1
|
Williams DC, Chu A, Gordon NT, DuBois AM, Qian S, Valvo G, Shen S, Boyce JB, Fitzpatrick AC, Moaddab M, Russell EL, Counsman LH, McDannald MA. Ethograms predict visual fear conditioning status in rats. eLife 2025; 14:e102782. [PMID: 40029045 PMCID: PMC11957538 DOI: 10.7554/elife.102782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
Recognizing and responding to threat cues is essential to survival. Freezing is a predominant threat behavior in rats. We have recently shown that a threat cue can organize diverse behaviors beyond freezing, including locomotion (Chu et al., 2024). However, that experimental design was complex, required many sessions, and had rats receive many foot shock presentations. Moreover, the findings were descriptive. Here, we gave female and male Long Evans rats cue light illumination paired or unpaired with foot shock (eight total) in a conditioned suppression setting using a range of shock intensities (0.15, 0.25, 0.35, or 0.50 mA). We found that conditioned suppression was only observed at higher foot shock intensities (0.35 mA and 0.50 mA). We constructed comprehensive temporal ethograms by scoring 22,272 frames across 12 behavior categories in 200-ms intervals around cue light illumination. The 0.50 mA and 0.35 mA shock-paired visual cues suppressed reward seeking, rearing, and scaling, as well as light-directed rearing and light-directed scaling. These shock-paired visual cues further elicited locomotion and freezing. Linear discriminant analyses showed that ethogram data could accurately classify rats into paired and unpaired groups. Using complete ethogram data produced superior classification compared to behavior subsets, including an immobility subset featuring freezing. The results demonstrate diverse threat behaviors - in a short and simple procedure - containing sufficient information to distinguish the visual fear conditioning status of individual rats.
Collapse
Affiliation(s)
- David C Williams
- Boston College Department of Psychology and NeuroscienceChestnut HillUnited States
| | - Amanda Chu
- Boston College Department of Psychology and NeuroscienceChestnut HillUnited States
| | - Nicholas T Gordon
- Boston College Department of Psychology and NeuroscienceChestnut HillUnited States
| | - Aleah M DuBois
- Boston College Department of Psychology and NeuroscienceChestnut HillUnited States
| | - Suhui Qian
- Boston College Department of Psychology and NeuroscienceChestnut HillUnited States
| | - Genevieve Valvo
- Boston College Department of Psychology and NeuroscienceChestnut HillUnited States
| | - Selena Shen
- Boston College Department of Psychology and NeuroscienceChestnut HillUnited States
| | - Jacob B Boyce
- Boston College Department of Psychology and NeuroscienceChestnut HillUnited States
| | - Anaise C Fitzpatrick
- Boston College Department of Psychology and NeuroscienceChestnut HillUnited States
| | - Mahsa Moaddab
- Boston College Department of Psychology and NeuroscienceChestnut HillUnited States
| | - Emma L Russell
- Boston College Department of Psychology and NeuroscienceChestnut HillUnited States
| | | | - Michael A McDannald
- Boston College Department of Psychology and NeuroscienceChestnut HillUnited States
| |
Collapse
|
2
|
Townsend ES, Smith KS. Behavioral microanalyses refine sign-tracking characterization and uncover different response dynamics during omission and extinction learning. Learn Mem 2025; 32:a054065. [PMID: 40054883 PMCID: PMC11924597 DOI: 10.1101/lm.054065.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/27/2025] [Indexed: 03/22/2025]
Abstract
Sign-tracking, a conditioned response in which animals engage with reward-predictive cues, is a powerful behavioral tool for assessing Pavlovian motivation. In rodents, it is most frequently studied via automatic readouts, such as deflections of levers that act as reward cues. These readouts have been immensely helpful, but they may not be ideal for some tasks and paradigms. For example, animals can show a range of sign-tracking responses to a lever cue that do not result in lever deflection, and a reduction in deflections when animals are exposed to an omission contingency (i.e., when lever deflection cancels reward) hides the fact that the animals are still sign-tracking in other ways. Here, we analyzed the behavior of sign-tracking animals through both video monitoring and automatic task readouts in Pavlovian conditioning. This analysis aided in the classification of sign-tracking animals and revealed that lever deflections do not result from any identifiable pattern of sign-tracking. We then used omission and extinction procedures to unmask detailed behavior changes that can only be detected with video data. Automated readouts showed similar reductions of lever deflection in both task conditions. However, detailed behavioral analysis revealed quite distinct behavioral adaptations to these conditions with sign-tracking decreasing entirely during extinction while many sign-tracking behaviors (biting, sniffing, etc.) seemed to remain persistent during omission despite the decrease in deflections. Detailed behavioral analysis was thus critical for capturing sign-tracking maintenance, persistence, and loss.
Collapse
Affiliation(s)
- Erica S Townsend
- Dartmouth College Department of Psychological and Brain Sciences, Hanover, New Hampshire 03755, USA
| | - Kyle S Smith
- Dartmouth College Department of Psychological and Brain Sciences, Hanover, New Hampshire 03755, USA
| |
Collapse
|
3
|
Avila C, Sarter M. Cortico-striatal action control inherent of opponent cognitive-motivational styles. eLife 2025; 13:RP100988. [PMID: 39968969 PMCID: PMC11839163 DOI: 10.7554/elife.100988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Turning on cue or stopping at a red light requires attending to such cues to select action sequences, or suppress action, in accordance with learned cue-associated action rules. Cortico-striatal projections are an essential part of the brain's attention-motor interface. Glutamate-sensing microelectrode arrays were used to measure glutamate transients in the dorsomedial striatum (DMS) of male and female rats walking a treadmill and executing cued turns and stops. Prelimbic-DMS projections were chemogenetically inhibited to determine their behavioral necessity and the cortico-striatal origin of cue-evoked glutamate transients. Furthermore, we investigated rats exhibiting preferably goal-directed (goal trackers, GTs) versus cue-driven attention (sign-trackers, STs), to determine the impact of such cognitive-motivational biases on cortico-striatal control. GTs executed more cued turns and initiated such turns more slowly than STs. During turns, but not missed turns or cued stops, cue-evoked glutamate concentrations were higher in GTs than in STs. In STs, turn cue-locked glutamate concentrations frequently peaked twice or three times, contrasting with predominately single peaks in GTs. In GTs, but not STs, inhibition of prelimbic-DMS projections attenuated turn rates and turn cue-evoked glutamate concentrations and increased the number of turn cue-locked glutamate peaks. These findings indicate that turn cue-evoked glutamate release in GTs is tightly controlled by cortico-striatal neuronal activity. In contrast, in STs, glutamate release from DMS glutamatergic terminals may be regulated by other striatal circuitry, preferably mediating cued suppression of action and reward tracking. As cortico-striatal dysfunction has been hypothesized to contribute to a wide range of disorders, including complex movement control deficits in Parkinson's disease and compulsive drug taking, the demonstration of phenotypic contrasts in cortico-striatal control implies the presence of individual vulnerabilities for such disorders.
Collapse
Affiliation(s)
- Cassandra Avila
- Department of Psychology, University of MichiganAnn ArborUnited States
| | - Martin Sarter
- Department of Psychology, University of MichiganAnn ArborUnited States
- Department of Psychology & Neuroscience Program, University of MichiganAnn ArborUnited States
| |
Collapse
|
4
|
Pereira Sanabria LF, Voutour LS, Kaufman VJ, Reeves CA, Bal AS, Maureira F, Arguello AA. Analysis of Operant Self-administration Behaviors with Supervised Machine Learning: Protocol for Video Acquisition and Pose Estimation Analysis Using DeepLabCut and Simple Behavioral Analysis. eNeuro 2025; 12:ENEURO.0031-24.2024. [PMID: 39774006 PMCID: PMC11826966 DOI: 10.1523/eneuro.0031-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 01/11/2025] Open
Abstract
The use of supervised machine learning to approximate poses in video recordings allows for rapid and efficient analysis of complex behavioral profiles. Currently, there are limited protocols for automated analysis of operant self-administration behavior. We provide a methodology to (1) obtain videos of training sessions via Raspberry Pi microcomputers or GoPro cameras, (2) obtain pose estimation data using the supervised machine learning software packages DeepLabCut (DLC) and Simple Behavioral Analysis (SimBA) with a local high-performance computer cluster, (3) compare standard Med-PC lever response versus quadrant time data generated from pose estimation regions of interest, and (4) generate predictive behavioral classifiers. Overall, we demonstrate proof of concept to use pose estimation outputs from DLC to both generate quadrant time results and obtain behavioral classifiers from SimBA during operant training phases.
Collapse
Affiliation(s)
| | - Luciano S Voutour
- Department of Psychology, Michigan State University, East Lansing, Michigan 48823
| | - Victoria J Kaufman
- Department of Psychology, Michigan State University, East Lansing, Michigan 48823
| | - Christopher A Reeves
- Department of Psychology, Michigan State University, East Lansing, Michigan 48823
| | - Aneesh S Bal
- Department of Psychology, Michigan State University, East Lansing, Michigan 48823
| | - Fidel Maureira
- Department of Earth and Environmental Sciences, Michigan State University, East Lansing, Michigan 48823
| | - Amy A Arguello
- Department of Psychology, Michigan State University, East Lansing, Michigan 48823
| |
Collapse
|
5
|
Avila C, Sarter M. Cortico-striatal action control inherent of opponent cognitive-motivational styles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584623. [PMID: 38559086 PMCID: PMC10979997 DOI: 10.1101/2024.03.12.584623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Turning on cue or stopping at a red light requires attending to such cues to select action sequences, or suppress action, in accordance with learned cue-associated action rules. Cortico-striatal projections are an essential part of the brain's attention-motor interface. Glutamate-sensing microelectrode arrays were used to measure glutamate transients in the dorsomedial striatum (DMS) of male and female rats walking a treadmill and executing cued turns and stops. Prelimbic-DMS projections were chemogenetically inhibited to determine their behavioral necessity and the cortico-striatal origin of cue-evoked glutamate transients. Furthermore, we investigated rats exhibiting preferably goal-directed (goal trackers, GTs) versus cue-driven attention (sign trackers, STs), to determine the impact of such cognitive-motivational biases on cortico-striatal control. GTs executed more cued turns and initiated such turns more slowly than STs. During turns, but not missed turns or cued stops, cue-evoked glutamate concentrations were higher in GTs than in STs. In STs, turn cue-locked glutamate concentrations frequently peaked twice or three times, contrasting with predominately single peaks in GTs. In GTs, but not STs, inhibition of prelimbic-DMS projections attenuated turn rates and turn cue-evoked glutamate concentrations and increased the number of turn cue-locked glutamate peaks. These findings indicate that turn cue-evoked glutamate release in GTs is tightly controlled by cortico-striatal neuronal activity. In contrast, in STs, glutamate release from DMS glutamatergic terminals may be regulated by other striatal circuitry, preferably mediating cued suppression of action and reward tracking. As cortico-striatal dysfunction has been hypothesized to contribute to a wide range of disorders, including complex movement control deficits in Parkinson's disease and compulsive drug taking, the demonstration of phenotypic contrasts in cortico-striatal control implies the presence of individual vulnerabilities for such disorders. Significance Statement Adaptive behavior involves the selection of behaviorally significant cues and the capacity of selected cues to control behavioral action. Neuronal projections from cortex to striatum are essential for such an integration of attentional with motor functions. Here we demonstrated that glutamate release from cortico-striatal projections primarily influences cued turns but not cued suppression of actions (cued stops). Cortico-striatal control of cued turning was especially powerful in rats which, as a psychological trait, preferably deploy goal-directed attention. Together, our findings demonstrate the role of cortico-striatal input in cued action selection, and they emphasize the experimental and biopsychological significance of investigating the brain's attentional-motor interface in the context of broader individual differences in cognitive-motivational styles.
Collapse
Affiliation(s)
- Cassandra Avila
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Martin Sarter
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Department of Psychology & Neuroscience Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Pan-Vazquez A, Sanchez Araujo Y, McMannon B, Louka M, Bandi A, Haetzel L, Faulkner M, Pillow JW, Daw ND, Witten IB. Pre-existing visual responses in a projection-defined dopamine population explain individual learning trajectories. Curr Biol 2024; 34:5349-5358.e6. [PMID: 39413788 PMCID: PMC11579926 DOI: 10.1016/j.cub.2024.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/11/2024] [Accepted: 09/17/2024] [Indexed: 10/18/2024]
Abstract
A key challenge of learning a new task is that the environment is high dimensional-there are many different sensory features and possible actions, with typically only a small reward-relevant subset. Although animals can learn to perform complex tasks that involve arbitrary associations between stimuli, actions, and rewards,1,2,3,4,5,6 a consistent and striking result across varied experimental paradigms is that in initially acquiring such tasks, large differences between individuals are apparent in the learning process.7,8,9,10,11,12 What neural mechanisms contribute to initial task acquisition, and why do some individuals learn a new task much more quickly than others? To address these questions, we recorded longitudinally from dopaminergic (DA) axon terminals in mice learning a visual decision-making task.7 Across striatum, DA responses tracked idiosyncratic and side-specific learning trajectories, consistent with widespread reward prediction error coding across DA terminals. However, even before any rewards were delivered, contralateral-side-specific visual responses were present in DA terminals, primarily in the dorsomedial striatum (DMS). These pre-existing responses predicted the extent of learning for contralateral stimuli. Moreover, activation of these terminals improved contralateral performance. Thus, the initial conditions of a projection-specific and feature-specific DA signal help explain individual learning trajectories. More broadly, this work suggests that functional heterogeneity across DA projections may serve to bias target regions toward learning about different subsets of task features, providing a potential mechanism to address the dimensionality of the initial task learning problem.
Collapse
Affiliation(s)
- Alejandro Pan-Vazquez
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540, USA
| | - Yoel Sanchez Araujo
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540, USA
| | - Brenna McMannon
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540, USA
| | - Miranta Louka
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540, USA
| | - Akhil Bandi
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540, USA
| | - Laura Haetzel
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540, USA
| | - Mayo Faulkner
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Jonathan W Pillow
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540, USA
| | - Nathaniel D Daw
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540, USA; Department of Psychology, Princeton University, Washington Road, Princeton, NJ 08540, USA.
| | - Ilana B Witten
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540, USA; Howard Hughes Medical Institute, Princeton University, Washington Road, Princeton, NJ 08540, USA.
| |
Collapse
|
7
|
Schettino M, Mauti M, Parrillo C, Ceccarelli I, Giove F, Napolitano A, Ottaviani C, Martelli M, Orsini C. Resting-state brain activation patterns and network topology distinguish human sign and goal trackers. Transl Psychiatry 2024; 14:446. [PMID: 39438457 PMCID: PMC11496639 DOI: 10.1038/s41398-024-03162-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
The "Sign-tracker/Goal-tracker" (ST/GT) is an animal model of individual differences in learning and motivational processes attributable to distinctive conditioned responses to environmental cues. While GT rats value the reward-predictive cue as a mere predictor, ST rats attribute it with incentive salience, engaging in aberrant reward-seeking behaviors that mirror those of impulse control disorders. Given its potential clinical value, the present study aimed to map such model onto humans and investigated resting state functional magnetic resonance imaging correlates of individuals categorized as more disposed to sign-tracking or goal-tracking behavior. To do so, eye-tracking was used during a translationally informed Pavlovian paradigm to classify humans as STs (n = 36) GTs (n = 35) or as Intermediates (n = 33), depending on their eye-gaze towards the reward-predictive cue or the reward location. Using connectivity and network-based approach, measures of resting state functional connectivity and centrality (role of a node as a hub) replicated preclinical findings, suggesting a major involvement of subcortical areas in STs, and dominant cortical involvement in GTs. Overall, the study strengthens the translational value of the ST/GT model, with important implications for the early identification of vulnerable phenotypes for psychopathological conditions such as substance use disorder.
Collapse
Affiliation(s)
- Martino Schettino
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Marika Mauti
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Area of Neuroscience, SISSA, Trieste, Italy
| | | | - Ilenia Ceccarelli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Federico Giove
- Museo storico della fisica e Centro studi e Ricerche Enrico Fermi, Rome, Italy
- IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Cristina Ottaviani
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Cristina Orsini
- Department of Psychology, Sapienza University of Rome, Rome, Italy.
- IRCCS Santa Lucia Foundation, Rome, Italy.
| |
Collapse
|
8
|
Turfe A, Westbrook SR, Lopez SA, Chang SE, Flagel SB. The effect of corticosterone on the acquisition of Pavlovian conditioned approach behavior in rats is dependent on sex and vendor. Horm Behav 2024; 164:105609. [PMID: 39083878 DOI: 10.1016/j.yhbeh.2024.105609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Cues in the environment become predictors of biologically relevant stimuli, such as food, through associative learning. These cues can not only act as predictors but can also be attributed with incentive motivational value and gain control over behavior. When a cue is imbued with incentive salience, it attains the ability to elicit maladaptive behaviors characteristic of psychopathology. We can capture the propensity to attribute incentive salience to a reward cue in rats using a Pavlovian conditioned approach paradigm, in which the presentation of a discrete lever-cue is followed by the delivery of a food reward. Upon learning the cue-reward relationship, some rats, termed sign-trackers, develop a conditioned response directed towards the lever-cue; whereas others, termed goal-trackers, approach the food cup upon lever-cue presentation. Here, we assessed the effects of systemic corticosterone (CORT) on the acquisition and expression of sign- and goal-tracking behaviors in male and female rats, while examining the role of the vendor (Charles River or Taconic) from which the rats originated in these effects. Treatment naïve male and female rats from Charles River had a greater tendency to sign-track than those from Taconic. Administration of CORT enhanced the acquisition of sign-tracking behavior in males from Charles River and females from both vendors. Conversely, administration of CORT had no effect on the expression of the conditioned response. These findings demonstrate a role for CORT in cue-reward learning and suggest that inherent tendencies towards sign- or goal-tracking may interact with this physiological mediator of motivated behavior.
Collapse
Affiliation(s)
- Alexandra Turfe
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor 48109, United States of America
| | - Sara R Westbrook
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor 48109, United States of America
| | - Sofia A Lopez
- Neuroscience Graduate Program, University of Michigan, Ann Arbor 48109, United States of America
| | - Stephen E Chang
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor 48109, United States of America
| | - Shelly B Flagel
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor 48109, United States of America; Department of Psychiatry, University of Michigan, Ann Arbor 48109, United States of America.
| |
Collapse
|
9
|
Felix PC, Flagel SB. Leveraging individual differences in cue-reward learning to investigate the psychological and neural basis of shared psychiatric symptomatology: The sign-tracker/goal-tracker model. Behav Neurosci 2024; 138:260-271. [PMID: 38753398 PMCID: PMC11894610 DOI: 10.1037/bne0000590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
In our modern environment, we are bombarded with stimuli or cues that exert significant influence over our actions. The extent to which such cues attain control over or disrupt goal-directed behavior is dependent on several factors, including one's inherent tendencies. Using a rodent model, we have shown that individuals vary in the value they place on stimuli associated with reward. Some individuals, termed "goal-trackers," primarily attribute predictive value to reward cues, whereas others, termed "sign-trackers," attribute predictive and incentive value. Thus, for sign-trackers, the reward cue is transformed into an incentive stimulus that is capable of eliciting maladaptive behaviors. The sign-tracker/goal-tracker animal model has allowed us to refine our understanding of behavioral and computational theories related to reward learning and to parse the underlying neural processes. Further, the neurobehavioral profile of sign-trackers is relevant to several psychiatric disorders, including substance use disorder, impulse control disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, and posttraumatic stress disorder. This model, therefore, can advance our understanding of the psychological and neurobiological mechanisms that contribute to individual differences in vulnerability to psychopathology. Notably, initial attempts at translation-capturing individual variability in the propensity to sign-track in humans-have been promising and in line with what we have learned from the animal model. In this review, we highlight the pivotal role played by the sign-tracker/goal-tracker animal model in enriching our understanding of the psychological and neural basis of motivated behavior and psychiatric symptomatology. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
| | - Shelly B. Flagel
- Michigan Neuroscience Institute, University of Michigan
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
10
|
Turfe A, Westbrook SR, Lopez SA, Chang SE, Flagel SB. The effect of corticosterone on the acquisition of Pavlovian conditioned approach behavior is dependent on sex and vendor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.586009. [PMID: 38562896 PMCID: PMC10983933 DOI: 10.1101/2024.03.20.586009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Cues in the environment become predictors of biologically relevant stimuli, such as food, through associative learning. These cues can not only act as predictors but can also be attributed with incentive motivational value and gain control over behavior. When a cue is imbued with incentive salience, it attains the ability to elicit maladaptive behaviors characteristic of psychopathology. We can capture the propensity to attribute incentive salience to a reward cue in rats using a Pavlovian conditioned approach paradigm, in which the presentation of a discrete lever-cue is followed by the delivery of a food reward. Upon learning the cue-reward relationship, some rats, termed sign-trackers, develop a conditioned response directed towards the lever-cue; whereas others, termed goal-trackers, approach the food cup upon lever-cue presentation. Here, we assessed the effects of systemic corticosterone (CORT) on the acquisition and expression of sign- and goal-tracking behaviors in male and female rats, while examining the role of the vendor (Charles River or Taconic) from which the rats originated in these effects. Male and female rats from Charles River had a greater tendency to sign-track than those from Taconic. Administration of CORT enhanced the acquisition of sign-tracking behavior in males from Charles River and females from both vendors. Conversely, administration of CORT had no effect on the expression of the conditioned response. These findings demonstrate a role for CORT in cue-reward learning and suggest that inherent tendencies towards sign- or goal-tracking may interact with this physiological mediator of motivated behavior. Highlights Male and female rats from Charles River exhibit more sign-tracking relative to those from Taconic.Corticosterone increases the acquisition of sign-tracking in male rats from Charles River.Corticosterone increases the acquisition of sign-tracking in female rats, regardless of vendor.There is no effect of corticosterone on the expression of sign-tracking behavior in either male or female rats.
Collapse
|