetoencephalography recordings.
Collapse
Affiliation(s)
- Bárður H Joensen
- UCL Queen Square Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
- UCL Institute of Cognitive Neuroscience, UCL, London, WC1N 3AZ, United Kingdom
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm 17165, Sweden
- Department of Psychology, Uppsala University, Uppsala 751 42, Sweden
| | - Daniel Bush
- Department of Neuroscience, Physiology and Pharmacology, UCL, London, WC1E 6BT, United Kingdom
| | - Umesh Vivekananda
- UCL Queen Square Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
| | - Aidan J Horner
- Department of Psychology, University of York, York, YO10 5DD, United Kingdom
- York Biomedical Research Institute, University of York, York, YO10 5DD, United Kingdom
| | - James A Bisby
- UCL Queen Square Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
- UCL Institute of Cognitive Neuroscience, UCL, London, WC1N 3AZ, United Kingdom
- Division of Psychiatry, UCL, London, W1T 7BN, United Kingdom
| | - Beate Diehl
- UCL Queen Square Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
| | - Anna Miserocchi
- UCL Queen Square Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
| | - Andrew W McEvoy
- UCL Queen Square Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
| | - Matthew C Walker
- UCL Queen Square Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
| | - Neil Burgess
- UCL Queen Square Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
- UCL Institute of Cognitive Neuroscience, UCL, London, WC1N 3AZ, United Kingdom
- Wellcome Centre for Human Neuroimaging, UCL, London, WC1N 3AR, United Kingdom
| |
Collapse
|
16
|
Zhang K, Chen L, Li Y, Paez AG, Miao X, Cao D, Gu C, Pekar JJ, van Zijl PCM, Hua J, Bakker A. Differential Laminar Activation Dissociates Encoding and Retrieval in the Human Medial and Lateral Entorhinal Cortex. J Neurosci 2023; 43:2874-2884. [PMID: 36948584 PMCID: PMC10124959 DOI: 10.1523/jneurosci.1488-22.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/28/2023] [Accepted: 03/12/2023] [Indexed: 03/24/2023] Open
Abstract
The hierarchically organized structures of the medial temporal lobe are critically important for episodic memory function. Accumulating evidence suggests dissociable information processing pathways are maintained throughout these structures including in the medial and lateral entorhinal cortex. Cortical layers provide an additional dimension of dissociation as the primary input to the hippocampus derives from layer 2 neurons in the entorhinal cortex, whereas the deeper layers primarily receive output from the hippocampus. Here, novel high-resolution T2-prepared functional MRI methods were successfully used to mitigate susceptibility artifacts typically affecting MRI signals in this region providing uniform sensitivity across the medial and lateral entorhinal cortex. During the performance of a memory task, healthy human subjects (age 25-33 years, mean age 28.2 ± 3.3 years, 4 female) showed differential functional activation in the superficial and deep layers of the entorhinal cortex associated with task-related encoding and retrieval conditions, respectively. The methods provided here offer an approach to probe layer-specific activation in normal cognition and conditions contributing to memory impairment.SIGNIFICANCE STATEMENT This study provides new evidence for differential neuronal activation in the superficial versus deep layers of the entorhinal cortex associated with encoding and retrieval memory processes, respectively, in cognitively normal adults. The study further shows that this dissociation can be observed in both the medial and the lateral entorhinal cortex. The study was achieved by using a novel functional MRI method allowing us to measure robust functional MRI signals in both the medial and lateral entorhinal cortex that was not possible in previous studies. The methodology established here in healthy human subjects lays a solid foundation for subsequent studies investigating layer-specific and region-specific changes in the entorhinal cortex associated with memory impairment in various conditions such as Alzheimer's disease.
Collapse
Affiliation(s)
- Kaihua Zhang
- School of Psychology, Shandong Normal University, Jinan 250014, China
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21205
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Liuyi Chen
- Departments of Psychiatry and Behavioral Sciences
| | - Yinghao Li
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21205
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- Biomedical Engineering
| | - Adrian G Paez
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21205
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Xinyuan Miao
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21205
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Di Cao
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21205
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- Biomedical Engineering
| | - Chunming Gu
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21205
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- Biomedical Engineering
| | - James J Pekar
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21205
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Peter C M van Zijl
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21205
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Jun Hua
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21205
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Arnold Bakker
- Departments of Psychiatry and Behavioral Sciences
- Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
17
|
Dimsdale-Zucker HR, Montchal ME, Reagh ZM, Wang SF, Libby LA, Ranganath C. Representations of Complex Contexts: A Role for Hippocampus. J Cogn Neurosci 2023; 35:90-110. [PMID: 36166300 PMCID: PMC9832373 DOI: 10.1162/jocn_a_01919] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The hippocampus plays a critical role in supporting episodic memory, in large part by binding together experiences and items with surrounding contextual information. At present, however, little is known about the roles of different hippocampal subfields in supporting this item-context binding. To address this question, we constructed a task in which items were affiliated with differing types of context-cognitive associations that vary at the local, item level and membership in temporally organized lists that linked items together at a global level. Participants made item recognition judgments while undergoing high-resolution fMRI. We performed voxel pattern similarity analyses to answer the question of how human hippocampal subfields represent retrieved information about cognitive states and the time at which a past event took place. As participants recollected previously presented items, activity patterns in the CA23DG subregion carried information about prior cognitive states associated with these items. We found no evidence to suggest reinstatement of information about temporal context at the level of list membership, but exploratory analyses revealed representations of temporal context at a coarse level in conjunction with representations of cognitive contexts. Results are consistent with characterizations of CA23DG as a critical site for binding together items and contexts in the service of memory retrieval.
Collapse
|
18
|
Öhman F, Berron D, Papp KV, Kern S, Skoog J, Hadarsson Bodin T, Zettergren A, Skoog I, Schöll M. Unsupervised mobile app-based cognitive testing in a population-based study of older adults born 1944. Front Digit Health 2022; 4:933265. [PMID: 36426215 PMCID: PMC9679642 DOI: 10.3389/fdgth.2022.933265] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/18/2022] [Indexed: 01/04/2024] Open
Abstract
Background Mobile app-based tools have the potential to yield rapid, cost-effective, and sensitive measures for detecting dementia-related cognitive impairment in clinical and research settings. At the same time, there is a substantial need to validate these tools in real-life settings. The primary aim of this study was thus to evaluate the feasibility, validity, and reliability of mobile app-based tasks for assessing cognitive function in a population-based sample of older adults. Method A total of 172 non-demented (Clinical Dementia Rating 0 and 0.5) older participants (aged 76-77) completed two mobile app-based memory tasks-the Mnemonic Discrimination Task for Objects and Scenes (MDT-OS) and the long-term (24 h) delayed Object-In-Room Recall Task (ORR-LDR). To determine the validity of the tasks for measuring relevant cognitive functions in this population, we assessed relationships with conventional cognitive tests. In addition, psychometric properties, including test-retest reliability, and the participants' self-rated experience with mobile app-based cognitive tasks were assessed. Result MDT-OS and ORR-LDR were weakly-to-moderately correlated with the Preclinical Alzheimer's Cognitive Composite (PACC5) (r = 0.3-0.44, p < .001) and with several other measures of episodic memory, processing speed, and executive function. Test-retest reliability was poor-to-moderate for one single session but improved to moderate-to-good when using the average of two sessions. We observed no significant floor or ceiling effects nor effects of education or gender on task performance. Contextual factors such as distractions and screen size did not significantly affect task performance. Most participants deemed the tasks interesting, but many rated them as highly challenging. While several participants reported distractions during tasks, most could concentrate well. However, there were difficulties in completing delayed recall tasks on time in this unsupervised and remote setting. Conclusion Our study proves the feasibility of mobile app-based cognitive assessments in a community sample of older adults, demonstrating its validity in relation to conventional cognitive measures and its reliability for repeated measurements over time. To further strengthen study adherence, future studies should implement additional measures to improve task completion on time.
Collapse
Affiliation(s)
- Fredrik Öhman
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - David Berron
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Kathryn V. Papp
- Center for Alzheimer’s Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Silke Kern
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Skoog
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Psychology, University of Gothenburg, Gothenburg, Sweden
| | - Timothy Hadarsson Bodin
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Zettergren
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingmar Skoog
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Michael Schöll
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
19
|
Wittmann BC, Şatırer Y. Decreased associative processing and memory confidence in aphantasia. Learn Mem 2022; 29:412-420. [PMID: 36253008 PMCID: PMC9578376 DOI: 10.1101/lm.053610.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022]
Abstract
Visual imagery and mental reconstruction of scenes are considered core components of episodic memory retrieval. Individuals with absent visual imagery (aphantasia) score lower on tests of autobiographical memory, suggesting that aphantasia may be associated with differences in episodic and associative processing. In this online study, we tested aphantasic participants and controls on associative recognition and memory confidence for three types of associations encoded incidentally: associations between visual-visual and audio-visual stimulus pairs, associations between an object and its location on the screen, and intraitem associations. Aphantasic participants had a lower rate of high-confidence hits in all associative memory tests compared with controls. Performance on auditory-visual associations was correlated with individual differences in a measure of object imagery in the aphantasic group but not in controls. No overall group difference in memory performance was found, indicating that visual imagery selectively contributes to memory confidence. Analysis of the encoding task revealed that aphantasics made fewer associative links between the stimuli, suggesting a role for visual imagery in associative processing of visual and auditory input. These data enhance our understanding of visual imagery contributions to associative memory and further characterize the cognitive profile of aphantasia.
Collapse
Affiliation(s)
- Bianca C Wittmann
- Department of Psychology, Justus Liebig University, 35394 Giessen, Germany
| | - Yılmaz Şatırer
- Department of Psychology, Justus Liebig University, 35394 Giessen, Germany
| |
Collapse
|
20
|
Aitken F, Kok P. Hippocampal representations switch from errors to predictions during acquisition of predictive associations. Nat Commun 2022; 13:3294. [PMID: 35676285 PMCID: PMC9178037 DOI: 10.1038/s41467-022-31040-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 05/11/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractWe constantly exploit the statistical regularities in our environment to help guide our perception. The hippocampus has been suggested to play a pivotal role in both learning environmental statistics, as well as exploiting them to generate perceptual predictions. However, it is unclear how the hippocampus balances encoding new predictive associations with the retrieval of existing ones. Here, we present the results of two high resolution human fMRI studies (N = 24 for both experiments) directly investigating this. Participants were exposed to auditory cues that predicted the identity of an upcoming visual shape (with 75% validity). Using multivoxel decoding analysis, we find that the hippocampus initially preferentially represents unexpected shapes (i.e., those that violate the cue regularities), but later switches to representing the cue-predicted shape regardless of which was actually presented. These findings demonstrate that the hippocampus is involved both acquiring and exploiting predictive associations, and is dominated by either errors or predictions depending on whether learning is ongoing or complete.
Collapse
|
21
|
Berron D, Ziegler G, Vieweg P, Billette O, Güsten J, Grande X, Heneka MT, Schneider A, Teipel S, Jessen F, Wagner M, Düzel E. Feasibility of Digital Memory Assessments in an Unsupervised and Remote Study Setting. Front Digit Health 2022; 4:892997. [PMID: 35721797 PMCID: PMC9199443 DOI: 10.3389/fdgth.2022.892997] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Sensitive and frequent digital remote memory assessments via mobile devices hold the promise to facilitate the detection of cognitive impairment and decline. However, in order to be successful at scale, cognitive tests need to be applicable in unsupervised settings and confounding factors need to be understood. This study explored the feasibility of completely unsupervised digital cognitive assessments using three novel memory tasks in a Citizen Science project across Germany. To that end, the study aimed to identify factors associated with stronger participant retention, to examine test-retest reliability and the extent of practice effects, as well as to investigate the influence of uncontrolled settings such as time of day, delay between sessions or screen size on memory performance. A total of 1,407 adults (aged 18-89) participated in the study for up to 12 weeks, completing weekly memory tasks in addition to short questionnaires regarding sleep duration, subjective cognitive complaints as well as cold symptoms. Participation across memory tasks was pseudorandomized such that individuals were assigned to one of three memory paradigms resulting in three otherwise identical sub-studies. One hundred thirty-eight participants contributed to two of the three paradigms. Critically, for each memory task 12 independent parallel test sets were used to minimize effects of repeated testing. First, we observed a mean participant retention time of 44 days, or 4 active test sessions, and 77.5% compliance to the study protocol in an unsupervised setting with no contact between participants and study personnel, payment or feedback. We identified subject-level factors that contributed to higher retention times. Second, we found minor practice effects associated with repeated cognitive testing, and reveal evidence for acceptable-to-good retest reliability of mobile testing. Third, we show that memory performance assessed through repeated digital assessments was strongly associated with age in all paradigms, and individuals with subjectively reported cognitive decline presented lower mnemonic discrimination accuracy compared to non-complaining participants. Finally, we identified design-related factors that need to be incorporated in future studies such as the time delay between test sessions. Our results demonstrate the feasibility of fully unsupervised digital remote memory assessments and identify critical factors to account for in future studies.
Collapse
Affiliation(s)
- David Berron
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- neotiv GmbH, Magdeburg, Germany
| | - Gabriel Ziegler
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- neotiv GmbH, Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-Von-Guericke University, Magdeburg, Germany
| | - Paula Vieweg
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Ornella Billette
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- neotiv GmbH, Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-Von-Guericke University, Magdeburg, Germany
| | - Jeremie Güsten
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-Von-Guericke University, Magdeburg, Germany
| | - Xenia Grande
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-Von-Guericke University, Magdeburg, Germany
| | - Michael T. Heneka
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegeneration and Geriatric Psychiatry, University of Bonn, Bonn, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegeneration and Geriatric Psychiatry, University of Bonn, Bonn, Germany
| | - Stefan Teipel
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
- German Center for Neurodegenerative Diseases, Rostock, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Psychiatry, University Hospital Cologne, Cologne, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegeneration and Geriatric Psychiatry, University of Bonn, Bonn, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- neotiv GmbH, Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-Von-Guericke University, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| |
Collapse
|
22
|
Sommer VR, Sander MC. Contributions of representational distinctiveness and stability to memory performance and age differences. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2022; 29:443-462. [PMID: 34939904 DOI: 10.1080/13825585.2021.2019184] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Long-standing theories of cognitive aging suggest that memory decline is associated with age-related differences in the way information is neurally represented. Multivariate pattern similarity analyses enabled researchers to take a representational perspective on brain and cognition, and allowed them to study the properties of neural representations that support successful episodic memory. Two representational properties have been identified as crucial for memory performance, namely the distinctiveness and the stability of neural representations. Here, we review studies that used multivariate analysis tools for different neuroimaging techniques to clarify how these representational properties relate to memory performance across adulthood. While most evidence on age differences in neural representations involved stimulus category information , recent studies demonstrated that particularly item-level stability and specificity of activity patterns are linked to memory success and decline during aging. Overall, multivariate methods offer a versatile tool for our understanding of age differences in the neural representations underlying memory.
Collapse
Affiliation(s)
- Verena R Sommer
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Myriam C Sander
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
23
|
Meyer AK, Benoit RG. Suppression weakens unwanted memories via a sustained reduction of neural reactivation. eLife 2022; 11:71309. [PMID: 35352679 PMCID: PMC8967383 DOI: 10.7554/elife.71309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 03/07/2022] [Indexed: 01/09/2023] Open
Abstract
Aversive events sometimes turn into intrusive memories. However, prior evidence indicates that such memories can be controlled via a mechanism of retrieval suppression. Here, we test the hypothesis that suppression exerts a sustained influence on memories by deteriorating their neural representations. This deterioration, in turn, would hinder their subsequent reactivation and thus impoverish the vividness with which they can be recalled. In an fMRI study, participants repeatedly suppressed memories of aversive scenes. As predicted, this process rendered the memories less vivid. Using a pattern classifier, we observed that suppression diminished the neural reactivation of scene information both globally across the brain and locally in the parahippocampal cortices. Moreover, the decline in vividness was associated with reduced reinstatement of unique memory representations in right parahippocampal cortex. These results support the hypothesis that suppression weakens memories by causing a sustained reduction in the potential to reactivate their neural representations.
Collapse
Affiliation(s)
- Ann-Kristin Meyer
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Roland G Benoit
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
24
|
Citicoline and COVID-19-Related Cognitive and Other Neurologic Complications. Brain Sci 2021; 12:brainsci12010059. [PMID: 35053804 PMCID: PMC8782421 DOI: 10.3390/brainsci12010059] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
With growing concerns about COVID-19’s hyperinflammatory condition and its potentially damaging impact on the neurovascular system, there is a need to consider potential treatment options for managing short- and long-term effects on neurological complications, especially cognitive function. While maintaining adequate structure and function of phospholipid in brain cells, citicoline, identical to the natural metabolite phospholipid phosphatidylcholine precursor, can contribute to a variety of neurological diseases and hypothetically toward post-COVID-19 cognitive effects. In this review, we comprehensively describe in detail the potential citicoline mechanisms as adjunctive therapy and prevention of COVID-19-related cognitive decline and other neurologic complications through citicoline properties of anti-inflammation, anti-viral, neuroprotection, neurorestorative, and acetylcholine neurotransmitter synthesis, and provide a recommendation for future clinical trials.
Collapse
|
25
|
Treder MS, Charest I, Michelmann S, Martín-Buro MC, Roux F, Carceller-Benito F, Ugalde-Canitrot A, Rollings DT, Sawlani V, Chelvarajah R, Wimber M, Hanslmayr S, Staresina BP. The hippocampus as the switchboard between perception and memory. Proc Natl Acad Sci U S A 2021; 118:e2114171118. [PMID: 34880133 PMCID: PMC8685930 DOI: 10.1073/pnas.2114171118] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2021] [Indexed: 12/30/2022] Open
Abstract
Adaptive memory recall requires a rapid and flexible switch from external perceptual reminders to internal mnemonic representations. However, owing to the limited temporal or spatial resolution of brain imaging modalities used in isolation, the hippocampal-cortical dynamics supporting this process remain unknown. We thus employed an object-scene cued recall paradigm across two studies, including intracranial electroencephalography (iEEG) and high-density scalp EEG. First, a sustained increase in hippocampal high gamma power (55 to 110 Hz) emerged 500 ms after cue onset and distinguished successful vs. unsuccessful recall. This increase in gamma power for successful recall was followed by a decrease in hippocampal alpha power (8 to 12 Hz). Intriguingly, the hippocampal gamma power increase marked the moment at which extrahippocampal activation patterns shifted from perceptual cue toward mnemonic target representations. In parallel, source-localized EEG alpha power revealed that the recall signal progresses from hippocampus to posterior parietal cortex and then to medial prefrontal cortex. Together, these results identify the hippocampus as the switchboard between perception and memory and elucidate the ensuing hippocampal-cortical dynamics supporting the recall process.
Collapse
Affiliation(s)
- Matthias S Treder
- School of Computer Science and Informatics, Cardiff University, Cardiff CF24 3AA, United Kingdom
| | - Ian Charest
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
- cerebrUM, Département de Psychologie, Université de Montréal, Montreal, QC H2V 259, Canada
| | - Sebastian Michelmann
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
- Department of Psychology, Princeton University, Princeton, NJ 08540
| | - María Carmen Martín-Buro
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology 28223 Madrid, Spain
- Faculty of Health Sciences, King Juan Carlos University 28933 Madrid, Spain
| | - Frédéric Roux
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | - Arturo Ugalde-Canitrot
- Epilepsy Monitoring Unit, Neurology and Clinical Neurophysiology Service, Hospital Universitario La Paz 28046 Madrid, Spain
- School of Medicine, Universidad Francisco de Vitoria 28223 Madrid, Spain
| | - David T Rollings
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Complex Epilepsy and Surgery Service, Neurophysiology Department, Queen Elizabeth Hospital, Birmingham B15 2GW, United Kingdom
| | - Vijay Sawlani
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Complex Epilepsy and Surgery Service, Neuroradiology Department, Queen Elizabeth Hospital, Birmingham B15 2GW, United Kingdom
| | - Ramesh Chelvarajah
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Complex Epilepsy and Surgery Service, Neurosurgery Department, Queen Elizabeth Hospital, Birmingham B15 2GW, United Kingdom
| | - Maria Wimber
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Simon Hanslmayr
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Bernhard P Staresina
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, United Kingdom;
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom
| |
Collapse
|
26
|
Yousuf M, Packard PA, Fuentemilla L, Bunzeck N. Functional coupling between CA3 and laterobasal amygdala supports schema dependent memory formation. Neuroimage 2021; 244:118563. [PMID: 34537382 DOI: 10.1016/j.neuroimage.2021.118563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 02/01/2023] Open
Abstract
The medial temporal lobe drives semantic congruence dependent memory formation. However, the exact roles of hippocampal subfields and surrounding brain regions remain unclear. Here, we used an established paradigm and high-resolution functional magnetic resonance imaging of the medial temporal lobe together with cytoarchitectonic probability estimates in healthy humans. Behaviorally, robust congruence effects emerged in young and older adults, indicating that schema dependent learning is unimpaired during healthy aging. Within the medial temporal lobe, semantic congruence was associated with hemodynamic activity in the subiculum, CA1, CA3 and dentate gyrus, as well as the entorhinal cortex and laterobasal amygdala. Importantly, a subsequent memory analysis showed increased activity for later remembered vs. later forgotten congruent items specifically within CA3, and this subfield showed enhanced functional connectivity to the laterobasal amygdala. As such, our findings extend current models on schema dependent learning by pinpointing the functional properties of subregions within the medial temporal lobe.
Collapse
Affiliation(s)
- Mushfa Yousuf
- Department of Psychology, University of Lübeck, Lübeck 23562, Germany
| | - Pau A Packard
- Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat, Barcelona 08005, Spain
| | - Lluís Fuentemilla
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain; Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Nico Bunzeck
- Department of Psychology, University of Lübeck, Lübeck 23562, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany.
| |
Collapse
|
27
|
Memory Disorders Related to Hippocampal Function: The Interest of 5-HT 4Rs Targeting. Int J Mol Sci 2021; 22:ijms222112082. [PMID: 34769511 PMCID: PMC8584667 DOI: 10.3390/ijms222112082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
The hippocampus has long been considered as a key structure for memory processes. Multilevel alterations of hippocampal function have been identified as a common denominator of memory impairments in a number of psychiatric and neurodegenerative diseases. For many years, the glutamatergic and cholinergic systems have been the main targets of therapeutic treatments against these symptoms. However, the high rate of drug development failures has left memory impairments on the sideline of current therapeutic strategies. This underscores the urgent need to focus on new therapeutic targets for memory disorders, such as type 4 serotonin receptors (5-HT4Rs). Ever since the discovery of their expression in the hippocampus, 5-HT4Rs have gained growing interest for potential use in the treatment of learning and memory impairments. To date, much of the researched information gathered by scientists from both animal models and humans converge on pro-mnesic and anti-amnesic properties of 5-HT4Rs activation, although the mechanisms at work require more work to be fully understood. This review addresses a fundamental, yet poorly understood set of evidence of the potential of 5-HT4Rs to re-establish or limit hippocampal alterations related to neurological diseases. Most importantly, the potential of 5-HT4Rs is translated by refining hypotheses regarding the benefits of their activation in memory disorders at the hippocampal level.
Collapse
|
28
|
Pickering JS, Henderson LM, Horner AJ. Retrieval practice transfer effects for multielement event triplets. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201456. [PMID: 34804558 PMCID: PMC8580439 DOI: 10.1098/rsos.201456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Retrieval practice (RP) leads to improved retention relative to re-exposure and is considered a robust phenomenon when the final test conditions are identical to RP conditions. However, the extent to which RP 'transfers' to related material is less clear. Here, we tested for RP transfer effects under conditions known to induce integration of associated material at encoding, which may make transfer more likely. Participants learned multielement triplets (locations, animals and objects) and one pairwise association from each triplet was tested through RP, re-exposed, or not re-exposed (control). Two days later participants completed a final test of all pairwise associations. We found no evidence for an RP effect compared to re-exposure, but both tested/re-exposed pairs were better remembered than the not re-exposed control condition. We also found that transfer occurred from both tested to untested and re-exposed to not re-exposed pairs. Our results highlight that RP and re-exposure can boost retention for directly tested/re-exposed event pairs and associated but untested/not re-exposed event pairs, suggesting re-exposure of integrated information can be of pedagogical value. The results also question the boundary conditions for an increase in retention for RP relative to re-exposure, highlighting the need for a better theoretical understanding of RP effects.
Collapse
Affiliation(s)
| | - Lisa M. Henderson
- Department of Psychology, University of York, York YO10 5DD, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Aidan J. Horner
- Department of Psychology, University of York, York YO10 5DD, UK
- York Biomedical Research Institute, University of York, York, UK
| |
Collapse
|
29
|
Zheng L, Gao Z, McAvan AS, Isham EA, Ekstrom AD. Partially overlapping spatial environments trigger reinstatement in hippocampus and schema representations in prefrontal cortex. Nat Commun 2021; 12:6231. [PMID: 34711830 PMCID: PMC8553856 DOI: 10.1038/s41467-021-26560-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 10/11/2021] [Indexed: 01/17/2023] Open
Abstract
When we remember a city that we have visited, we retrieve places related to finding our goal but also non-target locations within this environment. Yet, understanding how the human brain implements the neural computations underlying holistic retrieval remains unsolved, particularly for shared aspects of environments. Here, human participants learned and retrieved details from three partially overlapping environments while undergoing high-resolution functional magnetic resonance imaging (fMRI). Our findings show reinstatement of stores even when they are not related to a specific trial probe, providing evidence for holistic environmental retrieval. For stores shared between cities, we find evidence for pattern separation (representational orthogonalization) in hippocampal subfield CA2/3/DG and repulsion in CA1 (differentiation beyond orthogonalization). Additionally, our findings demonstrate that medial prefrontal cortex (mPFC) stores representations of the common spatial structure, termed schema, across environments. Together, our findings suggest how unique and common elements of multiple spatial environments are accessed computationally and neurally.
Collapse
Affiliation(s)
- Li Zheng
- grid.134563.60000 0001 2168 186XDepartment of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA ,grid.134563.60000 0001 2168 186XEvelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA
| | - Zhiyao Gao
- grid.5685.e0000 0004 1936 9668Department of Psychology, University of York, Heslington, York YO10 5DD UK
| | - Andrew S. McAvan
- grid.134563.60000 0001 2168 186XDepartment of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA ,grid.134563.60000 0001 2168 186XEvelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA
| | - Eve A. Isham
- grid.134563.60000 0001 2168 186XDepartment of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA ,grid.134563.60000 0001 2168 186XEvelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA
| | - Arne D. Ekstrom
- grid.134563.60000 0001 2168 186XDepartment of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA ,grid.134563.60000 0001 2168 186XEvelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA
| |
Collapse
|
30
|
Grande X, Berron D, Maass A, Bainbridge WA, Düzel E. Content-specific vulnerability of recent episodic memories in Alzheimer's disease. Neuropsychologia 2021; 160:107976. [PMID: 34314781 PMCID: PMC8434425 DOI: 10.1016/j.neuropsychologia.2021.107976] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/21/2022]
Abstract
Endel Tulving's episodic memory framework emphasizes the multifaceted re-experiencing of personal events. Indeed, decades of research focused on the experiential nature of episodic memories, usually treating recent episodic memory as a coherent experiential quality. However, recent insights into the functional architecture of the medial temporal lobe show that different types of mnemonic information are segregated into distinct neural pathways in brain circuits empirically associated with episodic memory. Moreover, recent memories do not fade as a whole under conditions of progressive neurodegeneration in these brain circuits, notably in Alzheimer's disease. Instead, certain memory content seem particularly vulnerable from the moment of their encoding while other content can remain memorable consistently across individuals and contexts. We propose that these observations are related to the content-specific functional architecture of the medial temporal lobe and consequently to a content-specific impairment of memory at different stages of the neurodegeneration. To develop Endel Tulving's inspirational legacy further and to advance our understanding of how memory function is affected by neurodegenerative conditions such as Alzheimer's disease, we postulate that it is compelling to focus on the representational content of recent episodic memories. The functional anatomy of episodic memory segregates different memory content. Alzheimer's disease may cause content-specific loss of recent memories Content-specific memorability across individuals changes with Alzheimer's disease. Content-specific assessment could provide new insights into episodic memory in health and disease
Collapse
Affiliation(s)
- Xenia Grande
- German Center for Neurodegenerative Diseases, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University Magdeburg, Germany.
| | - David Berron
- German Center for Neurodegenerative Diseases, Magdeburg, Germany; Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Anne Maass
- German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | | | - Emrah Düzel
- German Center for Neurodegenerative Diseases, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, United Kingdom.
| |
Collapse
|
31
|
Öhman F, Hassenstab J, Berron D, Schöll M, Papp KV. Current advances in digital cognitive assessment for preclinical Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12217. [PMID: 34295959 PMCID: PMC8290833 DOI: 10.1002/dad2.12217] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/30/2021] [Accepted: 06/04/2021] [Indexed: 12/24/2022]
Abstract
There is a pressing need to capture and track subtle cognitive change at the preclinical stage of Alzheimer's disease (AD) rapidly, cost-effectively, and with high sensitivity. Concurrently, the landscape of digital cognitive assessment is rapidly evolving as technology advances, older adult tech-adoption increases, and external events (i.e., COVID-19) necessitate remote digital assessment. Here, we provide a snapshot review of the current state of digital cognitive assessment for preclinical AD including different device platforms/assessment approaches, levels of validation, and implementation challenges. We focus on articles, grants, and recent conference proceedings specifically querying the relationship between digital cognitive assessments and established biomarkers for preclinical AD (e.g., amyloid beta and tau) in clinically normal (CN) individuals. Several digital assessments were identified across platforms (e.g., digital pens, smartphones). Digital assessments varied by intended setting (e.g., remote vs. in-clinic), level of supervision (e.g., self vs. supervised), and device origin (personal vs. study-provided). At least 11 publications characterize digital cognitive assessment against AD biomarkers among CN. First available data demonstrate promising validity of this approach against both conventional assessment methods (moderate to large effect sizes) and relevant biomarkers (predominantly weak to moderate effect sizes). We discuss levels of validation and issues relating to usability, data quality, data protection, and attrition. While still in its infancy, digital cognitive assessment, especially when administered remotely, will undoubtedly play a major future role in screening for and tracking preclinical AD.
Collapse
Affiliation(s)
- Fredrik Öhman
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
| | - Jason Hassenstab
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
- Department of Psychological & Brain SciencesWashington University in St. LouisSt. LouisMissouriUSA
| | - David Berron
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
- Clinical Memory Research Unit, Department of Clinical Sciences MalmöLund UniversityLundSweden
| | - Michael Schöll
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
- Dementia Research Centre, Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Kathryn V. Papp
- Center for Alzheimer Research and TreatmentDepartment of Neurology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of Neurology, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
32
|
Fiorilli J, Bos JJ, Grande X, Lim J, Düzel E, Pennartz CMA. Reconciling the object and spatial processing views of the perirhinal cortex through task-relevant unitization. Hippocampus 2021; 31:737-755. [PMID: 33523577 PMCID: PMC8359385 DOI: 10.1002/hipo.23304] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/27/2020] [Accepted: 01/02/2021] [Indexed: 12/21/2022]
Abstract
The perirhinal cortex is situated on the border between sensory association cortex and the hippocampal formation. It serves an important function as a transition area between the sensory neocortex and the medial temporal lobe. While the perirhinal cortex has traditionally been associated with object coding and the "what" pathway of the temporal lobe, current evidence suggests a broader function of the perirhinal cortex in solving feature ambiguity and processing complex stimuli. Besides fulfilling functions in object coding, recent neurophysiological findings in freely moving rodents indicate that the perirhinal cortex also contributes to spatial and contextual processing beyond individual sensory modalities. Here, we address how these two opposing views on perirhinal cortex-the object-centered and spatial-contextual processing hypotheses-may be reconciled. The perirhinal cortex is consistently recruited when different features can be merged perceptually or conceptually into a single entity. Features that are unitized in these entities include object information from multiple sensory domains, reward associations, semantic features and spatial/contextual associations. We propose that the same perirhinal network circuits can be flexibly deployed for multiple cognitive functions, such that the perirhinal cortex performs similar unitization operations on different types of information, depending on behavioral demands and ranging from the object-related domain to spatial, contextual and semantic information.
Collapse
Affiliation(s)
- Julien Fiorilli
- Cognitive and Systems Neuroscience Group, SILS Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
- Research Priority Area Brain and CognitionUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jeroen J. Bos
- Cognitive and Systems Neuroscience Group, SILS Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
- Research Priority Area Brain and CognitionUniversity of AmsterdamAmsterdamThe Netherlands
- Donders Institute for Brain, Cognition and BehaviorRadboud University and Radboud University Medical CentreNijmegenThe Netherlands
| | - Xenia Grande
- Institute of Cognitive Neurology and Dementia ResearchOtto‐von‐Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative DiseasesMagdeburgGermany
| | - Judith Lim
- Cognitive and Systems Neuroscience Group, SILS Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
- Research Priority Area Brain and CognitionUniversity of AmsterdamAmsterdamThe Netherlands
| | - Emrah Düzel
- Institute of Cognitive Neurology and Dementia ResearchOtto‐von‐Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative DiseasesMagdeburgGermany
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
| | - Cyriel M. A. Pennartz
- Cognitive and Systems Neuroscience Group, SILS Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
- Research Priority Area Brain and CognitionUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
33
|
Tarder-Stoll H, Gasser C, Yu W, Dimsdale-Zucker HR. Challenges in Understanding the Role of Reactivation in Modifying Hippocampal Representations. J Neurosci 2021; 41:4750-4753. [PMID: 34078645 PMCID: PMC8260168 DOI: 10.1523/jneurosci.0334-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/25/2021] [Accepted: 04/25/2021] [Indexed: 11/21/2022] Open
Affiliation(s)
| | - Camille Gasser
- Department of Psychology, Columbia University, New York, New York 10027
| | - Wangjing Yu
- Department of Psychology, Columbia University, New York, New York 10027
| | | |
Collapse
|
34
|
The Formation and Retrieval of Holistic Event Memories Across Development. J Cogn 2021; 4:13. [PMID: 33615134 PMCID: PMC7880000 DOI: 10.5334/joc.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Event memories consist of associations between their constituent elements, leading to their holistic retrieval via the process of pattern completion. This holistic retrieval can occur, under specific conditions, when each within-event association is encoded in a separate temporal context: adults are able to integrate the information into a single coherent representation. In this study, we sought to replicate the holistic retrieval of simultaneously encoded event elements in children, and examine whether children can similarly integrate across separated encoding contexts. Children (aged 6–7 years; 9–10 years) and adults encoded two series of three-element “events” consisting of an animal, object, and location. In the simultaneous condition, they encountered all three event elements at once; in the separated condition, they encountered each pairwise association separately (animal-object, animal-location, object-location). After encoding, they were tested on the retrieval of each within-event association using a 4-alternative-forced-choice task. We inferred the presence of holistic retrieval using a measure of retrieval dependency—the statistical dependency between retrieval of within-event associations. Memory for the pairs improved across ages, but there were no developmental differences in retrieval dependency. In the simultaneous encoding condition, all three age groups showed retrieval dependency. However, counter to previous studies, retrieval dependency was not observed in any age group following separated encoding. The results from the simultaneous encoding condition support the idea that pattern completion processes are developed by early childhood. The absence of retrieval dependency in adults following separated encoding prevent conclusions regarding the developmental trajectory of mnemonic integration.
Collapse
|
35
|
Abstract
Episodic memory capacity requires several processes, including mnemonic discrimination of similar experiences, termed pattern separation, and holistic retrieval of multidimensional experiences given a cue, termed pattern completion. Both computations seem to rely on the hippocampus proper, but they also seem to be instantiated by distinct hippocampal subfields. Thus, we investigated whether individual differences in behavioral expressions of pattern separation and pattern completion were correlated after accounting for general mnemonic ability. Young adult participants learned events comprised of a scene-animal-object triad. In the pattern separation task, we estimated mnemonic discrimination using lure classification for events that contained a similar lure element. In the pattern completion task, we estimated holistic recollection using dependency in retrieval success for different associations from the same event. Although overall accuracies for the two tasks correlated as expected, specific measures of individual variation in holistic retrieval and mnemonic discrimination did not correlate, suggesting that these two processes involve distinguishable properties of episodic memory.
Collapse
Affiliation(s)
- Chi T Ngo
- Department of Psychology, Temple University, Philadelphia, PA, USA.
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany.
| | | | - Ingrid R Olson
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Nora S Newcombe
- Department of Psychology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
36
|
Barry DN, Clark IA, Maguire EA. The relationship between hippocampal subfield volumes and autobiographical memory persistence. Hippocampus 2020; 31:362-374. [PMID: 33320970 PMCID: PMC8048905 DOI: 10.1002/hipo.23293] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/30/2020] [Accepted: 12/06/2020] [Indexed: 12/11/2022]
Abstract
Structural integrity of the human hippocampus is widely acknowledged to be necessary for the successful encoding and retrieval of autobiographical memories. However, evidence for an association between hippocampal volume and the ability to recall such memories in healthy individuals is mixed. Here we examined this issue further by combining two approaches. First, we focused on the anatomically distinct subregions of the hippocampus where more nuanced associations may be expressed compared to considering the whole hippocampal volume. A manual segmentation protocol of hippocampal subregions allowed us to separately calculate the volumes of the dentate gyrus/CA4, CA3/2, CA1, subiculum, pre/parasubiculum and uncus. Second, a critical feature of autobiographical memories is that they can span long time periods, and so we sought to consider how memory details persist over time by conducting a longitudinal study whereby participants had to recall the same autobiographical memories on two visits spaced 8 months apart. Overall, we found that there was no difference in the total number of internal (episodic) details produced at Visits 1 and 2. However, further probing of detail subcategories revealed that specifically the amount of subjective thoughts and emotions included during recall had declined significantly by the second visit. We also observed a strong correlation between left pre/parasubiculum volume and the amount of autobiographical memory internal details produced over time. This positive relationship was evident for particular facets of the memories, with remembered events, perceptual observations and thoughts and emotions benefitting from greater volume of the left pre/parasubiculum. These preliminary findings expand upon existing functional neuroimaging evidence by highlighting a potential link between left pre/parasubiculum volume and autobiographical memory. A larger pre/parasubiculum appears not only to protect against memory decay, but may possibly enhance memory persistence, inviting further scrutiny of the role of this brain region in remote autobiographical memory retrieval.
Collapse
Affiliation(s)
- Daniel N Barry
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Ian A Clark
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Eleanor A Maguire
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
37
|
Genetic Alzheimer’s Disease Risk Affects the Neural Mechanisms of Pattern Separation in Hippocampal Subfields. Curr Biol 2020; 30:4201-4212.e3. [DOI: 10.1016/j.cub.2020.08.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/30/2020] [Accepted: 08/11/2020] [Indexed: 01/13/2023]
|
38
|
Integration and differentiation of hippocampal memory traces. Neurosci Biobehav Rev 2020; 118:196-208. [DOI: 10.1016/j.neubiorev.2020.07.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/11/2020] [Accepted: 07/20/2020] [Indexed: 11/23/2022]
|
39
|
Sherif MA, Neymotin SA, Lytton WW. In silico hippocampal modeling for multi-target pharmacotherapy in schizophrenia. NPJ SCHIZOPHRENIA 2020; 6:25. [PMID: 32958782 PMCID: PMC7506542 DOI: 10.1038/s41537-020-00109-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 06/23/2020] [Indexed: 02/08/2023]
Abstract
Treatment of schizophrenia has had limited success in treating core cognitive symptoms. The evidence of multi-gene involvement suggests that multi-target therapy may be needed. Meanwhile, the complexity of schizophrenia pathophysiology and psychopathology, coupled with the species-specificity of much of the symptomatology, places limits on analysis via animal models, in vitro assays, and patient assessment. Multiscale computer modeling complements these traditional modes of study. Using a hippocampal CA3 computer model with 1200 neurons, we examined the effects of alterations in NMDAR, HCN (Ih current), and GABAAR on information flow (measured with normalized transfer entropy), and in gamma activity in local field potential (LFP). We found that altering NMDARs, GABAAR, Ih, individually or in combination, modified information flow in an inverted-U shape manner, with information flow reduced at low and high levels of these parameters. Theta-gamma phase-amplitude coupling also had an inverted-U shape relationship with NMDAR augmentation. The strong information flow was associated with an intermediate level of synchrony, seen as an intermediate level of gamma activity in the LFP, and an intermediate level of pyramidal cell excitability. Our results are consistent with the idea that overly low or high gamma power is associated with pathological information flow and information processing. These data suggest the need for careful titration of schizophrenia pharmacotherapy to avoid extremes that alter information flow in different ways. These results also identify gamma power as a potential biomarker for monitoring pathology and multi-target pharmacotherapy.
Collapse
Affiliation(s)
- Mohamed A Sherif
- Department of Psychiatry, VA Connecticut Healthcare System, 950 Campbell Avenue, West Haven, CT, USA.
- Department of Psychiatry, Yale University, New Haven, CT, USA.
- Biomedical Engineering Graduate Program, SUNY Downstate Medical Center/NYU Tandon School of Engineering, Brooklyn, NY, USA.
| | - Samuel A Neymotin
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - William W Lytton
- Biomedical Engineering Graduate Program, SUNY Downstate Medical Center/NYU Tandon School of Engineering, Brooklyn, NY, USA
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY, USA
- Department of Neurology, SUNY Downstate Medical Center, Brooklyn, NY, USA
- Department of Neurology, Kings County Hospital Center, Brooklyn, NY, USA
| |
Collapse
|
40
|
James E, Ong G, Henderson LM, Horner AJ. Make or break it: boundary conditions for integrating multiple elements in episodic memory. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200431. [PMID: 33047017 PMCID: PMC7540748 DOI: 10.1098/rsos.200431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Event memories are characterized by the holistic retrieval of their constituent elements. Studies show that memory for individual event elements (e.g. person, object and location) are statistically related to each other, and that the same associative memory structure can be formed by learning all pairwise associations across separated encoding contexts (person-object, person-location, object-location). Counter to previous studies that have shown no differences in holistic retrieval between simultaneously and separately encoded event elements, adults did not show evidence of holistic retrieval from separately encoded event elements when using a similar paradigm adapted for children (Experiment 1). We conducted a further five online experiments to explore the conditions under which holistic retrieval emerges following separated encoding of within-event associations, testing for influences of trial length (Experiment 2), the number of events learned (Experiment 3a) and stimulus presentation format (Experiments 3b, 4a, 4b). Presentation of written words was optimal for integrating elements across encoding trials, whereas the addition of spoken words disrupted integration across separately presented associations. The use of picture stimuli also produced effect sizes smaller than those of previously published research. We discuss the ways in which memory integration processes may be disrupted by these differences in presentation format. The findings have practical implications for the utility of this paradigm across research and learning contexts.
Collapse
Affiliation(s)
- Emma James
- Department of Psychology, University of York, York, UK
| | - Gabrielle Ong
- Department of Psychology, University of York, York, UK
| | - Lisa M. Henderson
- Department of Psychology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Aidan J. Horner
- Department of Psychology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| |
Collapse
|
41
|
Andermane N, Joensen BH, Horner AJ. Forgetting across a hierarchy of episodic representations. Curr Opin Neurobiol 2020; 67:50-57. [PMID: 32882596 DOI: 10.1016/j.conb.2020.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 11/29/2022]
Abstract
Rich episodic experiences are represented in a hierarchical manner across a diverse network of brain regions, and as such, the way in which episodes are forgotten is likely to be similarly diverse. Using novel experimental approaches and statistical modelling, recent research has suggested that item-based representations, such as ones related to the colour and shape of an object, fragment over time, whereas higher-order event-based representations may be forgotten in a more 'holistic' uniform manner. We propose a framework that reconciles these findings, where complex episodes are represented in a hierarchical manner, from individual items, to small-scale events, to large-scale episodic narratives. Each level in the hierarchy is represented in distinct brain regions, from the perirhinal cortex, to posterior hippocampus, to anterior hippocampus and ventromedial prefrontal cortex. Critically, forgetting may be underpinned by different mechanisms at each level in the hierarchy, leading to different patterns of behaviour.
Collapse
Affiliation(s)
| | - Bárður H Joensen
- Institute of Cognitive Neuroscience, UCL, London, UK; Institute of Neurology, UCL, London, UK
| | - Aidan J Horner
- Department of Psychology, University of York, York, UK; York Biomedical Research Institute, University of York, York, UK.
| |
Collapse
|
42
|
Zotow E, Bisby JA, Burgess N. Behavioral evidence for pattern separation in human episodic memory. ACTA ACUST UNITED AC 2020; 27:301-309. [PMID: 32669385 PMCID: PMC7365015 DOI: 10.1101/lm.051821.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/03/2020] [Indexed: 01/02/2023]
Abstract
An essential feature of episodic memory is the ability to recall the multiple elements relating to one event from the multitude of elements relating to other, potentially similar events. Hippocampal pattern separation is thought to play a fundamental role in this process, by orthogonalizing the representations of overlapping events during encoding, to reduce interference between them during the process of pattern completion by which one or other is recalled. We introduce a new paradigm to test the hypothesis that similar memories, but not unrelated memories, are actively separated at encoding. Participants memorized events which were either unique or shared a common element with another event (paired “overlapping” events). We used a measure of dependency, originally devised to measure pattern completion, to quantify how much the probability of successfully retrieving associations from one event depends on successful retrieval of associations from the same event, an unrelated event or the overlapping event. In two experiments, we saw that within event retrievals were highly dependent, indicating pattern completion; retrievals from unrelated events were independent; and retrievals from overlapping events were antidependent (i.e., less than independent), indicating pattern separation. This suggests that representations of similar (overlapping) memories are actively separated, resulting in lowered dependency of retrieval performance between them, as would be predicted by the pattern separation account.
Collapse
Affiliation(s)
- Ewa Zotow
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom
| | - James A Bisby
- Division of Psychiatry, University College London, London W1T 7BN, United Kingdom
| | - Neil Burgess
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom.,Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| |
Collapse
|
43
|
Bein O, Duncan K, Davachi L. Mnemonic prediction errors bias hippocampal states. Nat Commun 2020; 11:3451. [PMID: 32651370 PMCID: PMC7351776 DOI: 10.1038/s41467-020-17287-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 06/16/2020] [Indexed: 11/10/2022] Open
Abstract
When our experience violates our predictions, it is adaptive to upregulate encoding of novel information, while down-weighting retrieval of erroneous memory predictions to promote an updated representation of the world. We asked whether mnemonic prediction errors promote hippocampal encoding versus retrieval states, as marked by distinct network connectivity between hippocampal subfields. During fMRI scanning, participants were cued to internally retrieve well-learned complex room-images and were then presented with either an identical or a modified image (0-4 changes). In the left hemisphere, we find that CA1-entorhinal connectivity increases, and CA1-CA3 connectivity decreases, with the number of changes. Further, in the left CA1, the similarity between activity patterns during cued-retrieval of the learned room and during the image is lower when the image includes changes, consistent with a prediction error signal in CA1. Our findings provide a mechanism by which mnemonic prediction errors may drive memory updating—by biasing hippocampal states. When our expectations are violated, it is adaptive to update our internal models to improve predictions in the future. Here, the authors show that during mnemonic violations, hippocampal networks are biased towards an encoding state and away from a retrieval state to potentially update these predictions.
Collapse
Affiliation(s)
- Oded Bein
- Department of Psychology, New York University, New York, NY, 10003, USA.
| | - Katherine Duncan
- Department of Psychology, University of Toronto, Toronto, ON, M5S 3G3, Canada
| | - Lila Davachi
- Department of Psychology, Columbia University, New York, NY, 10027, USA. .,Center for Biomedical Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA.
| |
Collapse
|
44
|
Nyberg L, Grande X, Andersson M, Berron D, Lundquist A, Stiernstedt M, Fjell A, Walhovd K, Orädd G. Forecasting memory function in aging: pattern-completion ability and hippocampal activity relate to visuospatial functioning over 25 years. Neurobiol Aging 2020; 94:217-226. [PMID: 32650185 DOI: 10.1016/j.neurobiolaging.2020.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 11/18/2022]
Abstract
Heterogeneity in episodic memory functioning in aging was assessed with a pattern-completion functional magnetic resonance imaging task that required reactivation of well-consolidated face-name memory traces from fragmented (partial) or morphed (noisy) face cues. About half of the examined individuals (N = 101) showed impaired (chance) performance on fragmented faces despite intact performance on complete and morphed faces, and they did not show a pattern-completion response in hippocampus or the examined subfields (CA1, CA23, DGCA4). This apparent pattern-completion deficit could not be explained by differential hippocampal atrophy. Instead, the impaired group displayed lower cortical volumes, accelerated reduction in mini-mental state examination scores, and lower general cognitive function as defined by longitudinal measures of visuospatial functioning and speed-of-processing. In the full sample, inter-individual differences in visuospatial functioning predicted performance on fragmented faces and hippocampal CA23 subfield activity over 25 years. These findings suggest that visuospatial functioning in middle age can forecast pattern-completion deficits in aging.
Collapse
Affiliation(s)
- Lars Nyberg
- Department of Radiation Sciences, Umeå University, Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden; UiO Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway.
| | - Xenia Grande
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Micael Andersson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - David Berron
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Anders Lundquist
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden; Department of Statistics, USBE Umeå University, Umeå, Sweden
| | - Mikael Stiernstedt
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Anders Fjell
- UiO Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Kristine Walhovd
- UiO Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Greger Orädd
- Department of Radiation Sciences, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| |
Collapse
|
45
|
Trelle AN, Carr VA, Guerin SA, Thieu MK, Jayakumar M, Guo W, Nadiadwala A, Corso NK, Hunt MP, Litovsky CP, Tanner NJ, Deutsch GK, Bernstein JD, Harrison MB, Khazenzon AM, Jiang J, Sha SJ, Fredericks CA, Rutt BK, Mormino EC, Kerchner GA, Wagner AD. Hippocampal and cortical mechanisms at retrieval explain variability in episodic remembering in older adults. eLife 2020; 9:55335. [PMID: 32469308 PMCID: PMC7259949 DOI: 10.7554/elife.55335] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/05/2020] [Indexed: 12/20/2022] Open
Abstract
Age-related episodic memory decline is characterized by striking heterogeneity across individuals. Hippocampal pattern completion is a fundamental process supporting episodic memory. Yet, the degree to which this mechanism is impaired with age, and contributes to variability in episodic memory, remains unclear. We combine univariate and multivariate analyses of fMRI data from a large cohort of cognitively normal older adults (N=100) to measure hippocampal activity and cortical reinstatement during retrieval of trial-unique associations. Trial-wise analyses revealed that (a) hippocampal activity scaled with reinstatement strength, (b) cortical reinstatement partially mediated the relationship between hippocampal activity and associative retrieval, (c) older age weakened cortical reinstatement and its relationship to memory behaviour. Moreover, individual differences in the strength of hippocampal activity and cortical reinstatement explained unique variance in performance across multiple assays of episodic memory. These results indicate that fMRI indices of hippocampal pattern completion explain within- and across-individual memory variability in older adults.
Collapse
Affiliation(s)
| | - Valerie A Carr
- Department of Psychology, Stanford University, Stanford, United States
| | - Scott A Guerin
- Department of Psychology, Stanford University, Stanford, United States
| | - Monica K Thieu
- Department of Psychology, Stanford University, Stanford, United States
| | - Manasi Jayakumar
- Department of Psychology, Stanford University, Stanford, United States
| | - Wanjia Guo
- Department of Psychology, Stanford University, Stanford, United States
| | - Ayesha Nadiadwala
- Department of Psychology, Stanford University, Stanford, United States
| | - Nicole K Corso
- Department of Psychology, Stanford University, Stanford, United States
| | - Madison P Hunt
- Department of Psychology, Stanford University, Stanford, United States
| | - Celia P Litovsky
- Department of Psychology, Stanford University, Stanford, United States
| | - Natalie J Tanner
- Department of Psychology, Stanford University, Stanford, United States
| | - Gayle K Deutsch
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, United States
| | | | - Marc B Harrison
- Department of Psychology, Stanford University, Stanford, United States
| | - Anna M Khazenzon
- Department of Psychology, Stanford University, Stanford, United States
| | - Jiefeng Jiang
- Department of Psychology, Stanford University, Stanford, United States
| | - Sharon J Sha
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, United States
| | - Carolyn A Fredericks
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, United States
| | - Brian K Rutt
- Department of Radiology & Radiological Sciences, Stanford University, Stanford, United States
| | - Elizabeth C Mormino
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, United States
| | - Geoffrey A Kerchner
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, United States
| | - Anthony D Wagner
- Department of Psychology, Stanford University, Stanford, United States
| |
Collapse
|
46
|
Ritchie K, Chan D, Watermeyer T. The cognitive consequences of the COVID-19 epidemic: collateral damage? Brain Commun 2020; 2:fcaa069. [PMID: 33074266 PMCID: PMC7314157 DOI: 10.1093/braincomms/fcaa069] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 12/19/2022] Open
Abstract
Recovery from coronavirus disease 2019 (COVID-19) will be principally defined in terms of remission from respiratory symptoms; however, both clinical and animal studies have shown that coronaviruses may spread to the nervous system. A systematic search on previous viral epidemics revealed that while there has been relatively little research in this area, clinical studies have commonly reported neurological disorders and cognitive difficulties. Little is known with regard to their incidence, duration or underlying neural basis. The hippocampus appears to be particularly vulnerable to coronavirus infections, thus increasing the probability of post-infection memory impairment, and acceleration of neurodegenerative disorders such as Alzheimer's disease. Future knowledge of the impact of COVID-19, from epidemiological studies and clinical practice, will be needed to develop future screening and treatment programmes to minimize the long-term cognitive consequences of COVID-19.
Collapse
Affiliation(s)
- Karen Ritchie
- INSERM, University of Montpellier, Neuropsychiatry: Epidemiological and Clinical Research, Montpellier, France
- Centre for Dementia Prevention, University of Edinburgh, UK
| | - Dennis Chan
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Tam Watermeyer
- Centre for Dementia Prevention, University of Edinburgh, UK
- Department of Psychology, Faculty of Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
47
|
Zooming in and zooming out: the importance of precise anatomical characterization and broader network understanding of MRI data in human memory experiments. Curr Opin Behav Sci 2020. [DOI: 10.1016/j.cobeha.2020.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
48
|
A Neural Chronometry of Memory Recall. Trends Cogn Sci 2019; 23:1071-1085. [DOI: 10.1016/j.tics.2019.09.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/13/2019] [Accepted: 09/25/2019] [Indexed: 12/23/2022]
|