1
|
Liu Y, Li S, Wang K, Wang Y, Wang Y, Zhang C, Wu H, Wang G, Qin F, Song Z, Tao Y. Unveiling the HSP90 inhibitor mediated effects on endoplasmic reticulum stress and redox signaling:from a cancer inhibitor to retinal degeneration catalyst. Free Radic Biol Med 2025:S0891-5849(25)00697-5. [PMID: 40414464 DOI: 10.1016/j.freeradbiomed.2025.05.414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 05/20/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
Retinal degeneration (RD) is a class of polygenic blind eye disease characterized by photoreceptors loss and dysfunction of retinal pigment epithelium. Thus far, there is no effective treatment to save the declining vision in RD patients. Animal models are highly precious tools for studying the pathological mechanisms of RD, and for screening potential therapeutics. AUY922 is a heat shock protein 90 inhibitor that exhibits potent anti-cancer effects. However, it causes adverse ocular reactions such as reduced visual acuity and night blindness. This study intends to explore the pathological mechanism underlying the AUY922 induced RD. In vitro study, AUY922 induced cytotoxic effects on the 661W cells, which are ascribed to endoplasmic reticulum (ER) stress and oxidative damages. ER stress inhibitor 4-PBA alleviated 661W cells apoptosis and oxidative stress. Subsequently, AUY922 was delivered into the vitreous cavity of mouse and induced selective photoreceptor death and visual impairments. Overactivation of neuroglial and retinal remodeling occurred during the degenerative process. Moreover, enhanced CHOP expression was tied to profound disturbances in redox homeostasis, which readied photoreceptors for apoptosis. The underlying mechanism should be attributed to the activation of the PERK-eIF2α-ATF4-CHOP pathway. AUY922 can compensate for the high toxicity and instability of traditional inducers in RD modeling. These results not only enrich our understanding of the toxicology of AUY922 but also provide clues for establishing reliable RD models.
Collapse
Affiliation(s)
- Yashuang Liu
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Siyu Li
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Kexin Wang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Yiwen Wang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Yange Wang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Chenxu Zhang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Hao Wu
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Gang Wang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Fangyuan Qin
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Zongming Song
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China.
| | - Ye Tao
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China.
| |
Collapse
|
2
|
Chaya T, Maeda Y, Tsutsumi R, Ando M, Ma Y, Kajimura N, Tanaka T, Furukawa T. Ccrk-Mak/Ick signaling is a ciliary transport regulator essential for retinal photoreceptor survival. Life Sci Alliance 2024; 7:e202402880. [PMID: 39293864 PMCID: PMC11412320 DOI: 10.26508/lsa.202402880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/20/2024] Open
Abstract
Primary cilia are microtubule-based sensory organelles whose dysfunction causes ciliopathies in humans. The formation, function, and maintenance of primary cilia depend crucially on intraflagellar transport (IFT); however, the regulatory mechanisms of IFT at ciliary tips are poorly understood. Here, we identified that the ciliopathy kinase Mak is a ciliary tip-localized IFT regulator that cooperatively acts with the ciliopathy kinase Ick, an IFT regulator. Simultaneous disruption of Mak and Ick resulted in loss of photoreceptor ciliary axonemes and severe retinal degeneration. Gene delivery of Ick and pharmacological inhibition of FGF receptors, Ick negative regulators, ameliorated retinal degeneration in Mak -/- mice. We also identified that Ccrk kinase is an upstream activator of Mak and Ick in retinal photoreceptor cells. Furthermore, the overexpression of Mak, Ick, and Ccrk and pharmacological inhibition of FGF receptors suppressed ciliopathy-related phenotypes caused by cytoplasmic dynein inhibition in cultured cells. Collectively, our results show that the Ccrk-Mak/Ick axis is an IFT regulator essential for retinal photoreceptor maintenance and present activation of Ick as a potential therapeutic approach for retinitis pigmentosa caused by MAK mutations.
Collapse
Affiliation(s)
- Taro Chaya
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yamato Maeda
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Ryotaro Tsutsumi
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Makoto Ando
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yujie Ma
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Naoko Kajimura
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, Japan
| | - Teruyuki Tanaka
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| |
Collapse
|
3
|
Hu H, Liu F, Gao P, Huang Y, Jia D, Reilly J, Chen X, Han Y, Sun K, Luo J, Li P, Zhang Z, Wang Q, Lu Q, Luo D, Shu X, Tang Z, Liu M, Ren X. Cross-species single-cell landscapes identify the pathogenic gene characteristics of inherited retinal diseases. Front Genet 2024; 15:1409016. [PMID: 39055259 PMCID: PMC11269129 DOI: 10.3389/fgene.2024.1409016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/30/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction Inherited retinal diseases (IRDs) affect ∼4.5 million people worldwide. Elusive pathogenic variants in over 280 genes are associated with one or more clinical forms of IRDs. It is necessary to understand the complex interaction among retinal cell types and pathogenic genes by constructing a regulatory network. In this study, we attempt to establish a panoramic expression view of the cooperative work in retinal cells to understand the clinical manifestations and pathogenic bases underlying IRDs. Methods Single-cell RNA sequencing (scRNA-seq) data on the retinas from 35 retina samples of 3 species (human, mouse, and zebrafish) including 259,087 cells were adopted to perform a comparative analysis across species. Bioinformatic tools were used to conduct weighted gene co-expression network analysis (WGCNA), single-cell regulatory network analysis, cell-cell communication analysis, and trajectory inference analysis. Results The cross-species comparison revealed shared or species-specific gene expression patterns at single-cell resolution, such as the stathmin family genes, which were highly expressed specifically in zebrafish Müller glias (MGs). Thirteen gene modules were identified, of which nine were associated with retinal cell types, and Gene Ontology (GO) enrichment of module genes was consistent with cell-specific highly expressed genes. Many IRD genes were identified as hub genes and cell-specific regulons. Most IRDs, especially the retinitis pigmentosa (RP) genes, were enriched in rod-specific regulons. Integrated expression and transcription regulatory network genes, such as congenital stationary night blindness (CSNB) genes GRK1, PDE6B, and TRPM1, showed cell-specific expression and transcription characteristics in either rods or bipolar cells (BCs). IRD genes showed evolutionary conservation (GNAT2, PDE6G, and SAG) and divergence (GNAT2, MT-ND4, and PDE6A) along the trajectory of photoreceptors (PRs) among species. In particular, the Leber congenital amaurosis (LCA) gene OTX2 showed high expression at the beginning of the trajectory of both PRs and BCs. Conclusion We identified molecular pathways and cell types closely connected with IRDs, bridging the gap between gene expression, genetics, and pathogenesis. The IRD genes enriched in cell-specific modules and regulons suggest that these diseases share common etiological bases. Overall, mining of interspecies transcriptome data reveals conserved transcriptomic features of retinas across species and promising applications in both normal retina anatomy and retina pathology.
Collapse
Affiliation(s)
- Hualei Hu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pan Gao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yuwen Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Danna Jia
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jamas Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Xiang Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yunqiao Han
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Kui Sun
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jiong Luo
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zuxiao Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qunwei Lu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Daji Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinhua Shu
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Ren
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Tempone MH, Borges-Martins VP, César F, Alexandrino-Mattos DP, de Figueiredo CS, Raony Í, dos Santos AA, Duarte-Silva AT, Dias MS, Freitas HR, de Araújo EG, Ribeiro-Resende VT, Cossenza M, P. Silva H, P. de Carvalho R, Ventura ALM, Calaza KC, Silveira MS, Kubrusly RCC, de Melo Reis RA. The Healthy and Diseased Retina Seen through Neuron-Glia Interactions. Int J Mol Sci 2024; 25:1120. [PMID: 38256192 PMCID: PMC10817105 DOI: 10.3390/ijms25021120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The retina is the sensory tissue responsible for the first stages of visual processing, with a conserved anatomy and functional architecture among vertebrates. To date, retinal eye diseases, such as diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, glaucoma, and others, affect nearly 170 million people worldwide, resulting in vision loss and blindness. To tackle retinal disorders, the developing retina has been explored as a versatile model to study intercellular signaling, as it presents a broad neurochemical repertoire that has been approached in the last decades in terms of signaling and diseases. Retina, dissociated and arranged as typical cultures, as mixed or neuron- and glia-enriched, and/or organized as neurospheres and/or as organoids, are valuable to understand both neuronal and glial compartments, which have contributed to revealing roles and mechanisms between transmitter systems as well as antioxidants, trophic factors, and extracellular matrix proteins. Overall, contributions in understanding neurogenesis, tissue development, differentiation, connectivity, plasticity, and cell death are widely described. A complete access to the genome of several vertebrates, as well as the recent transcriptome at the single cell level at different stages of development, also anticipates future advances in providing cues to target blinding diseases or retinal dysfunctions.
Collapse
Affiliation(s)
- Matheus H. Tempone
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Vladimir P. Borges-Martins
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Felipe César
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Dio Pablo Alexandrino-Mattos
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Camila S. de Figueiredo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Ícaro Raony
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (Í.R.); (H.R.F.)
| | - Aline Araujo dos Santos
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Aline Teixeira Duarte-Silva
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Mariana Santana Dias
- Laboratory of Gene Therapy and Viral Vectors, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.S.D.); (H.P.S.)
| | - Hércules Rezende Freitas
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (Í.R.); (H.R.F.)
| | - Elisabeth G. de Araújo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
- National Institute of Science and Technology on Neuroimmunomodulation—INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
| | - Victor Tulio Ribeiro-Resende
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Marcelo Cossenza
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Hilda P. Silva
- Laboratory of Gene Therapy and Viral Vectors, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.S.D.); (H.P.S.)
| | - Roberto P. de Carvalho
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Ana L. M. Ventura
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Karin C. Calaza
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Mariana S. Silveira
- Laboratory for Investigation in Neuroregeneration and Development, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil;
| | - Regina C. C. Kubrusly
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Ricardo A. de Melo Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| |
Collapse
|
5
|
Zeitz C, Roger JE, Audo I, Michiels C, Sánchez-Farías N, Varin J, Frederiksen H, Wilmet B, Callebert J, Gimenez ML, Bouzidi N, Blond F, Guilllonneau X, Fouquet S, Léveillard T, Smirnov V, Vincent A, Héon E, Sahel JA, Kloeckener-Gruissem B, Sennlaub F, Morgans CW, Duvoisin RM, Tkatchenko AV, Picaud S. Shedding light on myopia by studying complete congenital stationary night blindness. Prog Retin Eye Res 2023; 93:101155. [PMID: 36669906 DOI: 10.1016/j.preteyeres.2022.101155] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/20/2023]
Abstract
Myopia is the most common eye disorder, caused by heterogeneous genetic and environmental factors. Rare progressive and stationary inherited retinal disorders are often associated with high myopia. Genes implicated in myopia encode proteins involved in a variety of biological processes including eye morphogenesis, extracellular matrix organization, visual perception, circadian rhythms, and retinal signaling. Differentially expressed genes (DEGs) identified in animal models mimicking myopia are helpful in suggesting candidate genes implicated in human myopia. Complete congenital stationary night blindness (cCSNB) in humans and animal models represents an ON-bipolar cell signal transmission defect and is also associated with high myopia. Thus, it represents also an interesting model to identify myopia-related genes, as well as disease mechanisms. While the origin of night blindness is molecularly well established, further research is needed to elucidate the mechanisms of myopia development in subjects with cCSNB. Using whole transcriptome analysis on three different mouse models of cCSNB (in Gpr179-/-, Lrit3-/- and Grm6-/-), we identified novel actors of the retinal signaling cascade, which are also novel candidate genes for myopia. Meta-analysis of our transcriptomic data with published transcriptomic databases and genome-wide association studies from myopia cases led us to propose new biological/cellular processes/mechanisms potentially at the origin of myopia in cCSNB subjects. The results provide a foundation to guide the development of pharmacological myopia therapies.
Collapse
Affiliation(s)
- Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.
| | - Jérome E Roger
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, Saclay, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France
| | | | | | - Juliette Varin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Helen Frederiksen
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Baptiste Wilmet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Jacques Callebert
- Service of Biochemistry and Molecular Biology, INSERM U942, Hospital Lariboisière, APHP, Paris, France
| | | | - Nassima Bouzidi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Frederic Blond
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Stéphane Fouquet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Vasily Smirnov
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Elise Héon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France; Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Florian Sennlaub
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Catherine W Morgans
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Robert M Duvoisin
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Andrei V Tkatchenko
- Oujiang Laboratory, Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health, Wenzhou, China; Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University, New York, NY, USA
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
6
|
Strauss AM, Buhle AC, Finkler DM. Heterozygous Deletion of Chromosome 15q13.3 in a Boy with Developmental Regression, Global Developmental Delay, Hypotonia, and Short Stature. Pediatr Rep 2022; 14:528-532. [PMID: 36548204 PMCID: PMC9780927 DOI: 10.3390/pediatric14040061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/09/2022] Open
Abstract
Two causes of intellectual disability are 15q13.3 deletion syndrome and BRWD3 X-linked intellectual disability. 15q13.3 deletion syndrome causes a heterogenous phenotype including intellectual disability (ID), developmental delay (DD), autism spectrum disorder, epilepsy/seizures, schizophrenia, attention deficit hyperactivity disorder, visual defects, hypotonia, and short stature. BRWD3 variants are rare, and the clinical presentation is largely unknown. Presented here is a 34-month-old male with developmental regression, global DD, hypotonia, and short stature. In this study, the patient and his mother underwent a whole-genome array screening. Sorting intolerant from tolerant (SIFT) and polymorphism phenotyping v2 (PolyPhen-2) analyses were performed to determine the pathogenicity of the BRWD3 mutation. Array comparative genomic hybridization showed a heterozygous, pathogenic deletion of at least 1.6 Mb from the cytogenetic band 15q13.2q13.3 and a BRWD3 variant of unknown clinical significance. This combination of genetic mutations has never been reported together and neither disorder is known to cause developmental regression. The mechanism of developmental regression is undefined but is of great importance due to the opportunity to develop therapies for these patients.
Collapse
Affiliation(s)
- Allison M. Strauss
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- Correspondence:
| | - Anna C. Buhle
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - David M. Finkler
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- Department of Pediatrics, Carilion Clinic, Roanoke, VA 24014, USA
| |
Collapse
|
7
|
Hsieh CC, Su YC, Jiang KY, Ito T, Li TW, Kaku-Ito Y, Cheng ST, Chen LT, Hwang DY, Shen CH. TRPM1 promotes tumor progression in acral melanoma by activating the Ca 2+/CaMKIIδ/AKT pathway. J Adv Res 2022; 43:45-57. [PMID: 36585114 PMCID: PMC9811324 DOI: 10.1016/j.jare.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Acral melanoma is a predominant and aggressive subtype of melanoma in non-Caucasian populations. There is a lack of genotype-driven therapies for over 50% of patients. TRPM1 (transient receptor potential melastatin 1), a nonspecific cation channel, is mainly expressed in retinal bipolar neurons and skin. Nonetheless, the function of TRPM1 in melanoma progression is poorly understood. OBJECTIVES We investigated the association between TRPM1 and acral melanoma progression and revealed the molecular mechanisms by which TRPM1 promotes tumor progression and malignancy. METHODS TRPM1 expression and CaMKII phosphorylation in tumor specimens were tested by immunohistochemistry analysis and scored by two independent investigators. The functions of TRPM1 and CaMKII were assessed using loss-of-function and gain-of-function approaches and examined by western blotting, colony formation, cell migration and invasion, and xenograft tumor growth assays. The effects of a CaMKII inhibitor, KN93, were evaluated using both in vitro cell and in vivo xenograft mouse models. RESULTS We revealed that TRPM1 protein expression was positively associated with tumor progression and shorter survival in patients with acral melanoma. TRPM1 promoted AKT activation and the colony formation, cell mobility, and xenograft tumor growth of melanoma cells. TRPM1 elevated cytosolic Ca2+ levels and activated CaMKIIδ (Ca2+/calmodulin-dependent protein kinase IIδ) to promote the CaMKIIδ/AKT interaction and AKT activation. The functions of TRPM1 in melanoma cells were suppressed by a CaMKII inhibitor, KN93. Significant upregulation of phospho-CaMKII levels in acral melanomas was related to increased expression of TRPM1. An acral melanoma cell line with high expression of TRPM1, CA11, was isolated from a patient to show the anti-tumor activity of KN93 in vitro and in vivo. CONCLUSIONS TRPM1 promotes tumor progression and malignancy in acral melanoma by activating the Ca2+/CaMKIIδ/AKT pathway. CaMKII inhibition may be a potential therapeutic strategy for treating acral melanomas with high expression of TRPM1.
Collapse
Affiliation(s)
- Chi-Che Hsieh
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Yue-Chiu Su
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Kuan-Ying Jiang
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Takamichi Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ting-Wei Li
- Department of Life Sciences, National Cheng Kung University, Tainan 704, Taiwan
| | - Yumiko Kaku-Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Shih-Tsung Cheng
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan,Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan,Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan,Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Daw-Yang Hwang
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Che-Hung Shen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan,Ph.D. Program in Tissue Engineering and Regenerative Medicine, Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan,Corresponding author at: National Institute of Cancer Research, National Health Research Institutes, No. 367, Sheng-Li Rd., North District, Tainan 70456, Taiwan.
| |
Collapse
|
8
|
Behrendt M. TRPM3 in the eye and in the nervous system - from new findings to novel mechanisms. Biol Chem 2022; 403:859-868. [PMID: 35240732 DOI: 10.1515/hsz-2021-0403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/10/2022] [Indexed: 01/13/2023]
Abstract
The calcium-permeable cation channel TRPM3 can be activated by heat and the endogenous steroid pregnenolone sulfate. TRPM3's best understood function is its role as a peripheral noxious heat sensor in mice. However, the channel is expressed in various tissues and cell types including neurons as well as glial and epithelial cells. TRPM3 expression patterns differ between species and change during development. Furthermore, a plethora of TRPM3 variants that result from alternative splicing have been identified and the majority of these isoforms are yet to be characterized. Moreover, the mechanisms underlying regulation of TRPM3 are largely unexplored. In addition, a micro-RNA gene (miR-204) is located within the TRPM3 gene. This complexity makes it difficult to obtain a clear picture of TRPM3 characteristics. However, a clear picture is needed to unravel TRPM3's full potential as experimental tool, diagnostic marker and therapeutic target. Therefore, the newest data related to TRPM3 have to be discussed and to be put in context as soon as possible to be up-to-date and to accelerate the translation from bench to bedside. The aim of this review is to highlight recent results and developments with particular focus on findings from studies involving ocular tissues and cells or peripheral neurons of rodents and humans.
Collapse
Affiliation(s)
- Marc Behrendt
- Department of Experimental Pain Research, Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Str. 13-17, D-68167 Mannheim, Germany
| |
Collapse
|
9
|
Thébault S. Minireview: Insights into the role of TRP channels in the retinal circulation and function. Neurosci Lett 2021; 765:136285. [PMID: 34634394 DOI: 10.1016/j.neulet.2021.136285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 12/17/2022]
Abstract
Consistent with their wide distribution throughout the CNS, transcripts of all transient receptor potential (TRP) cation channel superfamily members have been detected in both neuronal and non-neuronal cells of the mammalian retina. Evidence shows that members of the TRPC (canonical, TRPC1/4/5/6), TRPV (vanilloid, TRPV1/2/4), TRPM (melastatin, TRPM1/2/3/5), TRPA (ankyrin, TRPA1), and TRPP (polycystin, TRPP2) subfamilies contribute to retinal function and circulation in health and disease, but the relevance of most TRPs has yet to be determined. Their principal role in light detection is far better understood than their participation in the control of intraocular pressure, retinal blood flow, oxidative stress, ion homeostasis, and transmitter signaling for retinal information processing. Moreover, if the therapeutic potential of targeting some TRPs to treat various retinal diseases remains speculative, recent studies highlight that vision restoration strategies are very likely to benefit from the thermo- and mechanosensitive properties of TRPs. This minireview focuses on the evidence of the past 5 years about the role of TRPs in the retina and retinal circulation, raises some possibilities about the function of TRPs in the retina, and discusses the potential sources of endogenous stimuli for TRPs in this tissue, as a reflection for future studies.
Collapse
Affiliation(s)
- Stéphanie Thébault
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico.
| |
Collapse
|
10
|
Almutairi F, Almeshari N, Ahmad K, Magliyah MS, Schatz P. Congenital stationary night blindness: an update and review of the disease spectrum in Saudi Arabia. Acta Ophthalmol 2021; 99:581-591. [PMID: 33369259 DOI: 10.1111/aos.14693] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/03/2020] [Indexed: 12/22/2022]
Abstract
Congenital stationary night blindness (CSNB) is a group of rare, mainly stationary disorders of the retina, resulting from dysfunction of several specific and essential visual processing mechanisms. The inheritance is often recessive and as such, CSNB may be more common among populations with a high degree of consanguinity. Here, we present a topic update and a review of the clinical and molecular genetic spectrum of CSNB in Saudi Arabia. Since a major review article on CSNB in 2015, which described 17 genes underlying CSNB, an additional four genes have been incriminated in autosomal recessive CSNB: RIMS2, GNB3, GUCY2D and ABCA4. These have been associated with syndromic cone-rod synaptic disease, ON bipolar cell dysfunction with reduced cone sensitivity, CSNB with dysfunction of the phototransduction (Riggs type) and CSNB with cone-rod dystrophy, respectively. In Saudi Arabia, a total of 24 patients with CSNB were identified, using a combination of literature search and retrospective study of previously unpublished cases. Recessive mutations in TRPM1 and CABP4 accounted for the majority of cases (5 and 13 for each gene, respectively). These genes were associated with complete (cCSNB) and incomplete (icCSNB), respectively, and were associated with high myopia in the former and hyperopia in the latter. Four novel mutations were identified. For the first time, we describe the fundus albipunctatus in two patients from Saudi Arabia, caused by recessive mutation in RDH5 and RPE65, where the former in addition featured findings compatible with cone dystrophy. No cases were identified with any dominantly inherited CSNB.
Collapse
Affiliation(s)
- Faris Almutairi
- Vitreoretinal Division King Khaled Eye Specialist Hospital Riyadh Saudi Arabia
- King Khalid University Hospital Riyadh Saudi Arabia
| | | | - Khabir Ahmad
- Research Department King Khaled Eye Specialist Hospital Riyadh Saudi Arabia
| | - Moustafa S. Magliyah
- Vitreoretinal Division King Khaled Eye Specialist Hospital Riyadh Saudi Arabia
- Ophthalmology Department Prince Mohammed Medical City AlJouf Saudi Arabia
| | - Patrik Schatz
- Vitreoretinal Division King Khaled Eye Specialist Hospital Riyadh Saudi Arabia
- Department of Ophthalmology Clinical Sciences Skane University Hospital Lund University Lund Sweden
| |
Collapse
|
11
|
Abstract
Background Ocular adverse events are common dose-limiting toxicities in cancer patients treated with HSP90 inhibitors, such as AUY922; however, the pathology and molecular mechanisms that mediate AUY922-induced retinal toxicity remain undescribed. Methods The impact of AUY922 on mouse retinas and cell lines was comprehensively investigated using isobaric tags for relative and absolute quantitation (iTRAQ)‑based proteomic profiling and pathway enrichment analysis, immunohistochemistry and immunofluorescence staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, MTT assay, colony formation assay, and western blot analysis. The effect of AUY922 on the Transient Receptor Potential cation channel subfamily M member 1 (TRPM1)-HSP90 chaperone complex was characterized by coimmunoprecipitation. TRPM1-regulated gene expression was analyzed by RNAseq analysis and gene set enrichment analysis (GSEA). The role of TRPM1 was assessed using both loss-of-function and gain-of-function approaches. Results Here, we show that the treatment with AUY922 induced retinal damage and cell apoptosis, dysregulated the photoreceptor and retinal pigment epithelium (RPE) layers, and reduced TRPM1 expression. Proteomic profiling and functional annotation of differentially expressed proteins reveals that those related to stress responses, protein folding processes, regulation of apoptosis, cell cycle and growth, reactive oxygen species (ROS) response, cell junction assembly and adhesion regulation, and proton transmembrane transport were significantly enriched in AUY922-treated cells. We found that AUY922 triggered caspase-3-dependent cell apoptosis, increased ROS production and inhibited cell growth. We determined that TRPM1 is a bona fide HSP90 client and characterized that AUY922 may reduce TRPM1 expression by disrupting the CDC37-HSP90 chaperone complex. Additionally, GSEA revealed that TRPM1-regulated genes were associated with retinal morphogenesis in camera-type eyes and the JAK-STAT cascade. Finally, gain-of-function and loss-of-function analyses validated the finding that TRPM1 mediated the cell apoptosis, ROS production and growth inhibition induced by AUY922. Conclusions Our study demonstrates the pathology of AUY922-induced retinal toxicity in vivo. TRPM1 is an HSP90 client, regulates photoreceptor morphology and function, and mediates AUY922-induced cytotoxicity. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-021-00751-5.
Collapse
|
12
|
Tsukamoto Y, Iseki K, Omi N. Helical Fasciculation of Bipolar and Horizontal Cell Neurites for Wiring With Photoreceptors in Macaque and Mouse Retinas. Invest Ophthalmol Vis Sci 2021; 62:31. [PMID: 33507230 PMCID: PMC7846946 DOI: 10.1167/iovs.62.1.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The three-dimensional configurations of rod and cone bipolar cell (BC) dendrites and horizontal cell (HC) processes outside rod and cone synaptic terminals have not been fully elucidated. We reveal how these neurites are mutually arranged to coordinate formation and maintenance of the postsynaptic complex of ribbon synapses in mouse and monkey retinas. Methods Serial section transmission electron microscopy was utilized to reconstruct BC and HC neurites in macaque monkey and mouse, including metabotropic glutamate receptor 6 (mGluR6)-knockout mice. Results Starting from sporadically distributed branching points, rod BC and HC neurites (B and H, respectively) took specific paths to rod spherules by gradually adjusting their mutual positions, which resulted in a closed alternating pattern of H‒B‒H‒B neurites at the rod spherule aperture. This order corresponded to the array of elements constituting the postsynaptic complex of ribbon synapses. We identified novel helical coils of HC processes surrounding the rod BC dendrite in both mouse and macaque retinas, and these structures occurred more frequently in mGluR6-knockout than wild-type mouse retinas. Horizontal cell processes also formed hook-like protrusions that encircled cone BC and HC neurites below the cone pedicles in the macaque retina. Conclusions Bipolar and horizontal cell neurites take specific paths to adjust their mutual positions at the rod spherule aperture. Some HC processes are helically coiled around rod BC dendrites or form hook-like protrusions around cone BC dendrites and HC processes. Loss of mGluR6 signaling may be one factor promoting unbalanced neurite growth and compensatory neurite coiling.
Collapse
Affiliation(s)
- Yoshihiko Tsukamoto
- Department of Biology, Hyogo College of Medicine, Mukogawa, Nishinomiya, Hyogo, Japan.,Studio EM-Retina, Satonaka, Nishinomiya, Hyogo, Japan
| | - Kyoko Iseki
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
| | - Naoko Omi
- Studio EM-Retina, Satonaka, Nishinomiya, Hyogo, Japan
| |
Collapse
|
13
|
Ma C, Li X, Chen J, Li Z, Guan J, Li Y, Yin S, Shi Y. Association Analysis Between Common Variants of the TRPM1 Gene and Three Mental Disorders in the Han Chinese Population. Genet Test Mol Biomarkers 2020; 24:649-657. [PMID: 33001715 PMCID: PMC7585623 DOI: 10.1089/gtmb.2019.0096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective: Our study was designed to determine if the TRPM1 gene is associated with any of three mental disorders. The project included a cross disorder meta-analysis and association analysis including 141701 cases and 175248 controls. Materials and Methods: We genotyped eight tag single nucleotide polymorphisms (SNPs) in 1248 unrelated schizophrenia (SCZ) patients, 1056 major depressive disorder patients, 1344 bipolar disorder patients, and 1248 normal controls. We then performed a meta-analysis of 10 GWASs to identify common genetic factors among these three mental disorders. Finally, we performed a meta-analysis of six GWASs to explore the role of rs10162727 in SCZ. Result: Although two haplotypes of the TRPM1 gene, rs1035706-rs10162727 and rs10162727-rs3784599, were identified in the control group, as well as all three disease groups, none of the eight tag SNP associations remained significant after correction for multiple tests. In this cross-disorder meta-analysis of the three diseases, none of the tag SNPs were confirmed to be common among the diseases. In addition, in the meta-analysis conducted for the rs10162727 locus in SCZ, there was no significant association (p-value = 0.84, odds ratio = 1.02 [95% CI = 0.87-1.19]). Conclusion: In the Han Chinese population, no significant evidence was found linking variants of the TRPM1 gene with any of the mental disorders examined.
Collapse
Affiliation(s)
- Chuanchuan Ma
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, China
| | - Xiuli Li
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, China
| | - Jianhua Chen
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Otolaryngology, Therapy Center for Obstructive Sleep Apnea, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Zhiqiang Li
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, China
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Otolaryngology, Therapy Center for Obstructive Sleep Apnea, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
- The Affiliated Hospital of Qingdao University, The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, People's Republic of China
| | - Jian Guan
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Otolaryngology, Therapy Center for Obstructive Sleep Apnea, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Yigang Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Shankai Yin
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Otolaryngology, Therapy Center for Obstructive Sleep Apnea, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Yongyong Shi
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Otolaryngology, Therapy Center for Obstructive Sleep Apnea, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
- The Affiliated Hospital of Qingdao University, The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, People's Republic of China
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
14
|
Agosto MA, Wensel TG. LRRTM4 is a member of the transsynaptic complex between rod photoreceptors and bipolar cells. J Comp Neurol 2020; 529:221-233. [PMID: 32390181 DOI: 10.1002/cne.24944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/09/2020] [Accepted: 05/01/2020] [Indexed: 12/22/2022]
Abstract
Leucine rich repeat transmembrane (LRRTM) proteins are synaptic adhesion molecules with roles in synapse formation and signaling. LRRTM4 transcripts were previously shown to be enriched in rod bipolar cells (BCs), secondary neurons of the retina that form synapses with rod photoreceptors. Using two different antibodies, LRRTM4 was found to reside primarily at rod BC dendritic tips, where it colocalized with the transduction channel protein, TRPM1. LRRTM4 was not detected at dendritic tips of ON-cone BCs. Following somatic knockout of LRRTM4 in BCs by subretinal injection and electroporation of CRISPR/Cas9, LRRTM4 was abolished or reduced in the dendritic tips of transfected cells. Knockout cells had a normal complement of TRPM1 at their dendritic tips, while GPR179 accumulation was partially reduced. In experiments with heterologously expressed protein, the extracellular domain of LRRTM4 was found to engage in heparan-sulfate dependent binding with pikachurin. These results implicate LRRTM4 in the GPR179-pikachurin-dystroglycan transsynaptic complex at rod synapses.
Collapse
Affiliation(s)
- Melina A Agosto
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Theodore G Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
15
|
Al-Hujaili H, Taskintuna I, Neuhaus C, Bergmann C, Schatz P. Long-term follow-up of retinal function and structure in TRPM1-associated complete congenital stationary night blindness. Mol Vis 2019; 25:851-858. [PMID: 31908403 PMCID: PMC6937218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/17/2019] [Indexed: 11/05/2022] Open
Abstract
Purpose TRPM1-associated congenital stationary night blindness (CSNB) is characterized by nystagmus and high myopia. We assessed retinal function and structure over long-term follow-up up to 10 years in two siblings from a family with the homozygous deletion c.2394delC in exon 18 that we previously identified. In addition, we describe retinal function and structure in two other siblings with the novel homozygous c.1394T>A (p.Met465Lys) missense mutation. Methods Clinical examination included full-field electroretinography, axial length measurements, and multimodal retinal imaging. Molecular genetic tests included next-generation sequencing and Sanger sequencing. Results All patients had non-recordable rod responses and electronegative configuration of the rod-cone responses at presentation. There was a median of 26% reduction in the dark- and light-adapted electroretinographic (ERG) amplitudes over 4 years. Myopia progressed rapidly in childhood but showed only a mild progression after the teenage years. Visual acuities were stable over time, and there was no sign of progressive retinal thinning. All patients had axial myopia. A novel homozygous c.1394T>A (p.Met465Lys) missense mutation in TRPM1 was identified in two siblings. Conclusions Further prospective study in larger samples is needed to establish whether there is progressive retinal degeneration in TRPM1-associated CSNB. The associated myopia was found to be mainly axial, which has not been described previously. The mechanism of myopia development in this condition remains incompletely understood; however, it may be related to altered retinal dopamine signaling and amacrine cell dysfunction.
Collapse
Affiliation(s)
- Haneen Al-Hujaili
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh, Kingdom of Saudi Arabia,Ohud General Hospital Madinah, Kingdom of Saudi Arabia
| | - Ibrahim Taskintuna
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh, Kingdom of Saudi Arabia
| | | | - Carsten Bergmann
- Center for Human Genetics Bioscientia Ingelheim, Germany,Department of Medicine, Freiburg University, Germany,Limbach Genetics, Medizinische Genetik Mainz, Mainz, Germany
| | - Patrik Schatz
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh, Kingdom of Saudi Arabia,Department of Ophthalmology, Clinical Sciences, Skane University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
16
|
Simon J, Stoll K, Fick R, Mott J, Lawson‐Yuen A. Homozygous 15q13.3 microdeletion in a child with hypotonia and impaired vision: A new report and review of the literature. Clin Case Rep 2019; 7:2311-2315. [PMID: 31893048 PMCID: PMC6935653 DOI: 10.1002/ccr3.2403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/11/2019] [Accepted: 07/29/2019] [Indexed: 11/08/2022] Open
Abstract
Although there are numerous reports of heterozygous 15q13.3 microdeletion, homozygous 15q13.3 microdeletion is rare. We report a new patient with homozygous microdeletion of 15q13.2q13.3 and review the previous literature reports. Common clinical features include encephalopathy, hypotonia, developmental delay, cortical vision impairment, optic nerve abnormality, epilepsy, and abnormal electroencephalogram (EEG) findings.
Collapse
Affiliation(s)
| | | | - Roger Fick
- Genomics InstituteMary Bridge Children's Hospital, MultiCare Health SystemTacomaWashington
| | - Jared Mott
- Department of Pediatric NeurologyMary Bridge Children's Hospital, MultiCare Health SystemTacomaWashington
| | - Amy Lawson‐Yuen
- Genomics InstituteMary Bridge Children's Hospital, MultiCare Health SystemTacomaWashington
| |
Collapse
|
17
|
Chaya T, Tsutsumi R, Varner LR, Maeda Y, Yoshida S, Furukawa T. Cul3-Klhl18 ubiquitin ligase modulates rod transducin translocation during light-dark adaptation. EMBO J 2019; 38:e101409. [PMID: 31696965 DOI: 10.15252/embj.2018101409] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 01/02/2023] Open
Abstract
Adaptation is a general feature of sensory systems. In rod photoreceptors, light-dependent transducin translocation and Ca2+ homeostasis are involved in light/dark adaptation and prevention of cell damage by light. However, the underlying regulatory mechanisms remain unclear. Here, we identify mammalian Cul3-Klhl18 ubiquitin ligase as a transducin translocation modulator during light/dark adaptation. Under dark conditions, Klhl18-/- mice exhibited decreased rod light responses and subcellular localization of the transducin α-subunit (Tα), similar to that observed in light-adapted Klhl18+/+ mice. Cul3-Klhl18 promoted ubiquitination and degradation of Unc119, a rod Tα-interacting protein. Unc119 overexpression phenocopied Tα mislocalization observed in Klhl18-/- mice. Klhl18 weakly recognized casein kinase-2-phosphorylated Unc119 protein, which is dephosphorylated by Ca2+ -dependent phosphatase calcineurin. Calcineurin inhibition increased Unc119 expression and Tα mislocalization in rods. These results suggest that Cul3-Klhl18 modulates rod Tα translocation during light/dark adaptation through Unc119 ubiquitination, which is affected by phosphorylation. Notably, inactivation of the Cul3-Klhl18 ligase and calcineurin inhibitors FK506 and cyclosporine A that are known immunosuppressant drugs repressed light-induced photoreceptor damage, suggesting potential therapeutic targets.
Collapse
Affiliation(s)
- Taro Chaya
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Ryotaro Tsutsumi
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Leah Rie Varner
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yamato Maeda
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Satoyo Yoshida
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| |
Collapse
|
18
|
Different Activity Patterns in Retinal Ganglion Cells of TRPM1 and mGluR6 Knockout Mice. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2963232. [PMID: 29854741 PMCID: PMC5964425 DOI: 10.1155/2018/2963232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/11/2018] [Indexed: 12/28/2022]
Abstract
TRPM1, the first member of the melanoma-related transient receptor potential (TRPM) subfamily, is the visual transduction channel downstream of metabotropic glutamate receptor 6 (mGluR6) on retinal ON bipolar cells (BCs). Human TRPM1 mutations are associated with congenital stationary night blindness (CSNB). In both TRPM1 and mGluR6 KO mouse retinas, OFF but not ON BCs respond to light stimulation. Here we report an unexpected difference between TRPM1 knockout (KO) and mGluR6 KO mouse retinas. We used a multielectrode array (MEA) to record spiking in retinal ganglion cells (RGCs). We found spontaneous oscillations in TRPM1 KO retinas, but not in mGluR6 KO retinas. We performed a structural analysis on the synaptic terminals of rod ON BCs. Intriguingly, rod ON BC terminals were significantly smaller in TRPM1 KO retinas than in mGluR6 KO retinas. These data suggest that a deficiency of TRPM1, but not of mGluR6, in rod ON bipolar cells may affect synaptic terminal maturation. We speculate that impaired signaling between rod BCs and AII amacrine cells (ACs) leads to spontaneous oscillations. TRPM1 and mGluR6 are both essential components in the signaling pathway from photoreceptors to ON BC dendrites, yet they differ in their effects on the BC terminal and postsynaptic circuitry.
Collapse
|
19
|
Eliminating Glutamatergic Input onto Horizontal Cells Changes the Dynamic Range and Receptive Field Organization of Mouse Retinal Ganglion Cells. J Neurosci 2018; 38:2015-2028. [PMID: 29352045 DOI: 10.1523/jneurosci.0141-17.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 12/20/2017] [Accepted: 01/02/2018] [Indexed: 12/21/2022] Open
Abstract
In the mammalian retina, horizontal cells receive glutamatergic inputs from many rod and cone photoreceptors and return feedback signals to them, thereby changing photoreceptor glutamate release in a light-dependent manner. Horizontal cells also provide feedforward signals to bipolar cells. It is unclear, however, how horizontal cell signals also affect the temporal, spatial, and contrast tuning in retinal output neurons, the ganglion cells. To study this, we generated a genetically modified mouse line in which we eliminated the light dependency of feedback by deleting glutamate receptors from mouse horizontal cells. This genetic modification allowed us to investigate the impact of horizontal cells on ganglion cell signaling independent of the actual mode of feedback in the outer retina and without pharmacological manipulation of signal transmission. In control and genetically modified mice (both sexes), we recorded the light responses of transient OFF-α retinal ganglion cells in the intact retina. Excitatory postsynaptic currents (EPSCs) were reduced and the cells were tuned to lower temporal frequencies and higher contrasts, presumably because photoreceptor output was attenuated. Moreover, receptive fields of recorded cells showed a significantly altered surround structure. Our data thus suggest that horizontal cells are responsible for adjusting the dynamic range of retinal ganglion cells and, together with amacrine cells, contribute to the center/surround organization of ganglion cell receptive fields in the mouse.SIGNIFICANCE STATEMENT Horizontal cells represent a major neuronal class in the mammalian retina and provide lateral feedback and feedforward signals to photoreceptors and bipolar cells, respectively. The mode of signal transmission remains controversial and, moreover, the contribution of horizontal cells to visual processing is still elusive. To address the question of how horizontal cells affect retinal output signals, we recorded the light responses of transient OFF-α retinal ganglion cells in a newly generated mouse line. In this mouse line, horizontal cell signals were no longer modulated by light. With light response recordings, we show that horizontal cells increase the dynamic range of retinal ganglion cells for contrast and temporal changes and contribute to the center/surround organization of their receptive fields.
Collapse
|