1
|
Iwata T, Yanagisawa T, Fukuma R, Ikegaya Y, Oshino S, Tani N, Khoo HM, Sugano H, Iimura Y, Suzuki H, Kishima H. Abnormal Synchronization Between Cortical Delta Power and Ripples in Hippocampal Sclerosis. Ann Clin Transl Neurol 2025; 12:986-997. [PMID: 40110652 DOI: 10.1002/acn3.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/13/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
OBJECTIVE Discriminating between epileptogenic and physiological ripples in the hippocampus is important for identifying epileptogenic (EP) zones; however, distinguishing these ripples on the basis of their waveforms is difficult. We hypothesized that the nocturnal synchronization of hippocampal ripples and cortical delta power could be used to classify epileptogenic and physiological ripples in the hippocampus. METHODS We enrolled 38 patients with electrodes implanted in the hippocampus or parahippocampal gyrus between April 2014 and March 2023 at our institution. We divided 11 patients (11 hippocampi) who were pathologically diagnosed with hippocampal sclerosis into the EP group and five patients (six hippocampi) with no epileptogenicity in the hippocampus into the nonepileptogenic (NE) group. Hippocampal ripples were detected using intracranial electroencephalography with hippocampal or parahippocampal electrodes. Cortical delta power (0.5-4 Hz) was assessed using cortical electrodes. The Pearson correlation coefficient between the ripple rates and cortical delta power (Corr-RD) was calculated on the basis of the intracranial electroencephalographic signals recorded each night. RESULTS Although hippocampal ripples were similar among the EP and NE groups based on their waveforms and frequency properties, the Corr-RDs in the EP group (mean [standard deviation]: 0.20 [0.049]) were significantly lower than those in the NE group (0.67 [0.070]). On the basis of the minimum Corr-RDs, the two groups were classified with 94.1% accuracy. INTERPRETATION Our results demonstrate that the Corr-RD is a biomarker of hippocampal epileptogenicity.
Collapse
Affiliation(s)
- Takamitsu Iwata
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takufumi Yanagisawa
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Neuroinformatics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Ryohei Fukuma
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Neuroinformatics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
- National Institute of Information and Communications Technology, Center for Information and Neural Networks, Suita, Osaka, Japan
| | - Satoru Oshino
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Naoki Tani
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hui Ming Khoo
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hidenori Sugano
- Department of Neurosurgery, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Yasushi Iimura
- Department of Neurosurgery, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Hiroharu Suzuki
- Department of Neurosurgery, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
2
|
Abbaspoor S, Hoffman KL. Circuit dynamics of superficial and deep CA1 pyramidal cells and inhibitory cells in freely moving macaques. Cell Rep 2024; 43:114519. [PMID: 39018243 PMCID: PMC11445748 DOI: 10.1016/j.celrep.2024.114519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/23/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024] Open
Abstract
Diverse neuron classes in hippocampal CA1 have been identified through the heterogeneity of their cellular/molecular composition. How these classes relate to hippocampal function and the network dynamics that support cognition in primates remains unclear. Here, we report inhibitory functional cell groups in CA1 of freely moving macaques whose diverse response profiles to network states and each other suggest distinct and specific roles in the functional microcircuit of CA1. In addition, pyramidal cells that were grouped by their superficial or deep layer position differed in firing rate, burstiness, and sharp-wave ripple-associated firing. They also showed strata-specific spike-timing interactions with inhibitory cell groups, suggestive of segregated neural populations. Furthermore, ensemble recordings revealed that cell assemblies were preferentially organized according to these strata. These results suggest that hippocampal CA1 in freely moving macaques bears a sublayer-specific circuit organization that may shape its role in cognition.
Collapse
Affiliation(s)
- Saman Abbaspoor
- Department of Psychology, Vanderbilt Vision Research Center, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
| | - Kari L Hoffman
- Department of Psychology, Vanderbilt Vision Research Center, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
3
|
Abbaspoor S, Hoffman KL. Circuit dynamics of superficial and deep CA1 pyramidal cells and inhibitory cells in freely-moving macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.06.570369. [PMID: 38106053 PMCID: PMC10723348 DOI: 10.1101/2023.12.06.570369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Diverse neuron classes in hippocampal CA1 have been identified through the heterogeneity of their cellular/molecular composition. How these classes relate to hippocampal function and the network dynamics that support cognition in primates remains unclear. Here we report inhibitory functional cell groups in CA1 of freely-moving macaques whose diverse response profiles to network states and each other suggest distinct and specific roles in the functional microcircuit of CA1. In addition, pyramidal cells that were segregated into superficial and deep layers differed in firing rate, burstiness, and sharp-wave ripple-associated firing. They also showed strata-specific spike-timing interactions with inhibitory cell groups, suggestive of segregated neural populations. Furthermore, ensemble recordings revealed that cell assemblies were preferentially organized according to these strata. These results suggest sublayer-specific circuit organization in hippocampal CA1 of the freely-moving macaques that may underlie its role in cognition.
Collapse
Affiliation(s)
- S Abbaspoor
- Department of Psychology, Vanderbilt Vision Research Center, Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee
| | - K L Hoffman
- Department of Psychology, Vanderbilt Vision Research Center, Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
4
|
Seenivasan P, Basak R, Narayanan R. Cross-strata co-occurrence of ripples with theta-frequency oscillations in the hippocampus of foraging rats. J Physiol 2024; 602:2315-2341. [PMID: 38654581 PMCID: PMC7615956 DOI: 10.1113/jp284629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
Brain rhythms have been postulated to play central roles in animal cognition. A prominently reported dichotomy of hippocampal rhythms links theta-frequency oscillations (4-12 Hz) and ripples (120-250 Hz) exclusively to preparatory and consummatory behaviours, respectively. However, because of the differential power expression of these two signals across hippocampal strata, such exclusivity requires validation through analyses of simultaneous multi-strata recordings. We assessed co-occurrence of theta-frequency oscillations with ripples in multi-channel recordings of extracellular potentials across hippocampal strata from foraging rats. We detected all ripple events from an identified stratum pyramidale (SP) channel. We then defined theta epochs based on theta oscillations detected from the stratum lacunosum-moleculare (SLM) or the stratum radiatum (SR). We found ∼20% of ripple events (in SP) to co-occur with theta epochs identified from SR/SLM channels, defined here as theta ripples. Strikingly, when theta epochs were instead identified from the SP channel, such co-occurrences were significantly reduced because of a progressive reduction in theta power along the SLM-SR-SP axis. Behaviourally, we found most theta ripples to occur during immobile periods, with comparable theta power during exploratory and immobile theta epochs. Furthermore, the progressive reduction in theta power along the SLM-SR-SP axis was common to exploratory and immobile periods. Finally, we found a strong theta-phase preference of theta ripples within the fourth quadrant [3π/2 - 2π] of the associated theta oscillation. The prevalence of theta ripples expands the potential roles of ripple-frequency oscillations to span the continuum of encoding, retrieval and consolidation, achieved through interactions with theta oscillations. KEY POINTS: The brain manifests oscillations in recorded electrical potentials, with different frequencies of oscillation associated with distinct behavioural states. A prominently reported dichotomy assigns theta-frequency oscillations (4-12 Hz) and ripples (120-250 Hz) recorded in the hippocampus to be exclusively associated with preparatory and consummatory behaviours, respectively. Our multi-strata recordings from the rodent hippocampus coupled with cross-strata analyses provide direct quantitative evidence for the occurrence of ripple events nested within theta oscillations. These results highlight the need for an analysis pipeline that explicitly accounts for the specific strata where individual oscillatory power is high, in analysing simultaneously recorded data from multiple strata. Our observations open avenues for investigations involving cross-strata interactions between theta oscillations and ripples across different behavioural states.
Collapse
Affiliation(s)
- Pavithraa Seenivasan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Reshma Basak
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
5
|
Hoffman C, Cheng J, Morales R, Ji D, Dabaghian Y. Altered patterning of neural activity in a tauopathy mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.23.586417. [PMID: 38585991 PMCID: PMC10996513 DOI: 10.1101/2024.03.23.586417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative condition that manifests at multiple levels and involves a spectrum of abnormalities ranging from the cellular to cognitive. Here, we investigate the impact of AD-related tau-pathology on hippocampal circuits in mice engaged in spatial navigation, and study changes of neuronal firing and dynamics of extracellular fields. While most studies are based on analyzing instantaneous or time-averaged characteristics of neuronal activity, we focus on intermediate timescales-spike trains and waveforms of oscillatory potentials, which we consider as single entities. We find that, in healthy mice, spike arrangements and wave patterns (series of crests or troughs) are coupled to the animal's location, speed, and acceleration. In contrast, in tau-mice, neural activity is structurally disarrayed: brainwave cadence is detached from locomotion, spatial selectivity is lost, the spike flow is scrambled. Importantly, these alterations start early and accumulate with age, which exposes progressive disinvolvement the hippocampus circuit in spatial navigation. These features highlight qualitatively different neurodynamics than the ones provided by conventional analyses, and are more salient, thus revealing a new level of the hippocampal circuit disruptions.
Collapse
Affiliation(s)
- C Hoffman
- Department of Neurology, The University of Texas McGovern Medical School, 6431 Fannin St, Houston, TX 77030
| | - J Cheng
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
| | - R Morales
- Department of Neurology, The University of Texas McGovern Medical School, 6431 Fannin St, Houston, TX 77030
| | - D Ji
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
| | - Y Dabaghian
- Department of Neurology, The University of Texas McGovern Medical School, 6431 Fannin St, Houston, TX 77030
| |
Collapse
|
6
|
Navas-Olive A, Rubio A, Abbaspoor S, Hoffman KL, de la Prida LM. A machine learning toolbox for the analysis of sharp-wave ripples reveals common waveform features across species. Commun Biol 2024; 7:211. [PMID: 38438533 PMCID: PMC10912113 DOI: 10.1038/s42003-024-05871-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
The study of sharp-wave ripples has advanced our understanding of memory function, and their alteration in neurological conditions such as epilepsy is considered a biomarker of dysfunction. Sharp-wave ripples exhibit diverse waveforms and properties that cannot be fully characterized by spectral methods alone. Here, we describe a toolbox of machine-learning models for automatic detection and analysis of these events. The machine-learning architectures, which resulted from a crowdsourced hackathon, are able to capture a wealth of ripple features recorded in the dorsal hippocampus of mice across awake and sleep conditions. When applied to data from the macaque hippocampus, these models are able to generalize detection and reveal shared properties across species. We hereby provide a user-friendly open-source toolbox for model use and extension, which can help to accelerate and standardize analysis of sharp-wave ripples, lowering the threshold for its adoption in biomedical applications.
Collapse
Affiliation(s)
| | | | - Saman Abbaspoor
- Psychological Sciences, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Kari L Hoffman
- Psychological Sciences, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | | |
Collapse
|
7
|
Hallquist MN, Hwang K, Luna B, Dombrovski AY. Reward-based option competition in human dorsal stream and transition from stochastic exploration to exploitation in continuous space. SCIENCE ADVANCES 2024; 10:eadj2219. [PMID: 38394198 PMCID: PMC10889364 DOI: 10.1126/sciadv.adj2219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Primates exploring and exploiting a continuous sensorimotor space rely on dynamic maps in the dorsal stream. Two complementary perspectives exist on how these maps encode rewards. Reinforcement learning models integrate rewards incrementally over time, efficiently resolving the exploration/exploitation dilemma. Working memory buffer models explain rapid plasticity of parietal maps but lack a plausible exploration/exploitation policy. The reinforcement learning model presented here unifies both accounts, enabling rapid, information-compressing map updates and efficient transition from exploration to exploitation. As predicted by our model, activity in human frontoparietal dorsal stream regions, but not in MT+, tracks the number of competing options, as preferred options are selectively maintained on the map, while spatiotemporally distant alternatives are compressed out. When valuable new options are uncovered, posterior β1/α oscillations desynchronize within 0.4 to 0.7 s, consistent with option encoding by competing β1-stabilized subpopulations. Together, outcomes matching locally cached reward representations rapidly update parietal maps, biasing choices toward often-sampled, rewarded options.
Collapse
Affiliation(s)
| | - Kai Hwang
- Department of Psychological and Brain Sciences, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
8
|
Takagi S. Exploring Ripple Waves in the Human Brain. Clin EEG Neurosci 2023; 54:594-600. [PMID: 34287087 DOI: 10.1177/15500594211034371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ripples are brief (<150 ms) high-frequency oscillatory neural activities in the brain with a range of 140 to 200 Hz in rodents and 80 to 140 Hz in humans. Ripples are regarded as playing an essential role in several aspects of memory function, mainly in the hippocampus. This type of ripple generally occurs with sharp waves and is called a sharp-wave ripple (SPW-R). Extensive research of SPW-Rs in the rodent brain while actively awake has also linked the function of these SPW-Rs to navigation and decision making. Although many studies with rodents unveiled SPW-R function, research in humans on this subject is still sparse. Therefore, unveiling SPW-R function in the human hippocampus is warranted. A certain type of ripples may also be a biomarker of epilepsy. This type of ripple is called a pathological ripple (p-ripple). p-ripples have a wider range of frequency (80-500 Hz) than SPW-Rs, and the range of frequency is especially higher in brain regions that are intrinsically linked to epilepsy onset. Brain regions producing ripples are too small for scalp electrode recording, and intracranial recording is typically needed to detect ripples. In addition, SPW-Rs in the human hippocampus have been recorded from patients with epilepsy who may have p-ripples. Differentiating SPW-Rs and p-ripples is often not easy. We need to develop more sophisticated methods to record SPW-Rs to differentiate them from p-ripples. This paper reviews the general features and roles of ripple waves.
Collapse
Affiliation(s)
- Shunsuke Takagi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| |
Collapse
|
9
|
Navas-Olive A, Rubio A, Abbaspoor S, Hoffman KL, de la Prida LM. A machine learning toolbox for the analysis of sharp-wave ripples reveal common features across species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.02.547382. [PMID: 37461661 PMCID: PMC10349962 DOI: 10.1101/2023.07.02.547382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
The study of sharp-wave ripples (SWRs) has advanced our understanding of memory function, and their alteration in neurological conditions such as epilepsy and Alzheimer's disease is considered a biomarker of dysfunction. SWRs exhibit diverse waveforms and properties that cannot be fully characterized by spectral methods alone. Here, we describe a toolbox of machine learning (ML) models for automatic detection and analysis of SWRs. The ML architectures, which resulted from a crowdsourced hackathon, are able to capture a wealth of SWR features recorded in the dorsal hippocampus of mice. When applied to data from the macaque hippocampus, these models were able to generalize detection and revealed shared SWR properties across species. We hereby provide a user-friendly open-source toolbox for model use and extension, which can help to accelerate and standardize SWR research, lowering the threshold for its adoption in biomedical applications.
Collapse
Affiliation(s)
| | | | - Saman Abbaspoor
- Psychological Sciences, Vanderbilt Brain Institute, Vanderbilt University, USA
| | - Kari L. Hoffman
- Psychological Sciences, Vanderbilt Brain Institute, Vanderbilt University, USA
- Biomedical Engineering, Vanderbilt University, USA
| | | |
Collapse
|
10
|
Doostmohammadi J, Gieselmann MA, van Kempen J, Lashgari R, Yoonessi A, Thiele A. Ripples in macaque V1 and V4 are modulated by top-down visual attention. Proc Natl Acad Sci U S A 2023; 120:e2210698120. [PMID: 36696442 PMCID: PMC9945997 DOI: 10.1073/pnas.2210698120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/22/2022] [Indexed: 01/26/2023] Open
Abstract
Sharp-wave ripples (SWRs) are highly synchronous neuronal activity events. They have been predominantly observed in the hippocampus during offline states such as pause in exploration, slow-wave sleep, and quiescent wakefulness. SWRs have been linked to memory consolidation, spatial navigation, and spatial decision-making. Recently, SWRs have been reported during visual search, a form of remote spatial exploration, in macaque hippocampus. However, the association between SWRs and multiple forms of awake conscious and goal-directed behavior is unknown. We report that ripple activity occurs in macaque visual areas V1 and V4 during focused spatial attention. The occurrence of ripples is modulated by stimulus characteristics, increased by attention toward the receptive field, and by the size of the attentional focus. During attention cued to the receptive field, the monkey's reaction time in detecting behaviorally relevant events was reduced by ripples. These results show that ripple activity is not limited to hippocampal activity during offline states, rather they occur in the neocortex during active attentive states and vigilance behaviors.
Collapse
Affiliation(s)
- Jafar Doostmohammadi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran13, Iran
- Biosciences Institute, Newcastle University, Newcastle upon TyneNE1 7RU, United Kingdom
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, IPM, Tehran13, Iran
| | - Marc Alwin Gieselmann
- Biosciences Institute, Newcastle University, Newcastle upon TyneNE1 7RU, United Kingdom
| | - Jochem van Kempen
- Biosciences Institute, Newcastle University, Newcastle upon TyneNE1 7RU, United Kingdom
| | - Reza Lashgari
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran13, Iran
| | - Ali Yoonessi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran13, Iran
| | - Alexander Thiele
- Biosciences Institute, Newcastle University, Newcastle upon TyneNE1 7RU, United Kingdom
| |
Collapse
|
11
|
Comrie AE, Frank LM, Kay K. Imagination as a fundamental function of the hippocampus. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210336. [PMID: 36314152 PMCID: PMC9620759 DOI: 10.1098/rstb.2021.0336] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/20/2022] [Indexed: 08/25/2023] Open
Abstract
Imagination is a biological function that is vital to human experience and advanced cognition. Despite this importance, it remains unknown how imagination is realized in the brain. Substantial research focusing on the hippocampus, a brain structure traditionally linked to memory, indicates that firing patterns in spatially tuned neurons can represent previous and upcoming paths in space. This work has generally been interpreted under standard views that the hippocampus implements cognitive abilities primarily related to actual experience, whether in the past (e.g. recollection, consolidation), present (e.g. spatial mapping) or future (e.g. planning). However, relatively recent findings in rodents identify robust patterns of hippocampal firing corresponding to a variety of alternatives to actual experience, in many cases without overt reference to the past, present or future. Given these findings, and others on hippocampal contributions to human imagination, we suggest that a fundamental function of the hippocampus is to generate a wealth of hypothetical experiences and thoughts. Under this view, traditional accounts of hippocampal function in episodic memory and spatial navigation can be understood as particular applications of a more general system for imagination. This view also suggests that the hippocampus contributes to a wider range of cognitive abilities than previously thought. This article is part of the theme issue 'Thinking about possibilities: mechanisms, ontogeny, functions and phylogeny'.
Collapse
Affiliation(s)
- Alison E. Comrie
- Neuroscience Graduate Program, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Kavli Institute for Fundamental Neuroscience, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Center for Integrative Neuroscience, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Departments of Physiology and Psychiatry, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Loren M. Frank
- Kavli Institute for Fundamental Neuroscience, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Center for Integrative Neuroscience, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Departments of Physiology and Psychiatry, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Kenneth Kay
- Zuckerman Institute, Center for Theoretical Neuroscience, Columbia University, 3227 Broadway, New York, NY 10027, USA
| |
Collapse
|
12
|
Hussin AT, Abbaspoor S, Hoffman KL. Retrosplenial and Hippocampal Synchrony during Retrieval of Old Memories in Macaques. J Neurosci 2022; 42:7947-7956. [PMID: 36261267 PMCID: PMC9617609 DOI: 10.1523/jneurosci.0001-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 06/05/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Memory for events from the distant past relies on multiple brain regions, but little is known about the underlying neural dynamics that give rise to such abilities. We recorded neural activity in the hippocampus and retrosplenial cortex of two female rhesus macaques as they visually selected targets in year-old and newly acquired object-scene associations. Whereas hippocampal activity was unchanging with memory age, the retrosplenial cortex responded with greater magnitude alpha oscillations (10-15 Hz) and greater phase locking to memory-guided eye movements during retrieval of old events. A similar old-memory enhancement was observed in the anterior cingulate cortex but in a beta2/gamma band (28-35 Hz). In contrast, remote retrieval was associated with decreased gamma-band synchrony between the hippocampus and each neocortical area. The increasing retrosplenial alpha oscillation and decreasing hippocampocortical synchrony with memory age may signify a shift in frank memory allocation or, alternatively, changes in selection among distributed memory representations in the primate brain.SIGNIFICANCE STATEMENT Memory depends on multiple brain regions, whose involvement is thought to change with time. Here, we recorded neuronal population activity from the hippocampus and retrosplenial cortex as nonhuman primates searched for objects embedded in scenes. These memoranda were either newly presented or a year old. Remembering old material drove stronger oscillations in the retrosplenial cortex and led to a greater locking of neural activity to search movements. Remembering new material revealed stronger oscillatory synchrony between the hippocampus and retrosplenial cortex. These results suggest that with age, memories may come to rely more exclusively on neocortical oscillations for retrieval and search guidance and less on long-range coupling with the hippocampus.
Collapse
Affiliation(s)
- Ahmed T Hussin
- Department of Biology, Centre for Vision Research, York University, Toronto Ontario M3J 1P3, Canada
| | | | - Kari L Hoffman
- Department of Biology, Centre for Vision Research, York University, Toronto Ontario M3J 1P3, Canada
- Departments of Psychology
- Biomedical Engineering, Vanderbilt Vision Research Center, Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37240
| |
Collapse
|
13
|
Liu AA, Henin S, Abbaspoor S, Bragin A, Buffalo EA, Farrell JS, Foster DJ, Frank LM, Gedankien T, Gotman J, Guidera JA, Hoffman KL, Jacobs J, Kahana MJ, Li L, Liao Z, Lin JJ, Losonczy A, Malach R, van der Meer MA, McClain K, McNaughton BL, Norman Y, Navas-Olive A, de la Prida LM, Rueckemann JW, Sakon JJ, Skelin I, Soltesz I, Staresina BP, Weiss SA, Wilson MA, Zaghloul KA, Zugaro M, Buzsáki G. A consensus statement on detection of hippocampal sharp wave ripples and differentiation from other fast oscillations. Nat Commun 2022; 13:6000. [PMID: 36224194 PMCID: PMC9556539 DOI: 10.1038/s41467-022-33536-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 09/21/2022] [Indexed: 02/05/2023] Open
Abstract
Decades of rodent research have established the role of hippocampal sharp wave ripples (SPW-Rs) in consolidating and guiding experience. More recently, intracranial recordings in humans have suggested their role in episodic and semantic memory. Yet, common standards for recording, detection, and reporting do not exist. Here, we outline the methodological challenges involved in detecting ripple events and offer practical recommendations to improve separation from other high-frequency oscillations. We argue that shared experimental, detection, and reporting standards will provide a solid foundation for future translational discovery.
Collapse
Affiliation(s)
- Anli A Liu
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA
| | - Simon Henin
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Saman Abbaspoor
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Anatol Bragin
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Elizabeth A Buffalo
- Department of Physiology and Biophysics, Washington National Primate Center, University of Washington, Seattle, WA, USA
| | - Jordan S Farrell
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - David J Foster
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Loren M Frank
- Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Tamara Gedankien
- Department of Biomedical Engineering, Department of Neurological Surgery, Columbia University, New York, NY, USA
| | - Jean Gotman
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jennifer A Guidera
- Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, Department of Bioengineering, University of California, San Francisco, San Francisco, CA, USA
| | - Kari L Hoffman
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Joshua Jacobs
- Department of Biomedical Engineering, Department of Neurological Surgery, Columbia University, New York, NY, USA
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Li
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Zhenrui Liao
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Jack J Lin
- Department of Neurology, Center for Mind and Brain, University of California Davis, Oakland, CA, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Rafael Malach
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Kathryn McClain
- Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA
| | - Bruce L McNaughton
- The Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Yitzhak Norman
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | | | | | - Jon W Rueckemann
- Department of Physiology and Biophysics, Washington National Primate Center, University of Washington, Seattle, WA, USA
| | - John J Sakon
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ivan Skelin
- Department of Neurology, Center for Mind and Brain, University of California Davis, Oakland, CA, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Bernhard P Staresina
- Department of Experimental Psychology, Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Shennan A Weiss
- Brookdale Hospital Medical Center, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Matthew A Wilson
- Department of Brain and Cognitive Sciences and Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Michaël Zugaro
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - György Buzsáki
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA.
| |
Collapse
|
14
|
Abstract
High-frequency oscillatory events, termed ripples, represent synchrony of neural activity in the brain. Recent evidence suggests that medial temporal lobe (MTL) ripples support memory retrieval. However, it is unclear if ripples signal the reinstatement of episodic memories. Analyzing electrophysiological MTL recordings from 245 neurosurgical participants performing episodic recall tasks, we find that the rate of hippocampal ripples rises just prior to the free recall of recently formed memories. This prerecall ripple effect (PRE) is stronger in the CA1 and CA3/dentate gyrus (CA3/DG) subfields of the hippocampus than the neighboring MTL regions entorhinal and parahippocampal cortex. PRE is also stronger prior to the retrieval of temporally and semantically clustered, as compared with unclustered, recalls, indicating the involvement of ripples in contextual reinstatement, which is a hallmark of episodic memory.
Collapse
|
15
|
Dastgheib M, Kulanayagam A, Dringenberg HC. Is the role of sleep in memory consolidation overrated? Neurosci Biobehav Rev 2022; 140:104799. [PMID: 35905801 DOI: 10.1016/j.neubiorev.2022.104799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/13/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022]
Abstract
Substantial empirical evidence suggests that sleep benefits the consolidation and reorganization of learned information. Consequently, the concept of "sleep-dependent memory consolidation" is now widely accepted by the scientific community, in addition to influencing public perceptions regarding the functions of sleep. There are, however, numerous studies that have presented findings inconsistent with the sleep-memory hypothesis. Here, we challenge the notion of "sleep-dependency" by summarizing evidence for effective memory consolidation independent of sleep. Plasticity mechanisms thought to mediate or facilitate consolidation during sleep (e.g., neuronal replay, reactivation, slow oscillations, neurochemical milieu) also operate during non-sleep states, particularly quiet wakefulness, thus allowing for the stabilization of new memories. We propose that it is not sleep per se, but the engagement of plasticity mechanisms, active during both sleep and (at least some) waking states, that constitutes the critical factor determining memory formation. Thus, rather than playing a "critical" role, sleep falls along a continuum of behavioral states that vary in their effectiveness to support memory consolidation at the neural and behavioral level.
Collapse
Affiliation(s)
| | | | - Hans C Dringenberg
- Department of Psychology, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
16
|
Zeng T, Si B, Li X. Entorhinal-hippocampal interactions lead to globally coherent representations of space. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100035. [PMID: 36685760 PMCID: PMC9846457 DOI: 10.1016/j.crneur.2022.100035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 02/08/2022] [Accepted: 03/09/2022] [Indexed: 01/25/2023] Open
Abstract
The firing maps of grid cells in the entorhinal cortex are thought to provide an efficient metric system capable of supporting spatial inference in all environments. However, whether spatial representations of grid cells are determined by local environment cues or are organized into globally coherent patterns remains undetermined. We propose a navigation model containing a path integration system in the entorhinal cortex and a cognitive map system in the hippocampus. In the path integration system, grid cell network and head direction (HD) cell network integrate movement and visual information, and form attractor states to represent the positions and head directions of the animal. In the cognitive map system, a topological map is constructed capturing the attractor states of the path integration system as nodes and the transitions between attractor states as links. On loop closure, when the animal revisits a familiar place, the topological map is calibrated to minimize odometry errors. The change of the topological map is mapped back to the path integration system, to correct the states of the grid cells and the HD cells. The proposed model was tested on iRat, a rat-like miniature robot, in a realistic maze. Experimental results showed that, after familiarization of the environment, both grid cells and HD cells develop globally coherent firing maps by map calibration and activity correction. These results demonstrate that the hippocampus and the entorhinal cortex work together to form globally coherent metric representations of the environment. The underlying mechanisms of the hippocampal-entorhinal circuit in capturing the structure of the environment from sequences of experience are critical for understanding episodic memory.
Collapse
Affiliation(s)
- Taiping Zeng
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo 113-0033, Japan
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, China
| | - Bailu Si
- School of Systems Science, Beijing Normal University, Beijing, 100875, China
- Peng Cheng Laboratory, Shenzhen, 518055, China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
17
|
Kragel JE, Voss JL. Looking for the neural basis of memory. Trends Cogn Sci 2022; 26:53-65. [PMID: 34836769 PMCID: PMC8678329 DOI: 10.1016/j.tics.2021.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/03/2023]
Abstract
Memory neuroscientists often measure neural activity during task trials designed to recruit specific memory processes. Behavior is championed as crucial for deciphering brain-memory linkages but is impoverished in typical experiments that rely on summary judgments. We criticize this approach as being blind to the multiple cognitive, neural, and behavioral processes that occur rapidly within a trial to support memory. Instead, time-resolved behaviors such as eye movements occur at the speed of cognition and neural activity. We highlight successes using eye-movement tracking with in vivo electrophysiology to link rapid hippocampal oscillations to encoding and retrieval processes that interact over hundreds of milliseconds. This approach will improve research on the neural basis of memory because it pinpoints discrete moments of brain-behavior-cognition correspondence.
Collapse
Affiliation(s)
- James E Kragel
- Department of Neurology, The University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA.
| | - Joel L Voss
- Department of Neurology, The University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| |
Collapse
|
18
|
Ross TW, Easton A. The Hippocampal Horizon: Constructing and Segmenting Experience for Episodic Memory. Neurosci Biobehav Rev 2021; 132:181-196. [PMID: 34826509 DOI: 10.1016/j.neubiorev.2021.11.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/29/2022]
Abstract
How do we recollect specific events that have occurred during continuous ongoing experience? There is converging evidence from non-human animals that spatially modulated cellular activity of the hippocampal formation supports the construction of ongoing events. On the other hand, recent human oriented event cognition models have outlined that our experience is segmented into discrete units, and that such segmentation can operate on shorter or longer timescales. Here, we describe a unification of how these dynamic physiological mechanisms of the hippocampus relate to ongoing externally and internally driven event segmentation, facilitating the demarcation of specific moments during experience. Our cross-species interdisciplinary approach offers a novel perspective in the way we construct and remember specific events, leading to the generation of many new hypotheses for future research.
Collapse
Affiliation(s)
- T W Ross
- Department of Psychology, Durham University, South Road, Durham, DH1 3LE, United Kingdom; Centre for Learning and Memory Processes, Durham University, United Kingdom.
| | - A Easton
- Department of Psychology, Durham University, South Road, Durham, DH1 3LE, United Kingdom; Centre for Learning and Memory Processes, Durham University, United Kingdom
| |
Collapse
|
19
|
McIntosh MK, Levy R. The Dostoyevsky effect: epileptogenesis and memory enhancement after kindling stimulation in the primate basolateral amygdala. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:1325-1329. [PMID: 34891529 DOI: 10.1109/embc46164.2021.9631045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Kindling is an electrical stimulation technique used to lower the threshold for epileptogenic activity in the brain. It can also be used as a tool to investigate electrophysiologic alterations that occur as a result of seizures. Epileptiform activity, like seizures and after-discharges (AD; evoked epileptiform activity), commonly cause memory impairment but rarely, can elicit vivid memory retrieval. We kindled the basolateral amygdala of a non-human primate (NHP) once weekly and had him perform a spatial memory task in a 3D virtual environment before, during and after kindling. AD were associated with an initial average performance increase of 46.6%. The enhancement which followed AD persisted up to 2 days. Memory task performance enhancement was accompanied by significant resetting of hippocampal theta oscillations and robust hippocampal potentiation as measured by field evoked potentials. However, neither lasted throughout the duration of performance enhancement. Sharp-wave ripples (SWR), a local field event that supports episodic memory, were generated more often throughout the period of enhancement. SWR rate increased from 14.38 SWR per min before kindling to 24.22 SWR per min after kindling on average. Our results show that kindling can be associated with improved memory. Memory function appears to depend on the particular induction circuit and the resultant excitation/inhibition ratio of the mesial temporal lobe network. Investigating the electrophysiologic underpinnings of this observed memory enhancement is an important step towards understanding the network alterations that occur after seizures and stimulation.Clinical Relevance- Our findings provide new insight into the effects of kindling stimulation in the primate brain. Kindling can cause increase MTL synchrony and the frequency of spontaneous seizures in a primate. This work highlights important considerations for therapeutic deep brain stimulation.
Collapse
|
20
|
Stability of ripple events during task engagement in human hippocampus. Cell Rep 2021; 35:109304. [PMID: 34192546 PMCID: PMC8288441 DOI: 10.1016/j.celrep.2021.109304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/02/2021] [Accepted: 06/03/2021] [Indexed: 11/23/2022] Open
Abstract
High-frequency activity bursts in the hippocampus, known as ripples, are thought to support memory consolidation during “offline” states, such as sleep. Recently, human hippocampal ripples have been observed during “online” episodic memory tasks. It remains unclear whether similar ripple activity occurs during other cognitive states, including different types of episodic memory. However, identifying genuine ripple events in the human hippocampus is challenging. To address these questions, spectro-temporal ripple identification was applied to human hippocampal recordings across a variety of cognitive tasks. Overall, ripple attributes were stable across tasks of visual perception and associative memory, with mean rates lower than offline states of rest and sleep. In contrast, while more complex visual attention tasks did not modulate ripple attributes, rates were enhanced for more complex autobiographical memory conditions. Therefore, hippocampal ripples reliably occur across cognitive states but are specifically enhanced during offline states and complex memory processes, consistent with a role in consolidation. Hippocampal ripples are high-frequency activity bursts proposed to support “offline” memory consolidation. Chen et al. identify that human hippocampal ripples occur with stable properties across tasks of visual perception and associative memory but are enhanced for autobiographical memory retrieval and non-REM sleep, supporting their “online” role in establishing and strengthening memory traces.
Collapse
|
21
|
Conti F, Irish M. Harnessing Visual Imagery and Oculomotor Behaviour to Understand Prospection. Trends Cogn Sci 2021; 25:272-283. [PMID: 33618981 DOI: 10.1016/j.tics.2021.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022]
Abstract
Much of the rich internal world constructed by humans is derived from, and experienced through, visual mental imagery. Despite growing appreciation of visual exploration in guiding episodic memory processes, extant theories of prospection have yet to accommodate the precise role of visual mental imagery in the service of future-oriented thinking. We propose that the construction of future events relies on the assimilation of perceptual details originally experienced, and subsequently reinstantiated, predominantly in the visual domain. Individual differences in the capacity to summon discrete aspects of visual imagery can therefore account for the diversity of content generated by humans during future simulation. Our integrative framework provides a novel testbed to query alterations in future thinking in health and disease.
Collapse
Affiliation(s)
- Federica Conti
- Institut des Neurosciences de la Timone, Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France; The University of Sydney, Brain and Mind Centre and School of Psychology, 94 Mallett Street, Camperdown, NSW 2050, Australia.
| | - Muireann Irish
- The University of Sydney, Brain and Mind Centre and School of Psychology, 94 Mallett Street, Camperdown, NSW 2050, Australia.
| |
Collapse
|
22
|
Coupling of hippocampal theta and ripples with pontogeniculooccipital waves. Nature 2020; 589:96-102. [PMID: 33208951 DOI: 10.1038/s41586-020-2914-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
The hippocampus has a major role in encoding and consolidating long-term memories, and undergoes plastic changes during sleep1. These changes require precise homeostatic control by subcortical neuromodulatory structures2. The underlying mechanisms of this phenomenon, however, remain unknown. Here, using multi-structure recordings in macaque monkeys, we show that the brainstem transiently modulates hippocampal network events through phasic pontine waves known as pontogeniculooccipital waves (PGO waves). Two physiologically distinct types of PGO wave appear to occur sequentially, selectively influencing high-frequency ripples and low-frequency theta events, respectively. The two types of PGO wave are associated with opposite hippocampal spike-field coupling, prompting periods of high neural synchrony of neural populations during periods of ripple and theta instances. The coupling between PGO waves and ripples, classically associated with distinct sleep stages, supports the notion that a global coordination mechanism of hippocampal sleep dynamics by cholinergic pontine transients may promote systems and synaptic memory consolidation as well as synaptic homeostasis.
Collapse
|
23
|
Katz CN, Patel K, Talakoub O, Groppe D, Hoffman K, Valiante TA. Differential Generation of Saccade, Fixation, and Image-Onset Event-Related Potentials in the Human Mesial Temporal Lobe. Cereb Cortex 2020; 30:5502-5516. [PMID: 32494805 PMCID: PMC7472212 DOI: 10.1093/cercor/bhaa132] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 11/23/2022] Open
Abstract
Event-related potentials (ERPs) are a commonly used electrophysiological signature for studying mesial temporal lobe (MTL) function during visual memory tasks. The ERPs associated with the onset of visual stimuli (image-onset) and eye movements (saccades and fixations) provide insights into the mechanisms of their generation. We hypothesized that since eye movements and image-onset provide MTL structures with salient visual information, perhaps they both engage similar neural mechanisms. To explore this question, we used intracranial electroencephalographic data from the MTLs of 11 patients with medically refractory epilepsy who participated in a visual search task. We characterized the electrophysiological responses of MTL structures to saccades, fixations, and image-onset. We demonstrated that the image-onset response is an evoked/additive response with a low-frequency power increase. In contrast, ERPs following eye movements appeared to arise from phase resetting of higher frequencies than the image-onset ERP. Intriguingly, this reset was associated with saccade onset and not termination (fixation), suggesting it is likely the MTL response to a corollary discharge, rather than a response to visual stimulation. We discuss the distinct mechanistic underpinnings of these responses which shed light on the underlying neural circuitry involved in visual memory processing.
Collapse
Affiliation(s)
- Chaim N Katz
- Krembil Research Institute, Toronto Western Hospital, Toronto, ON M5T 1M8, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Kramay Patel
- Krembil Research Institute, Toronto Western Hospital, Toronto, ON M5T 1M8, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.,Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Omid Talakoub
- Krembil Research Institute, Toronto Western Hospital, Toronto, ON M5T 1M8, Canada.,Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| | - David Groppe
- Krembil Research Institute, Toronto Western Hospital, Toronto, ON M5T 1M8, Canada
| | - Kari Hoffman
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| | - Taufik A Valiante
- Krembil Research Institute, Toronto Western Hospital, Toronto, ON M5T 1M8, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5S 1A1, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada.,Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada
| |
Collapse
|
24
|
Scleidorovich P, Llofriu M, Fellous JM, Weitzenfeld A. A computational model for spatial cognition combining dorsal and ventral hippocampal place field maps: multiscale navigation. BIOLOGICAL CYBERNETICS 2020; 114:187-207. [PMID: 31915905 DOI: 10.1007/s00422-019-00812-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Classic studies have shown that place cells are organized along the dorsoventral axis of the hippocampus according to their field size, with dorsal hippocampal place cells having smaller field sizes than ventral place cells. Studies have also suggested that dorsal place cells are primarily involved in spatial navigation, while ventral place cells are primarily involved in context and emotional encoding. Additionally, recent work has shown that the entire longitudinal axis of the hippocampus may be involved in navigation. Based on the latter, in this paper we present a spatial cognition reinforcement learning model inspired by the multiscale organization of the dorsal-ventral axis of the hippocampus. The model analyzes possible benefits of a multiscale architecture in terms of the learning speed, the path optimality, and the number of cells in the context of spatial navigation. The model is evaluated in a goal-oriented task where simulated rats need to learn a path to the goal from multiple starting locations in various open-field maze configurations. The results show that smaller scales of representation are useful for improving path optimality, whereas larger scales are useful for reducing learning time and the number of cells required. The results also show that combining scales can enhance the performance of the multiscale model, with a trade-off between path optimality and learning time.
Collapse
Affiliation(s)
- Pablo Scleidorovich
- Department of Computer Science and Engineering, University of South Florida, Tampa, FL, USA.
| | - Martin Llofriu
- Department of Computer Science and Engineering, University of South Florida, Tampa, FL, USA
- Department of Computer Science and Engineering, Universidad de la Republica, Montevideo, Uruguay
| | | | - Alfredo Weitzenfeld
- Department of Computer Science and Engineering, University of South Florida, Tampa, FL, USA
| |
Collapse
|
25
|
Kragel JE, VanHaerents S, Templer JW, Schuele S, Rosenow JM, Nilakantan AS, Bridge DJ. Hippocampal theta coordinates memory processing during visual exploration. eLife 2020; 9:e52108. [PMID: 32167468 PMCID: PMC7069726 DOI: 10.7554/elife.52108] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 03/02/2020] [Indexed: 12/23/2022] Open
Abstract
The hippocampus supports memory encoding and retrieval, which may occur at distinct phases of the theta cycle. These processes dynamically interact over rapid timescales, especially when sensory information conflicts with memory. The ability to link hippocampal dynamics to memory-guided behaviors has been limited by experiments that lack the temporal resolution to segregate encoding and retrieval. Here, we simultaneously tracked eye movements and hippocampal field potentials while neurosurgical patients performed a spatial memory task. Phase-locking at the peak of theta preceded fixations to retrieved locations, indicating that the hippocampus coordinates memory-guided eye movements. In contrast, phase-locking at the trough of theta followed fixations to novel object-locations and predicted intact memory of the original location. Theta-gamma phase amplitude coupling increased during fixations to conflicting visual content, but predicted memory updating. Hippocampal theta thus supports learning through two interleaved processes: strengthening encoding of novel information and guiding exploration based on prior experience.
Collapse
Affiliation(s)
- James E Kragel
- Department of Medical Social Sciences, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Stephen VanHaerents
- Department of Neurology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Jessica W Templer
- Department of Neurology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Stephan Schuele
- Department of Neurology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Joshua M Rosenow
- Department of Neurological Surgery, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Aneesha S Nilakantan
- Department of Medical Social Sciences, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Donna J Bridge
- Department of Medical Social Sciences, Northwestern University Feinberg School of MedicineChicagoUnited States
| |
Collapse
|
26
|
Ryan JD, Shen K, Kacollja A, Tian H, Griffiths J, Bezgin G, McIntosh AR. Modeling the influence of the hippocampal memory system on the oculomotor system. Netw Neurosci 2020; 4:217-233. [PMID: 32166209 PMCID: PMC7055646 DOI: 10.1162/netn_a_00120] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/04/2019] [Indexed: 01/12/2023] Open
Abstract
Visual exploration is related to activity in the hippocampus (HC) and/or extended medial temporal lobe system (MTL), is influenced by stored memories, and is altered in amnesic cases. An extensive set of polysynaptic connections exists both within and between the HC and oculomotor systems such that investigating how HC responses ultimately influence neural activity in the oculomotor system, and the timing by which such neural modulation could occur, is not trivial. We leveraged TheVirtualBrain, a software platform for large-scale network simulations, to model the functional dynamics that govern the interactions between the two systems in the macaque cortex. Evoked responses following the stimulation of the MTL and some, but not all, subfields of the HC resulted in observable responses in oculomotor regions, including the frontal eye fields, within the time of a gaze fixation. Modeled lesions to some MTL regions slowed the dissipation of HC signal to oculomotor regions, whereas HC lesions generally did not affect the rapid MTL activity propagation to oculomotor regions. These findings provide a framework for investigating how information represented by the HC/MTL may influence the oculomotor system during a fixation and predict how HC lesions may affect visual exploration.
Collapse
Affiliation(s)
- Jennifer D Ryan
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| | - Kelly Shen
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| | - Arber Kacollja
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| | - Heather Tian
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| | - John Griffiths
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| | - Gleb Bezgin
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
27
|
Ryan JD, Shen K, Liu Z. The intersection between the oculomotor and hippocampal memory systems: empirical developments and clinical implications. Ann N Y Acad Sci 2020; 1464:115-141. [PMID: 31617589 PMCID: PMC7154681 DOI: 10.1111/nyas.14256] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/29/2019] [Accepted: 09/19/2019] [Indexed: 12/28/2022]
Abstract
Decades of cognitive neuroscience research has shown that where we look is intimately connected to what we remember. In this article, we review findings from human and nonhuman animals, using behavioral, neuropsychological, neuroimaging, and computational modeling methods, to show that the oculomotor and hippocampal memory systems interact in a reciprocal manner, on a moment-to-moment basis, mediated by a vast structural and functional network. Visual exploration serves to efficiently gather information from the environment for the purpose of creating new memories, updating existing memories, and reconstructing the rich, vivid details from memory. Conversely, memory increases the efficiency of visual exploration. We call for models of oculomotor control to consider the influence of the hippocampal memory system on the cognitive control of eye movements, and for models of hippocampal and broader medial temporal lobe function to consider the influence of the oculomotor system on the development and expression of memory. We describe eye movement-based applications for the detection of neurodegeneration and delivery of therapeutic interventions for mental health disorders for which the hippocampus is implicated and memory dysfunctions are at the forefront.
Collapse
Affiliation(s)
- Jennifer D. Ryan
- Rotman Research InstituteBaycrestTorontoOntarioCanada
- Department of PsychologyUniversity of TorontoTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Kelly Shen
- Rotman Research InstituteBaycrestTorontoOntarioCanada
| | - Zhong‐Xu Liu
- Department of Behavioral SciencesUniversity of Michigan‐DearbornDearbornMichigan
| |
Collapse
|
28
|
Shin JD, Tang W, Jadhav SP. Dynamics of Awake Hippocampal-Prefrontal Replay for Spatial Learning and Memory-Guided Decision Making. Neuron 2019; 104:1110-1125.e7. [PMID: 31677957 PMCID: PMC6923537 DOI: 10.1016/j.neuron.2019.09.012] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/06/2019] [Accepted: 09/06/2019] [Indexed: 01/08/2023]
Abstract
Spatial learning requires remembering and choosing paths to goals. Hippocampal place cells replay spatial paths during immobility in reverse and forward order, offering a potential mechanism. However, how replay supports both goal-directed learning and memory-guided decision making is unclear. We therefore continuously tracked awake replay in the same hippocampal-prefrontal ensembles throughout learning of a spatial alternation task. We found that, during pauses between behavioral trajectories, reverse and forward hippocampal replay supports an internal cognitive search of available past and future possibilities and exhibits opposing learning gradients for prediction of past and future behavioral paths, respectively. Coordinated hippocampal-prefrontal replay distinguished correct past and future paths from alternative choices, suggesting a role in recall of past paths to guide planning of future decisions for spatial working memory. Our findings reveal a learning shift from hippocampal reverse-replay-based retrospective evaluation to forward-replay-based prospective planning, with prefrontal readout of memory-guided paths for learning and decision making.
Collapse
Affiliation(s)
- Justin D Shin
- Graduate Program in Neuroscience, Brandeis University, Waltham, MA 02453, USA
| | - Wenbo Tang
- Graduate Program in Neuroscience, Brandeis University, Waltham, MA 02453, USA.
| | - Shantanu P Jadhav
- Graduate Program in Neuroscience, Brandeis University, Waltham, MA 02453, USA; Neuroscience Program, Department of Psychology, and Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA.
| |
Collapse
|
29
|
Courellis HS, Nummela SU, Metke M, Diehl GW, Bussell R, Cauwenberghs G, Miller CT. Spatial encoding in primate hippocampus during free navigation. PLoS Biol 2019; 17:e3000546. [PMID: 31815940 PMCID: PMC6922474 DOI: 10.1371/journal.pbio.3000546] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 12/19/2019] [Accepted: 11/15/2019] [Indexed: 12/29/2022] Open
Abstract
The hippocampus comprises two neural signals-place cells and θ oscillations-that contribute to facets of spatial navigation. Although their complementary relationship has been well established in rodents, their respective contributions in the primate brain during free navigation remains unclear. Here, we recorded neural activity in the hippocampus of freely moving marmosets as they naturally explored a spatial environment to more explicitly investigate this issue. We report place cells in marmoset hippocampus during free navigation that exhibit remarkable parallels to analogous neurons in other mammalian species. Although θ oscillations were prevalent in the marmoset hippocampus, the patterns of activity were notably different than in other taxa. This local field potential oscillation occurred in short bouts (approximately .4 s)-rather than continuously-and was neither significantly modulated by locomotion nor consistently coupled to place-cell activity. These findings suggest that the relationship between place-cell activity and θ oscillations in primate hippocampus during free navigation differs substantially from rodents and paint an intriguing comparative picture regarding the neural basis of spatial navigation across mammals.
Collapse
Affiliation(s)
- Hristos S. Courellis
- Cortical Systems and Behavior Laboratory, University of California, San Diego, San Diego, California, United States of America
- Department of Bioengineering, University of California, San Diego, San Diego, California, United States of America
| | - Samuel U. Nummela
- Cortical Systems and Behavior Laboratory, University of California, San Diego, San Diego, California, United States of America
| | - Michael Metke
- Cortical Systems and Behavior Laboratory, University of California, San Diego, San Diego, California, United States of America
- Neurosciences Graduate Program, University of California, San Diego, San Diego, United States of America
| | - Geoffrey W. Diehl
- Neurosciences Graduate Program, University of California, San Diego, San Diego, United States of America
| | - Robert Bussell
- Center for Functional MRI, University of California, San Diego, San Diego, United States of America
| | - Gert Cauwenberghs
- Department of Bioengineering, University of California, San Diego, San Diego, California, United States of America
- Neurosciences Graduate Program, University of California, San Diego, San Diego, United States of America
| | - Cory T. Miller
- Cortical Systems and Behavior Laboratory, University of California, San Diego, San Diego, California, United States of America
- Neurosciences Graduate Program, University of California, San Diego, San Diego, United States of America
| |
Collapse
|
30
|
Banaie Boroujeni K, Tiesinga P, Womelsdorf T. Adaptive spike-artifact removal from local field potentials uncovers prominent beta and gamma band neuronal synchronization. J Neurosci Methods 2019; 330:108485. [PMID: 31705936 DOI: 10.1016/j.jneumeth.2019.108485] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Many neurons synchronize their action potentials to the phase of local field potential (LFP) fluctuations in one or more frequency bands. Analyzing this spike-to-LFP synchronization is challenging, however, when neural spikes and LFP are generated in the same local circuit, because the spike's action potential waveform leak into the LFP and distort phase synchrony estimates. Existing approaches to address this spike bleed-through artifact relied on removing the average action potential waveforms of neurons, but this leaves artifacts in the LFP and distorts synchrony estimates. NEW METHOD We describe a spike-removal method that surpasses these limitations by decomposing individual action potentials into their frequency components before their removal from the LFP. The adaptively estimated frequency components allow for variable spread, strength and temporal variation of the spike artifact. RESULTS This adaptive approach effectively removes spike bleed-through artifacts in synthetic data with known ground truth, and in single neuron and LFP recordings in nonhuman primate striatum. For a large population of neurons with both narrow and broad action potential waveforms, the use of adaptive artifact removal uncovered 20-35 Hz beta and 35-45 Hz gamma band spike-LFP synchronization that would have remained contaminated otherwise. COMPARISON WITH EXISTING METHODS We demonstrate that adaptive spike-artifact removal cleans LFP data that remained contaminated when applying existing Bayesian and non-Bayesian methods of average spike-artifact removal. CONCLUSIONS Applying adaptive spike-removal from field potentials allows to estimate the phase at which neurons synchronize and the consistency of their phase-locked firing for both beta and low gamma frequencies. These metrics may prove essential to understand cell-to-circuit neuronal interactions in multiple brain systems.
Collapse
Affiliation(s)
| | - Paul Tiesinga
- Donders Institute for Brain, Cognition and Behaviour Radboud University Nijmegen, 6525 EN Nijmegen, Netherlands
| | - Thilo Womelsdorf
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, United States; Department of Biology, Centre for Vision Research, York University, 4700 Keele Street, Toronto, Ontario M6J 1P3, Canada.
| |
Collapse
|
31
|
Bilkey DK, Jensen C. Neural Markers of Event Boundaries. Top Cogn Sci 2019; 13:128-141. [DOI: 10.1111/tops.12470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 12/16/2022]
|
32
|
The hippocampal sharp wave-ripple in memory retrieval for immediate use and consolidation. Nat Rev Neurosci 2019; 19:744-757. [PMID: 30356103 DOI: 10.1038/s41583-018-0077-1] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Various cognitive functions have long been known to require the hippocampus. Recently, progress has been made in identifying the hippocampal neural activity patterns that implement these functions. One such pattern is the sharp wave-ripple (SWR), an event associated with highly synchronous neural firing in the hippocampus and modulation of neural activity in distributed brain regions. Hippocampal spiking during SWRs can represent past or potential future experience, and SWR-related interventions can alter subsequent memory performance. These findings and others suggest that SWRs support both memory consolidation and memory retrieval for processes such as decision-making. In addition, studies have identified distinct types of SWR based on representational content, behavioural state and physiological features. These various findings regarding SWRs suggest that different SWR types correspond to different cognitive functions, such as retrieval and consolidation. Here, we introduce another possibility - that a single SWR may support more than one cognitive function. Taking into account classic psychological theories and recent molecular results that suggest that retrieval and consolidation share mechanisms, we propose that the SWR mediates the retrieval of stored representations that can be utilized immediately by downstream circuits in decision-making, planning, recollection and/or imagination while simultaneously initiating memory consolidation processes.
Collapse
|
33
|
Tambini A, Davachi L. Awake Reactivation of Prior Experiences Consolidates Memories and Biases Cognition. Trends Cogn Sci 2019; 23:876-890. [PMID: 31445780 DOI: 10.1016/j.tics.2019.07.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 01/06/2023]
Abstract
After experiences are encoded into memory, post-encoding reactivation mechanisms have been proposed to mediate long-term memory stabilization and transformation. Spontaneous reactivation of hippocampal representations, together with hippocampal-cortical interactions, are leading candidate mechanisms for promoting systems-level memory strengthening and reorganization. While the replay of spatial representations has been extensively studied in rodents, here we review recent fMRI work that provides evidence for spontaneous reactivation of nonspatial, episodic event representations in the human hippocampus and cortex, as well as for experience-dependent alterations in systems-level hippocampal connectivity. We focus on reactivation during awake post-encoding periods, relationships between reactivation and subsequent behavior, how reactivation is modulated by factors that influence consolidation, and the implications of persistent reactivation for biasing ongoing perception and cognition.
Collapse
Affiliation(s)
- Arielle Tambini
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Lila Davachi
- Department of Psychology, Columbia University, New York, NY, USA; Nathan Kline Institute, Orangeburg, NY, USA.
| |
Collapse
|
34
|
Norman Y, Yeagle EM, Khuvis S, Harel M, Mehta AD, Malach R. Hippocampal sharp-wave ripples linked to visual episodic recollection in humans. Science 2019; 365:365/6454/eaax1030. [DOI: 10.1126/science.aax1030] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022]
Abstract
Hippocampal sharp-wave ripples (SWRs) constitute one of the most synchronized activation events in the brain and play a critical role in offline memory consolidation. Yet their cognitive content and function during awake, conscious behavior remains unclear. We directly examined this question using intracranial recordings in human patients engaged in episodic free recall of previously viewed photographs. Our results reveal a content-selective increase in hippocampal ripple rate emerging 1 to 2 seconds prior to recall events. During recollection, high-order visual areas showed pronounced SWR-coupled reemergence of activation patterns associated with recalled content. Finally, the SWR rate during encoding predicted subsequent free-recall performance. These results point to a role for hippocampal SWRs in triggering spontaneous recollections and orchestrating the reinstatement of cortical representations during free episodic memory retrieval.
Collapse
|
35
|
Doucet G, Gulli RA, Corrigan BW, Duong LR, Martinez-Trujillo JC. Modulation of local field potentials and neuronal activity in primate hippocampus during saccades. Hippocampus 2019; 30:192-209. [PMID: 31339193 DOI: 10.1002/hipo.23140] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 01/15/2023]
Abstract
Primates use saccades to gather information about objects and their relative spatial arrangement, a process essential for visual perception and memory. It has been proposed that signals linked to saccades reset the phase of local field potential (LFP) oscillations in the hippocampus, providing a temporal window for visual signals to activate neurons in this region and influence memory formation. We investigated this issue by measuring hippocampal LFPs and spikes in two macaques performing different tasks with unconstrained eye movements. We found that LFP phase clustering (PC) in the alpha/beta (8-16 Hz) frequencies followed foveation onsets, while PC in frequencies lower than 8 Hz followed spontaneous saccades, even on a homogeneous background. Saccades to a solid grey background were not followed by increases in local neuronal firing, whereas saccades toward appearing visual stimuli were. Finally, saccade parameters correlated with LFPs phase and amplitude: saccade direction correlated with delta (≤4 Hz) phase, and saccade amplitude with theta (4-8 Hz) power. Our results suggest that signals linked to saccades reach the hippocampus, producing synchronization of delta/theta LFPs without a general activation of local neurons. Moreover, some visual inputs co-occurring with saccades produce LFP synchronization in the alpha/beta bands and elevated neuronal firing. Our findings support the hypothesis that saccade-related signals enact sensory input-dependent plasticity and therefore memory formation in the primate hippocampus.
Collapse
Affiliation(s)
- Guillaume Doucet
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Physiology, McGill University, Montreal, Quebec, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Roberto A Gulli
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.,Department of Neuroscience, Columbia University, New York, New York
| | - Benjamin W Corrigan
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Lyndon R Duong
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Center for Neural Science, New York University, New York, New York
| | - Julio C Martinez-Trujillo
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Brain and Mind Institute, Western University, London, Ontario, Canada
| |
Collapse
|
36
|
Skelin I, Kilianski S, McNaughton BL. Hippocampal coupling with cortical and subcortical structures in the context of memory consolidation. Neurobiol Learn Mem 2019; 160:21-31. [DOI: 10.1016/j.nlm.2018.04.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/19/2018] [Accepted: 04/05/2018] [Indexed: 12/22/2022]
|
37
|
Mankin EA, Thurley K, Chenani A, Haas OV, Debs L, Henke J, Galinato M, Leutgeb JK, Leutgeb S, Leibold C. The hippocampal code for space in Mongolian gerbils. Hippocampus 2019; 29:787-801. [PMID: 30746805 DOI: 10.1002/hipo.23075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 12/07/2018] [Accepted: 01/15/2019] [Indexed: 11/11/2022]
Abstract
Large parts of our knowledge about the physiology of the hippocampus in the intact brain are derived from studies in rats and mice. While many of those findings fit well to the limited data available from humans and primates, there are also marked differences, for example, in hippocampal oscillation frequencies and in the persistence of theta oscillations. To test whether the distinct sensory specializations of the visual and auditory system of primates play a key role in explaining these differences, we recorded basic hippocampal physiological properties in Mongolian gerbils, a rodent species with high visual acuity, and good low-frequency hearing, similar to humans. We found that gerbils show only minor differences to rats regarding hippocampal place field activity, theta properties (frequency, persistence, phase precession, theta compression), and sharp wave ripple events. The only major difference between rats and gerbils was a considerably higher degree of head direction selectivity of gerbil place fields, which may be explained by their visual system being able to better resolve distant cues. Thus, differences in sensory specializations between rodent species only affect hippocampal circuit dynamics to a minor extent, which implies that differences to other mammalian lineages, such as bats and primates, cannot be solely explained by specialization in the auditory or visual system.
Collapse
Affiliation(s)
- Emily A Mankin
- Neurobiology Section and Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, California.,Department of Neurosurgery, David Geffen School of Medicine and Semel Institute For Neuroscience and Human Behavior, University of California, Los Angeles, California
| | - Kay Thurley
- Department Biologie II, Ludwig-Maximilians-Universität München, Martinsried, Germany.,Bernstein Center for Computational Neuroscience Munich, Martinsried, Germany
| | - Alireza Chenani
- Department Biologie II, Ludwig-Maximilians-Universität München, Martinsried, Germany.,Bernstein Center for Computational Neuroscience Munich, Martinsried, Germany
| | - Olivia V Haas
- Department Biologie II, Ludwig-Maximilians-Universität München, Martinsried, Germany.,Bernstein Center for Computational Neuroscience Munich, Martinsried, Germany
| | - Luca Debs
- Neurobiology Section and Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, California
| | - Josephine Henke
- Department Biologie II, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Melissa Galinato
- Neurobiology Section and Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, California
| | - Jill K Leutgeb
- Neurobiology Section and Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, California
| | - Stefan Leutgeb
- Neurobiology Section and Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, California.,Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, California
| | - Christian Leibold
- Department Biologie II, Ludwig-Maximilians-Universität München, Martinsried, Germany.,Bernstein Center for Computational Neuroscience Munich, Martinsried, Germany
| |
Collapse
|
38
|
Ramirez-Villegas JF, Willeke KF, Logothetis NK, Besserve M. Dissecting the Synapse- and Frequency-Dependent Network Mechanisms of In Vivo Hippocampal Sharp Wave-Ripples. Neuron 2018; 100:1224-1240.e13. [DOI: 10.1016/j.neuron.2018.09.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 06/25/2018] [Accepted: 09/24/2018] [Indexed: 01/14/2023]
|
39
|
Hussin AT, Leonard TK, Hoffman KL. Sharp-wave ripple features in macaques depend on behavioral state and cell-type specific firing. Hippocampus 2018; 30:50-59. [PMID: 30371963 PMCID: PMC7004038 DOI: 10.1002/hipo.23046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/24/2018] [Accepted: 10/17/2018] [Indexed: 12/20/2022]
Abstract
Sharp-wave ripples (SWRs) are spontaneous, synchronized neural population events in the hippocampus widely thought to play a role in memory consolidation and retrieval. They occur predominantly in sleep and quiet immobility, and in primates, they also appear during active visual exploration. Typical measures of SWRs in behaving rats include changes in the rate of occurrence, or in the incidence of specific neural ensemble activity contained within the categorical SWR event. Much less is known about the relevance of spatiotemporal SWR features, though they may index underlying activity of specific cell types including ensemble-specific internally generated sequences. Furthermore, changes in SWR features during active exploratory states are unknown. In this study, we recorded hippocampal local-field potentials and single-units during periods of quiescence and as macaques performed a memory-guided visual search task. We observed that (a) ripples during quiescence have greater amplitudes and larger postripple waves (PRW) compared to those in task epochs, and (b) during "remembered" trials, ripples have larger amplitudes than during "forgotten" trials, with no change in duration or PRWs. We further found that spiking activity influences SWR features as a function of cell type and ripple timing. As expected, larger ripple amplitudes were associated with putative pyramidal or putative basket interneuron (IN) activity, even when the spikes in question exceed the duration of the ripple. In contrast, the PRW was attenuated with activity from low firing rate cells and enhanced with activity from high firing rate cells, with putative IN spikes during ripples leading to the most prominent PRW peaks. The selective changes in SWR features as a function of time window, cell type, and cognitive/vigilance states suggest that this mesoscopic field event can offer additional information about the local network and animal's state than would be appreciated from SWR event rates alone.
Collapse
Affiliation(s)
- Ahmed T Hussin
- Department of Biology, Centre for Vision Research, York University, Toronto, Ontario, Canada
| | - Timothy K Leonard
- Department of Psychology, Centre for Vision Research, York University, Toronto, Ontario, Canada
| | - Kari L Hoffman
- Department of Psychology, Centre for Vision Research, York University, Toronto, Ontario, Canada.,Department of Psychology, Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center, Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
40
|
Nau M, Julian JB, Doeller CF. How the Brain's Navigation System Shapes Our Visual Experience. Trends Cogn Sci 2018; 22:810-825. [PMID: 30031670 DOI: 10.1016/j.tics.2018.06.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 11/25/2022]
Abstract
We explore the environment not only by navigating, but also by viewing our surroundings with our eyes. Here we review growing evidence that the mammalian hippocampal formation, extensively studied in the context of navigation and memory, mediates a representation of visual space that is stably anchored to the external world. This visual representation puts the hippocampal formation in a central position to guide viewing behavior and to modulate visual processing beyond the medial temporal lobe (MTL). We suggest that vision and navigation share several key computational challenges that are solved by overlapping and potentially common neural systems, making vision an optimal domain to explore whether and how the MTL supports cognitive operations beyond navigation.
Collapse
Affiliation(s)
- Matthias Nau
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; These authors contributed equally to this work
| | - Joshua B Julian
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; These authors contributed equally to this work.
| | - Christian F Doeller
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands; St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
41
|
Pupil size reflects successful encoding and recall of memory in humans. Sci Rep 2018; 8:4949. [PMID: 29563536 PMCID: PMC5862978 DOI: 10.1038/s41598-018-23197-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/06/2018] [Indexed: 11/23/2022] Open
Abstract
Pupil responses are known to indicate brain processes involved in perception, attention and decision-making. They can provide an accessible biomarker of human memory performance and cognitive states in general. Here we investigated changes in the pupil size during encoding and recall of word lists. Consistent patterns in the pupil response were found across and within distinct phases of the free recall task. The pupil was most constricted in the initial fixation phase and was gradually more dilated through the subsequent encoding, distractor and recall phases of the task, as the word items were maintained in memory. Within the final recall phase, retrieving memory for individual words was associated with pupil dilation in absence of visual stimulation. Words that were successfully recalled showed significant differences in pupil response during their encoding compared to those that were forgotten – the pupil was more constricted before and more dilated after the onset of word presentation. Our results suggest pupil size as a potential biomarker for probing and modulation of memory processing.
Collapse
|
42
|
Richardson AG, Liu X, Weigand PK, Hudgins ED, Stein JM, Das SR, Proekt A, Kelz MB, Zhang M, Van der Spiegel J, Lucas TH. Hippocampal gamma-slow oscillation coupling in macaques during sedation and sleep. Hippocampus 2017; 27:1125-1139. [PMID: 28667703 PMCID: PMC6883770 DOI: 10.1002/hipo.22757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/22/2017] [Accepted: 06/16/2017] [Indexed: 11/07/2022]
Abstract
Behavioral and neurophysiological evidence suggests that the slow (≤1 Hz) oscillation (SO) during sleep plays a role in consolidating hippocampal (HIPP)-dependent memories. The effects of the SO on HIPP activity have been studied in rodents and cats both during natural sleep and during anesthetic administration titrated to mimic sleep-like slow rhythms. In this study, we sought to document these effects in primates. First, HIPP field potentials were recorded during ketamine-dexmedetomidine sedation and during natural sleep in three rhesus macaques. Sedation produced regionally-specific slow and gamma (∼40 Hz) oscillations with strong coupling between the SO phase and gamma amplitude. These same features were seen in slow-wave sleep (SWS), but the coupling was weaker and the coupled gamma oscillation had a higher frequency (∼70 Hz) during SWS. Second, electrical stimuli were delivered to HIPP afferents in the parahippocampal gyrus (PHG) during sedation to assess the effects of sleep-like SO on excitability. Gamma bursts after the peak of SO cycles corresponded to periods of increased gain of monosynaptic connections between the PHG and HIPP. However, the two PHG-HIPP connectivity gains during sedation were both substantially lower than when the animal was awake. We conclude that the SO is correlated with rhythmic excitation and inhibition of the PHG-HIPP network, modulating connectivity and gamma generators intrinsic to this network. Ketamine-dexmedetomidine sedation produces a similar effect, but with a decreased contribution of the PHG to HIPP activity and gamma generation.
Collapse
Affiliation(s)
| | - Xilin Liu
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Pauline K. Weigand
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric D. Hudgins
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Joel M. Stein
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sandhitsu R. Das
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander Proekt
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Max B. Kelz
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Milin Zhang
- Department of Electronic Engineering, Tsinghua University, Beijing, China
| | - Jan Van der Spiegel
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy H. Lucas
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
43
|
Billeke P, Ossandon T, Stockle M, Perrone-Bertolotti M, Kahane P, Lachaux JP, Fuentealba P. Brain state-dependent recruitment of high-frequency oscillations in the human hippocampus. Cortex 2017; 94:87-99. [DOI: 10.1016/j.cortex.2017.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 01/19/2017] [Accepted: 06/08/2017] [Indexed: 11/27/2022]
|
44
|
Pezzulo G, Kemere C, van der Meer MAA. Internally generated hippocampal sequences as a vantage point to probe future-oriented cognition. Ann N Y Acad Sci 2017; 1396:144-165. [PMID: 28548460 DOI: 10.1111/nyas.13329] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/31/2017] [Accepted: 02/07/2017] [Indexed: 12/22/2022]
Abstract
Information processing in the rodent hippocampus is fundamentally shaped by internally generated sequences (IGSs), expressed during two different network states: theta sequences, which repeat and reset at the ∼8 Hz theta rhythm associated with active behavior, and punctate sharp wave-ripple (SWR) sequences associated with wakeful rest or slow-wave sleep. A potpourri of diverse functional roles has been proposed for these IGSs, resulting in a fragmented conceptual landscape. Here, we advance a unitary view of IGSs, proposing that they reflect an inferential process that samples a policy from the animal's generative model, supported by hippocampus-specific priors. The same inference affords different cognitive functions when the animal is in distinct dynamical modes, associated with specific functional networks. Theta sequences arise when inference is coupled to the animal's action-perception cycle, supporting online spatial decisions, predictive processing, and episode encoding. SWR sequences arise when the animal is decoupled from the action-perception cycle and may support offline cognitive processing, such as memory consolidation, the prospective simulation of spatial trajectories, and imagination. We discuss the empirical bases of this proposal in relation to rodent studies and highlight how the proposed computational principles can shed light on the mechanisms of future-oriented cognition in humans.
Collapse
Affiliation(s)
- Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Caleb Kemere
- Electrical and Computer Engineering, Rice University, Houston, Texas
| | | |
Collapse
|
45
|
Abstract
Current interpretations of hippocampal memory function are blind to the fact that viewing behaviors are pervasive and complicate the relationships among perception, behavior, memory, and brain activity. For example, hippocampal activity and associative memory demands increase with stimulus complexity. Stimulus complexity also strongly modulates viewing. Associative processing and viewing thus are often confounded, rendering interpretation of hippocampal activity ambiguous. Similar considerations challenge many accounts of hippocampal function. To explain relationships between memory and viewing, we propose that the hippocampus supports the online memory demands necessary to guide visual exploration. The hippocampus thus orchestrates memory-guided exploration that unfolds over time to build coherent memories. This new perspective on hippocampal function harmonizes with the fact that memory formation and exploratory viewing are tightly intertwined.
Collapse
|
46
|
Montefusco-Siegmund R, Leonard TK, Hoffman KL. Hippocampal gamma-band Synchrony and pupillary responses index memory during visual search. Hippocampus 2017; 27:425-434. [PMID: 28032676 DOI: 10.1002/hipo.22702] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2016] [Indexed: 01/20/2023]
Abstract
Memory for scenes is supported by the hippocampus, among other interconnected structures, but the neural mechanisms related to this process are not well understood. To assess the role of the hippocampus in memory-guided scene search, we recorded local field potentials and multiunit activity from the hippocampus of macaques as they performed goal-directed search tasks using natural scenes. We additionally measured pupil size during scene presentation, which in humans is modulated by recognition memory. We found that both pupil dilation and search efficiency accompanied scene repetition, thereby indicating memory for scenes. Neural correlates included a brief increase in hippocampal multiunit activity and a sustained synchronization of unit activity to gamma band oscillations (50-70 Hz). The repetition effects on hippocampal gamma synchronization occurred when pupils were most dilated, suggesting an interaction between aroused, attentive processing and hippocampal correlates of recognition memory. These results suggest that the hippocampus may support memory-guided visual search through enhanced local gamma synchrony. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Timothy K Leonard
- Department of Psychology, Centre for Vision Research, York University, Toronto, Ontario, Canada
| | - Kari L Hoffman
- Department of Psychology, Department of Biology, Centre for Vision Research, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Neural Oscillations: Primates Have Sharp Memories Too. Curr Biol 2017; 27:R63-R65. [DOI: 10.1016/j.cub.2016.11.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
Sharp-Wave Ripples in Primates Are Enhanced near Remembered Visual Objects. Curr Biol 2016; 27:257-262. [PMID: 28041797 DOI: 10.1016/j.cub.2016.11.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/08/2016] [Accepted: 11/10/2016] [Indexed: 12/25/2022]
Abstract
The hippocampus plays an important role in memory for events that are distinct in space and time. One of the strongest, most synchronous neural signals produced by the hippocampus is the sharp-wave ripple (SWR), observed in a variety of mammalian species during offline behaviors, such as slow-wave sleep [1-3] and quiescent waking and pauses in exploration [4-8], leading to long-standing and widespread theories of its contribution to plasticity and memory during these inactive or immobile states [9-14]. Indeed, during sleep and waking inactivity, hippocampal SWRs in rodents appear to support spatial long-term and working memory [4, 15-23], but so far, they have not been linked to memory in primates. More recently, SWRs have been observed during active, visual scene exploration in macaques [24], opening up the possibility that these active-state ripples in the primate hippocampus are linked to memory for objects embedded in scenes. By measuring hippocampal SWRs in macaques during search for scene-contextualized objects, we found that SWR rate increased with repeated presentations. Furthermore, gaze during SWRs was more likely to be near the target object on repeated than on novel presentations, even after accounting for overall differences in gaze location with scene repetition. This proximity bias with repetition occurred near the time of target object detection for remembered targets. The increase in ripple likelihood near remembered visual objects suggests a link between ripples and memory in primates; specifically, SWRs may reflect part of a mechanism supporting the guidance of search based on past experience.
Collapse
|
49
|
Talakoub O, Gomez Palacio Schjetnan A, Valiante TA, Popovic MR, Hoffman KL. Closed-Loop Interruption of Hippocampal Ripples through Fornix Stimulation in the Non-Human Primate. Brain Stimul 2016; 9:911-918. [DOI: 10.1016/j.brs.2016.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/13/2016] [Accepted: 07/27/2016] [Indexed: 12/23/2022] Open
|
50
|
Shen K, Bezgin G, Selvam R, McIntosh AR, Ryan JD. An Anatomical Interface between Memory and Oculomotor Systems. J Cogn Neurosci 2016; 28:1772-1783. [DOI: 10.1162/jocn_a_01007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
Visual behavior is guided by memories from prior experience and knowledge of the visual scene. The hippocampal system (HC), in particular, has been implicated in the guidance of saccades: Amnesic patients, following damage to the HC, exhibit selective deficits in their gaze patterns. However, the neural circuitry by which mnemonic representations influence the oculomotor system remains unknown. We used a data-driven, network-based approach on directed anatomical connectivity from the macaque brain to reveal an extensive set of polysnaptic pathways spanning the extrastriate, posterior parietal and prefrontal cortices that potentially mediate the exchange of information between the memory and visuo-oculomotor systems. We additionally show how the potential for directed information flow from the hippocampus to oculomotor control areas is exceptionally high. In particular, the dorsolateral pFC and FEF—regions known to be responsible for the cognitive control of saccades—are topologically well positioned to receive information from the hippocampus. Together with neuropsychological evidence of altered gaze patterns following damage to the hippocampus, our findings suggest that a reconsideration of hippocampal involvement in oculomotor guidance is needed.
Collapse
|