1
|
Yuan F, Tang Y, Zheng F, Xie Q. Analyzing the Role of Specific Damage-Associated Molecular Patterns-Related Genes in Osteoarthritis and Investigating the Association between β-Amyloid and Apolipoprotein E Isoforms. J Innate Immun 2024; 16:501-512. [PMID: 39471788 PMCID: PMC11521507 DOI: 10.1159/000541542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/18/2024] [Indexed: 11/01/2024] Open
Abstract
INTRODUCTION Osteoarthritis (OA) is a prevalent chronic joint disorder. It is characterized by an immune response that maintains a low level of inflammation throughout its progression. During OA, cartilage degradation leads to the release of damage-associated molecular patterns (DAMPs), which intensify the inflammatory response. β-Amyloid is a well-recognized DAMP in OA, can interact with APOE isoforms. METHODS This study identified DAMPs-related genes in OA using bioinformatics techniques. Additionally, we examined the expression levels of β-amyloid and apolipoprotein E (ApoE) isoforms by enzyme-linked immunosorbent assay. RESULTS We identified 10 key genes by machine learning techniques. Immune infiltration analysis revealed upregulation of various immune cell types in OA cartilage, underscoring the critical role of inflammation in OA pathogenesis. In the validation study, elevated serum levels of β-amyloid in knee osteoarthritis (KOA) patients were confirmed, showing positive correlations with ApoE2 and ApoE4. Notably, ApoE3 was identified as an independent protective factor against KOA. CONCLUSION In this bioinformatics analysis, we identified the DAMPs-related genes of KOA and explored their potential functions and regulatory networks. The high expression of β-amyloid in KOA was confirmed by experiments, and the correlation between β-amyloid and ApoE2, ApoE4 in KOA was revealed for the first time, this provides a new way to explore the pathogenesis of KOA and to study the therapeutic targets of KOA.
Collapse
Affiliation(s)
- Fangling Yuan
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yatian Tang
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Feifei Zheng
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qipeng Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Moncaster JA, Moir RD, Burton MA, Chadwick O, Minaeva O, Alvarez VE, Ericsson M, Clark JI, McKee AC, Tanzi RE, Goldstein LE. Alzheimer's disease amyloid-β pathology in the lens of the eye. Exp Eye Res 2022; 221:108974. [PMID: 35202705 PMCID: PMC9873124 DOI: 10.1016/j.exer.2022.108974] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 01/26/2023]
Abstract
Neuropathological hallmarks of Alzheimer's disease (AD) include pathogenic accumulation of amyloid-β (Aβ) peptides and age-dependent formation of amyloid plaques in the brain. AD-associated Aβ neuropathology begins decades before onset of cognitive symptoms and slowly progresses over the course of the disease. We previously reported discovery of Aβ deposition, β-amyloidopathy, and co-localizing supranuclear cataracts (SNC) in lenses from people with AD, but not other neurodegenerative disorders or normal aging. We confirmed AD-associated Aβ molecular pathology in the lens by immunohistopathology, amyloid histochemistry, immunoblot analysis, epitope mapping, immunogold electron microscopy, quantitative immunoassays, and tryptic digest mass spectrometry peptide sequencing. Ultrastructural analysis revealed that AD-associated Aβ deposits in AD lenses localize as electron-dense microaggregates in the cytoplasm of supranuclear (deep cortex) fiber cells. These Aβ microaggregates also contain αB-crystallin and scatter light, thus linking Aβ pathology and SNC phenotype expression in the lenses of people with AD. Subsequent research identified Aβ lens pathology as the molecular origin of the distinctive cataracts associated with Down syndrome (DS, trisomy 21), a chromosomal disorder invariantly associated with early-onset Aβ accumulation and Aβ amyloidopathy in the brain. Investigation of 1249 participants in the Framingham Eye Study found that AD-associated quantitative traits in brain and lens are co-heritable. Moreover, AD-associated lens traits preceded MRI brain traits and cognitive deficits by a decade or more and predicted future AD. A genome-wide association study of bivariate outcomes in the same subjects identified a new AD risk factor locus in the CTNND2 gene encoding δ-catenin, a protein that modulates Aβ production in brain and lens. Here we report identification of AD-related human Aβ (hAβ) lens pathology and age-dependent SNC phenotype expression in the Tg2576 transgenic mouse model of AD. Tg2576 mice express Swedish mutant human amyloid precursor protein (APP-Swe), accumulate hAβ peptides and amyloid pathology in the brain, and exhibit cognitive deficits that slowly progress with increasing age. We found that Tg2576 trangenic (Tg+) mice, but not non-transgenic (Tg-) control mice, also express human APP, accumulate hAβ peptides, and develop hAβ molecular and ultrastructural pathologies in the lens. Tg2576 Tg+ mice exhibit age-dependent Aβ supranuclear lens opacification that recapitulates lens pathology and SNC phenotype expression in human AD. In addition, we detected hAβ in conditioned medium from lens explant cultures prepared from Tg+ mice, but not Tg- control mice, a finding consistent with constitutive hAβ generation in the lens. In vitro studies showed that hAβ promoted mouse lens protein aggregation detected by quasi-elastic light scattering (QLS) spectroscopy. These results support mechanistic (genotype-phenotype) linkage between Aβ pathology and AD-related phenotypes in lens and brain. Collectively, our findings identify Aβ pathology as the shared molecular etiology of two age-dependent AD-related cataracts associated with two human diseases (AD, DS) and homologous murine cataracts in the Tg2576 transgenic mouse model of AD. These results represent the first evidence of AD-related Aβ pathology outside the brain and point to lens Aβ as an optically-accessible AD biomarker for early detection and longitudinal monitoring of this devastating neurodegenerative disease.
Collapse
Affiliation(s)
- Juliet A. Moncaster
- Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, MA, 02118, USA,Boston University Alzheimer’s Disease Research Center, Boston University School of Medicine, 72 East Concord Street, B-7800 Boston, MA, 02118, USA
| | - Robert D. Moir
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Mark A. Burton
- Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Oliver Chadwick
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Olga Minaeva
- Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, MA, 02118, USA,Boston University Alzheimer’s Disease Research Center, Boston University School of Medicine, 72 East Concord Street, B-7800 Boston, MA, 02118, USA
| | - Victor E. Alvarez
- Boston University Alzheimer’s Disease Research Center, Boston University School of Medicine, 72 East Concord Street, B-7800 Boston, MA, 02118, USA,Edith Nourse Rogers Memorial Veterans’ Hospital, Bedford, MA, 01730, USA
| | - Maria Ericsson
- Electron Microscopy Facility, Harvard Medical School, Boston, MA, 02115, USA
| | - John I. Clark
- Departments of Biological Structure and Ophthalmology, University of Washington, Seattle, WA, 98195, USA
| | - Ann C. McKee
- Boston University Alzheimer’s Disease Research Center, Boston University School of Medicine, 72 East Concord Street, B-7800 Boston, MA, 02118, USA,Edith Nourse Rogers Memorial Veterans’ Hospital, Bedford, MA, 01730, USA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Lee E. Goldstein
- Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, MA, 02118, USA,Boston University Alzheimer’s Disease Research Center, Boston University School of Medicine, 72 East Concord Street, B-7800 Boston, MA, 02118, USA,Corresponding author. Molecular Aging & Development Laboratory, Boston University, School of Medicine, 670 Albany Street, Boston, MA, 02118, USA. (L.E. Goldstein)
| |
Collapse
|
3
|
Xu J, Su Y, Fu J, Wang X, Nguchu BA, Qiu B, Dong Q, Cheng X. Glymphatic dysfunction correlates with severity of small vessel disease and cognitive impairment in cerebral amyloid angiopathy. Eur J Neurol 2022; 29:2895-2904. [PMID: 35712978 DOI: 10.1111/ene.15450] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cerebral amyloid angiopathy (CAA) is characterized by β-amyloid deposition in cortical and leptomeningeal arterioles, which might result from glymphatic dysfunction. We aimed to explore glymphatic function in CAA using the non-invasive diffusion tensor image analysis along the perivascular space (DTI-ALPS) method. METHODS We prospectively recruited 63 patients with CAA, and 70 age- and sex-matched normal controls. We applied Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) to screen global cognitive status. We conducted MRI scans to calculate the index for diffusivity along the perivascular space (ALPS-index), and linear regression models to assess its relationships with cerebral small vessel disease (CSVD) markers, cognitive status, and blood biomarkers. We applied Cox proportional hazard models to explore the role of baseline ALPS-index in disease recurrence. RESULTS Patients with CAA exhibited a lower ALPS-index than controls globally (p < 0.001). Besides, the lower ALPS-index was related to more enlarged perivascular space in basal ganglia (p = 0.026), more lacunes (p < 0.001), higher white matter hyperintensities Fazekas score (p = 0.049), elevated total MRI burden of CSVD (p = 0.034), and lower MMSE (p = 0.001) as well as MoCA (p < 0.001) in CAA. During a median follow-up of 4.1 years, higher ALPS-index was associated with lower disease recurrence (p=0.022). ALPS-index was also negatively correlated with serum soluble intercellular adhesion molecule-1, neurofilament light and chitinase-3-like protein 1 in CAA. CONCLUSIONS Patients with CAA showed impaired glymphatic function. ALPS-index was significantly related to CSVD severity, cognitive impairment, and disease recurrence in CAA.
Collapse
Affiliation(s)
- Jiajie Xu
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ya Su
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiayu Fu
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoxiao Wang
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Benedictor Alexander Nguchu
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Bensheng Qiu
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Qiang Dong
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Xin Cheng
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Heat Shock Proteins Alterations in Rheumatoid Arthritis. Int J Mol Sci 2022; 23:ijms23052806. [PMID: 35269948 PMCID: PMC8911505 DOI: 10.3390/ijms23052806] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory and autoimmune disease characterized by the attack of the immune system on the body's healthy joint lining and degeneration of articular structures. This disease involves an increased release of inflammatory mediators in the affected joint that sensitize sensory neurons and create a positive feedback loop to further enhance their release. Among these mediators, the cytokines and neuropeptides are responsible for the crippling pain and the persistent neurogenic inflammation associated with RA. More importantly, specific proteins released either centrally or peripherally have been shown to play opposing roles in the pathogenesis of this disease: an inflammatory role that mediates and increases the severity of inflammatory response and/or an anti-inflammatory and protective role that modulates the process of inflammation. In this review, we will shed light on the neuroimmune function of different members of the heat shock protein (HSPs) family and the complex manifold actions that they exert during the course of RA. Specifically, we will focus our discussion on the duality in the mechanism of action of Hsp27, Hsp60, Hsp70, and Hsp90.
Collapse
|
5
|
Viejo L, Noori A, Merrill E, Das S, Hyman BT, Serrano-Pozo A. Systematic review of human post-mortem immunohistochemical studies and bioinformatics analyses unveil the complexity of astrocyte reaction in Alzheimer's disease. Neuropathol Appl Neurobiol 2021; 48:e12753. [PMID: 34297416 PMCID: PMC8766893 DOI: 10.1111/nan.12753] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022]
Abstract
AIMS Reactive astrocytes in Alzheimer's disease (AD) have traditionally been demonstrated by increased glial fibrillary acidic protein (GFAP) immunoreactivity; however, astrocyte reaction is a complex and heterogeneous phenomenon involving multiple astrocyte functions beyond cytoskeletal remodelling. To better understand astrocyte reaction in AD, we conducted a systematic review of astrocyte immunohistochemical studies in post-mortem AD brains followed by bioinformatics analyses on the extracted reactive astrocyte markers. METHODS NCBI PubMed, APA PsycInfo and WoS-SCIE databases were interrogated for original English research articles with the search terms 'Alzheimer's disease' AND 'astrocytes.' Bioinformatics analyses included protein-protein interaction network analysis, pathway enrichment, and transcription factor enrichment, as well as comparison with public human -omics datasets. RESULTS A total of 306 articles meeting eligibility criteria rendered 196 proteins, most of which were reported to be upregulated in AD vs control brains. Besides cytoskeletal remodelling (e.g., GFAP), bioinformatics analyses revealed a wide range of functional alterations including neuroinflammation (e.g., IL6, MAPK1/3/8 and TNF), oxidative stress and antioxidant defence (e.g., MT1A/2A, NFE2L2, NOS1/2/3, PRDX6 and SOD1/2), lipid metabolism (e.g., APOE, CLU and LRP1), proteostasis (e.g., cathepsins, CRYAB and HSPB1/2/6/8), extracellular matrix organisation (e.g., CD44, MMP1/3 and SERPINA3), and neurotransmission (e.g., CHRNA7, GABA, GLUL, GRM5, MAOB and SLC1A2), among others. CTCF and ESR1 emerged as potential transcription factors driving these changes. Comparison with published -omics datasets validated our results, demonstrating a significant overlap with reported transcriptomic and proteomic changes in AD brains and/or CSF. CONCLUSIONS Our systematic review of the neuropathological literature reveals the complexity of AD reactive astrogliosis. We have shared these findings as an online resource available at www.astrocyteatlas.org.
Collapse
Affiliation(s)
- Lucía Viejo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ayush Noori
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Harvard College, Cambridge, MA, USA.,MIND Data Science Lab, Cambridge, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA
| | - Emily Merrill
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,MIND Data Science Lab, Cambridge, MA, USA
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,MIND Data Science Lab, Cambridge, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA
| | - Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA
| |
Collapse
|
6
|
Cristofani R, Piccolella M, Crippa V, Tedesco B, Montagnani Marelli M, Poletti A, Moretti RM. The Role of HSPB8, a Component of the Chaperone-Assisted Selective Autophagy Machinery, in Cancer. Cells 2021; 10:335. [PMID: 33562660 PMCID: PMC7915307 DOI: 10.3390/cells10020335] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
The cellular response to cancer-induced stress is one of the major aspects regulating cancer development and progression. The Heat Shock Protein B8 (HSPB8) is a small chaperone involved in chaperone-assisted selective autophagy (CASA). CASA promotes the selective degradation of proteins to counteract cell stress such as tumor-induced stress. HSPB8 is also involved in (i) the cell division machinery regulating chromosome segregation and cell cycle arrest in the G0/G1 phase and (ii) inflammation regulating dendritic cell maturation and cytokine production. HSPB8 expression and role are tumor-specific, showing a dual and opposite role. Interestingly, HSPB8 may be involved in the acquisition of chemoresistance to drugs. Despite the fact the mechanisms of HSPB8-mediated CASA activation in tumors need further studies, HSPB8 could represent an important factor in cancer induction and progression and it may be a potential target for anticancer treatment in specific types of cancer. In this review, we will discuss the molecular mechanism underlying HSPB8 roles in normal and cancer conditions. The basic mechanisms involved in anti- and pro-tumoral activities of HSPB8 are deeply discussed together with the pathways that modulate HSPB8 expression, in order to outline molecules with a beneficial effect for cancer cell growth, migration, and death.
Collapse
|
7
|
Dukay B, Walter FR, Vigh JP, Barabási B, Hajdu P, Balassa T, Migh E, Kincses A, Hoyk Z, Szögi T, Borbély E, Csoboz B, Horváth P, Fülöp L, Penke B, Vígh L, Deli MA, Sántha M, Tóth ME. Neuroinflammatory processes are augmented in mice overexpressing human heat-shock protein B1 following ethanol-induced brain injury. J Neuroinflammation 2021; 18:22. [PMID: 33423680 PMCID: PMC7798334 DOI: 10.1186/s12974-020-02070-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/30/2020] [Indexed: 12/27/2022] Open
Abstract
Background Heat-shock protein B1 (HSPB1) is among the most well-known and versatile member of the evolutionarily conserved family of small heat-shock proteins. It has been implicated to serve a neuroprotective role against various neurological disorders via its modulatory activity on inflammation, yet its exact role in neuroinflammation is poorly understood. In order to shed light on the exact mechanism of inflammation modulation by HSPB1, we investigated the effect of HSPB1 on neuroinflammatory processes in an in vivo and in vitro model of acute brain injury. Methods In this study, we used a transgenic mouse strain overexpressing the human HSPB1 protein. In the in vivo experiments, 7-day-old transgenic and wild-type mice were treated with ethanol. Apoptotic cells were detected using TUNEL assay. The mRNA and protein levels of cytokines and glial cell markers were examined using RT-PCR and immunohistochemistry in the brain. We also established primary neuronal, astrocyte, and microglial cultures which were subjected to cytokine and ethanol treatments. TNFα and hHSPB1 levels were measured from the supernates by ELISA, and intracellular hHSPB1 expression was analyzed using fluorescent immunohistochemistry. Results Following ethanol treatment, the brains of hHSPB1-overexpressing mice showed a significantly higher mRNA level of pro-inflammatory cytokines (Tnf, Il1b), microglia (Cd68, Arg1), and astrocyte (Gfap) markers compared to wild-type brains. Microglial activation, and 1 week later, reactive astrogliosis was higher in certain brain areas of ethanol-treated transgenic mice compared to those of wild-types. Despite the remarkably high expression of pro-apoptotic Tnf, hHSPB1-overexpressing mice did not exhibit higher level of apoptosis. Our data suggest that intracellular hHSPB1, showing the highest level in primary astrocytes, was responsible for the inflammation-regulating effects. Microglia cells were the main source of TNFα in our model. Microglia isolated from hHSPB1-overexpressing mice showed a significantly higher release of TNFα compared to wild-type cells under inflammatory conditions. Conclusions Our work provides novel in vivo evidence that hHSPB1 overexpression has a regulating effect on acute neuroinflammation by intensifying the expression of pro-inflammatory cytokines and enhancing glial cell activation, but not increasing neuronal apoptosis. These results suggest that hHSPB1 may play a complex role in the modulation of the ethanol-induced neuroinflammatory response. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-020-02070-2.
Collapse
Affiliation(s)
- Brigitta Dukay
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, H-6726, Hungary. .,Doctoral School in Biology, University of Szeged, Szeged, Hungary.
| | - Fruzsina R Walter
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Judit P Vigh
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Beáta Barabási
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Doctoral School in Theoretical Medicine, University of Szeged, Szeged, Hungary
| | - Petra Hajdu
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, H-6726, Hungary
| | - Tamás Balassa
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, H-6726, Hungary.,Doctoral School of Informatics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ede Migh
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, H-6726, Hungary
| | - András Kincses
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Zsófia Hoyk
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Titanilla Szögi
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Emőke Borbély
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Bálint Csoboz
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, H-6726, Hungary.,Institute of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Péter Horváth
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, H-6726, Hungary.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Lívia Fülöp
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Botond Penke
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, H-6726, Hungary
| | - Mária A Deli
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Miklós Sántha
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, H-6726, Hungary
| | - Melinda E Tóth
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, H-6726, Hungary.
| |
Collapse
|
8
|
Yi X, Cheng X. Understanding Competitive Endogenous RNA Network Mechanism in Type 1 Diabetes Mellitus Using Computational and Bioinformatics Approaches. Diabetes Metab Syndr Obes 2021; 14:3865-3945. [PMID: 34526791 PMCID: PMC8436179 DOI: 10.2147/dmso.s315488] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/24/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Type 1 diabetes mellitus (T1DM), an autoimmune disease with a genetic tendency, has an increasing prevalence. Long non-coding RNA (lncRNA) and circular RNA (circRNA) are receiving increasing attention in disease pathogenesis. However, their roles in T1DM are poorly understood. The present study aimed at identifying signature lncRNAs and circRNAs and investigating their roles in T1DM using the competing endogenous RNA (ceRNA) network analysis. METHODS The T1DM expression profile was downloaded from Gene Expression Omnibus (GEO) database to identify the differentially expressed circRNAs, lncRNAs, and mRNAs. The biological functions of these differentially expressed circRNAs, lncRNAs, and mRNAs were analyzed by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Targeting relationships of circRNA-miRNA, lncRNA-miRNA, and miRNA-mRNA were predicted, and the circRNA-lncRNA-miRNA-mRNA ceRNA regulatory network was established. Finally, qRT-PCR was applied to identify the effect of hsa_circ_0002202 inhibition on the IFN-I induced macrophage inflammation. RESULTS A total of 178 circRNAs, 404 lncRNAs, and 73 mRNAs were identified to be abnormally expressed in T1DM samples. Functional enrichment analysis results indicated that the differentially expressed genes were mainly enriched in extracellular matrix components and macrophage activation. CeRNA regulatory network showed that circRNAs and lncRNAs regulate mRNAs through integrate multiple miRNAs. In addition, in vitro experiments showed that hsa_circ_0002202 inhibition suppressed the type I interferon (IFN-I)-induced macrophage inflammation. CONCLUSION In the present study, the circRNA-lncRNA-miRNA-mRNA ceRNA regulatory network in T1DM was established for the first time. We also found that hsa_circ_0002202 inhibition suppressed the IFN-I-induced macrophage inflammation. Our study may lay a foundation for future studies on the ceRNA regulatory network in T1DM.
Collapse
Affiliation(s)
- Xuanzi Yi
- Department of Medicine II, Division of Endocrinology and Diabetology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
- Correspondence: Xuanzi Yi Department of Medicine II, Division of Endocrinology and Diabetology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, Freiburg, 79106, GermanyTel/Fax +49 761 270-73270 Email
| | - Xu Cheng
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
| |
Collapse
|
9
|
Piras IS, Krate J, Delvaux E, Nolz J, Mastroeni DF, Persico AM, Jepsen WM, Beach TG, Huentelman MJ, Coleman PD. Transcriptome Changes in the Alzheimer's Disease Middle Temporal Gyrus: Importance of RNA Metabolism and Mitochondria-Associated Membrane Genes. J Alzheimers Dis 2020; 70:691-713. [PMID: 31256118 DOI: 10.3233/jad-181113] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We used Illumina Human HT-12 v4 arrays to compare RNA expression of middle temporal gyrus (MTG; BA21) in Alzheimer's disease (AD = 97) and non-demented controls (ND = 98). A total of 938 transcripts were highly differentially expressed (adj p < 0.01; log2 FC ≥ |0.500|, with 411 overexpressed and 527 underexpressed in AD. Our results correlated with expression profiling in neurons from AD and ND obtained by laser capture microscopy in MTG from an independent dataset (log2 FC correlation: r = 0.504; p = 2.2e-16). Additionally, selected effects were validated by qPCR. ANOVA analysis yielded no difference between genders in response to AD, but some gender specific genes were detected (e.g., IL8 and AGRN in males, and HSPH1 and GRM1 in females). Several transcripts were associated with Braak staging (e.g., AEBP1 and DNALI1), antemortem MMSE (e.g., AEBP1 and GFAP), and tangle density (e.g., RNU1G2, and DNALI1). At the pathway level, we detected enrichment of synaptic vesicle processes and GABAergic transmission genes. Finally, applying the Weighted Correlation Network Analysis, we identified four expression modules enriched for neuronal and synaptic genes, mitochondria-associated membrane, chemical stimulus and olfactory receptor and non-coding RNA metabolism genes. Our results represent an extensive description of MTG mRNA profiling in a large sample of AD and ND. These data provide a list of genes associated with AD, and correlated to neurofibrillary tangles density. In addition, these data emphasize the importance of mitochondrial membranes and transcripts related to olfactory receptors in AD.
Collapse
Affiliation(s)
- Ignazio S Piras
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Jonida Krate
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Elaine Delvaux
- Biodesign Institute, Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA
| | - Jennifer Nolz
- Biodesign Institute, Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA
| | - Diego F Mastroeni
- Biodesign Institute, Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA
| | - Antonio M Persico
- Unit of Child and Adolescent Neuropsychiatry, "Gaetano Martino" University Hospital, University of Messina, Messina, Italy.,Mafalda Luce Center for Pervasive Developmental Disorders, Milan, Italy
| | - Wayne M Jepsen
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Thomas G Beach
- Civin Laboratory of Neuropathology at Banner Sun Health Research Institute, Sun City, AZ, US
| | - Matthew J Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Paul D Coleman
- Biodesign Institute, Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
10
|
Lan Y, Wang Y, Huang K, Zeng Q. Heat Shock Protein 22 Attenuates Doxorubicin-Induced Cardiotoxicity via Regulating Inflammation and Apoptosis. Front Pharmacol 2020; 11:257. [PMID: 32269523 PMCID: PMC7109316 DOI: 10.3389/fphar.2020.00257] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/24/2020] [Indexed: 01/22/2023] Open
Abstract
Background The antitumor effect of doxorubicin (DOX) is limited by its acute and chronic toxicity to the heart, which causes heart injury. Heat shock protein 22 (Hsp22) is a protein proved to exert anti-apoptosis and anti-inflammatory effects in other diseases and physical conditions. In this study, we aim to explore whether Hsp22 could exert a protective role during cardiac injury in response to DOX. Methods The overexpression of Hsp22 was mediated via adenovirus vector to clarify the role of Hsp22 in the cardiac injury caused by DOX. DOX-induced acute heart injury mouse model was established by single intraperitoneal injection of DOX (15 mg/kg). Subsequently, cardiac staining and molecular biological analysis were performed to analyze the morphological and biochemical effects of Hsp22 on cardiac injury. H9c2 cells were used for validation in vitro. Results An increase in the expression level of Hsp22 was observed in DOX-treated heart tissue. Furthermore, cardiac-specific overexpression of Hsp22 showed reduced cardiac dysfunction, decrease in inflammatory response, and reduction in cell apoptosis in injury heart and cardiomyocytes induced by DOX in vivo and in vitro. Moreover, the suppression of Toll-like receptor (TLR)4/NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) was associated with the protective effect of Hsp22. Finally, the protective effect of Hsp22 cardiac function was almost abolished by overexpression of NLRP3 in DOX-treated mice. Conclusion In summary, Hsp22 overexpression in the heart could suppress cardiac injury in response to DOX treatment through blocking TLR4/NLRP3 activation. Hsp22 may become a new therapeutic method for treating cardiac injury induced by DOX in cancer patients.
Collapse
Affiliation(s)
- Yin Lan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wang
- Department of Ultrasound, Wuhan Asia Heart Hospital, Wuhan, China
| | - Kun Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiutang Zeng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Dukay B, Csoboz B, Tóth ME. Heat-Shock Proteins in Neuroinflammation. Front Pharmacol 2019; 10:920. [PMID: 31507418 PMCID: PMC6718606 DOI: 10.3389/fphar.2019.00920] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/22/2019] [Indexed: 01/01/2023] Open
Abstract
The heat-shock response, one of the main pro-survival mechanisms of a living organism, has evolved as the biochemical response of cells to cope with heat stress. The most well-characterized aspect of the heat-shock response is the accumulation of a conserved set of proteins termed heat-shock proteins (HSPs). HSPs are key players in protein homeostasis acting as chaperones by aiding the folding and assembly of nascent proteins and protecting against protein aggregation. HSPs have been associated with neurological diseases in the context of their chaperone activity, as they were found to suppress the aggregation of misfolded toxic proteins. In recent times, HSPs have proven to have functions apart from the classical molecular chaperoning in that they play a role in a wider scale of neurological disorders by modulating neuronal survival, inflammation, and disease-specific signaling processes. HSPs are gaining importance based on their ability to fine-tune inflammation and act as immune modulators in various bodily fluids. However, their effect on neuroinflammation processes is not yet fully understood. In this review, we summarize the role of neuroinflammation in acute and chronic pathological conditions affecting the brain. Moreover, we seek to explore the existing literature on HSP-mediated inflammatory function within the central nervous system and compare the function of these proteins when they are localized intracellularly compared to being present in the extracellular milieu.
Collapse
Affiliation(s)
- Brigitta Dukay
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Bálint Csoboz
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Melinda E Tóth
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
12
|
Welch JD, Kozareva V, Ferreira A, Vanderburg C, Martin C, Macosko EZ. Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain Cell Identity. Cell 2019; 177:1873-1887.e17. [PMID: 31178122 PMCID: PMC6716797 DOI: 10.1016/j.cell.2019.05.006] [Citation(s) in RCA: 721] [Impact Index Per Article: 120.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/21/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023]
Abstract
Defining cell types requires integrating diverse single-cell measurements from multiple experiments and biological contexts. To flexibly model single-cell datasets, we developed LIGER, an algorithm that delineates shared and dataset-specific features of cell identity. We applied it to four diverse and challenging analyses of human and mouse brain cells. First, we defined region-specific and sexually dimorphic gene expression in the mouse bed nucleus of the stria terminalis. Second, we analyzed expression in the human substantia nigra, comparing cell states in specific donors and relating cell types to those in the mouse. Third, we integrated in situ and single-cell expression data to spatially locate fine subtypes of cells present in the mouse frontal cortex. Finally, we jointly defined mouse cortical cell types using single-cell RNA-seq and DNA methylation profiles, revealing putative mechanisms of cell-type-specific epigenomic regulation. Integrative analyses using LIGER promise to accelerate investigations of cell-type definition, gene regulation, and disease states.
Collapse
Affiliation(s)
- Joshua D Welch
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, 450 Main Street, Cambridge, MA, USA.
| | - Velina Kozareva
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, 450 Main Street, Cambridge, MA, USA
| | - Ashley Ferreira
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, 450 Main Street, Cambridge, MA, USA
| | - Charles Vanderburg
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, 450 Main Street, Cambridge, MA, USA
| | - Carly Martin
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, 450 Main Street, Cambridge, MA, USA
| | - Evan Z Macosko
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, 450 Main Street, Cambridge, MA, USA; Massachusetts General Hospital, Department of Psychiatry, 55 Fruit Street, Boston, MA, USA.
| |
Collapse
|
13
|
Gorter RP, Stephenson J, Nutma E, Anink J, de Jonge JC, Baron W, Jahreiβ MC, Belien JAM, van Noort JM, Mijnsbergen C, Aronica E, Amor S. Rapidly progressive amyotrophic lateral sclerosis is associated with microglial reactivity and small heat shock protein expression in reactive astrocytes. Neuropathol Appl Neurobiol 2018; 45:459-475. [PMID: 30346063 PMCID: PMC7379307 DOI: 10.1111/nan.12525] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022]
Abstract
AIMS Amyotrophic lateral sclerosis (ALS) is a chronic neurodegenerative disease characterized by progressive loss of motor neurons, muscle weakness, spasticity, paralysis and death usually within 2-5 years of onset. Neuroinflammation is a hallmark of ALS pathology characterized by activation of glial cells, which respond by upregulating small heat shock proteins (HSPBs), but the exact underlying pathological mechanisms are still largely unknown. Here, we investigated the association between ALS disease duration, lower motor neuron loss, TARDNA-binding protein 43 (TDP-43) pathology, neuroinflammation and HSPB expression. METHODS With immunohistochemistry, we examined HSPB1, HSPB5, HSPB6, HSPB8 and HSP16.2 expression in cervical, thoracic and sacral spinal cord regions in 12 ALS cases, seven with short disease duration (SDD), five with moderate disease duration (MDD), and ten age-matched controls. Expression was quantified using ImageJ to examine HSP expression, motor neuron numbers, microglial and astrocyte density and phosphorylated TDP-43 (pTDP-43+) inclusions. RESULTS SDD was associated with elevated HSPB5 and 8 expression in lateral tract astrocytes, while HSP16.2 expression was increased in astrocytes in MDD cases. SDD cases had higher numbers of motor neurons and microglial activation than MDD cases, but similar levels of motor neurons with pTDP-43+ inclusions. CONCLUSIONS Increased expression of several HSPBs in lateral column astrocytes suggests that astrocytes play a role in the pathogenesis of ALS. SDD is associated with increased microgliosis, HSPB5 and 8 expression in astrocytes, and only minor changes in motor neuron loss. This suggests that the interaction between motor neurons, microglia and astrocytes determines neuronal fate and functional decline in ALS.
Collapse
Affiliation(s)
- R P Gorter
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - J Stephenson
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands.,Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - E Nutma
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - J Anink
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - J C de Jonge
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Deltacrystallon, Leiden, The Netherlands
| | - W Baron
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Deltacrystallon, Leiden, The Netherlands
| | - M-C Jahreiβ
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - J A M Belien
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | | | - C Mijnsbergen
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - E Aronica
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - S Amor
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands.,Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
14
|
Kourtis N, Tavernarakis N. Small heat shock proteins and neurodegeneration: recent developments. Biomol Concepts 2018; 9:94-102. [PMID: 30133417 DOI: 10.1515/bmc-2018-0009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022] Open
Abstract
AbstractMembers of the small heat shock protein (sHSP) family are molecular chaperones with a critical role in the maintenance of cellular homeostasis under unfavorable conditions. The chaperone properties of sHSPs prevent protein aggregation, and sHSP deregulation underlies the pathology of several diseases, including neurodegenerative disorders. Recent evidence suggests that the clientele of sHSPs is broad, and the mechanisms of sHSP-mediated neuroprotection diverse. Nonetheless, the crosstalk of sHSPs with the neurodegeneration-promoting signaling pathways remains poorly understood. Here, we survey recent findings on the role and regulation of sHSPs in neurodegenerative diseases.
Collapse
Affiliation(s)
- Nikos Kourtis
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, 70013, Crete, Greece.,Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, 71003, Crete, Greece
| |
Collapse
|
15
|
Görtz AL, Peferoen LAN, Gerritsen WH, van Noort JM, Bugiani M, Amor S. Heat shock protein expression in cerebral X-linked adrenoleukodystrophy reveals astrocyte stress prior to myelin loss. Neuropathol Appl Neurobiol 2017; 44:363-376. [DOI: 10.1111/nan.12399] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 11/28/2022]
Affiliation(s)
- A. L. Görtz
- Department of Pathology; VU University Medical Centre; Amsterdam The Netherlands
| | - L. A. N. Peferoen
- Department of Pathology; VU University Medical Centre; Amsterdam The Netherlands
| | - W. H. Gerritsen
- Department of Pathology; VU University Medical Centre; Amsterdam The Netherlands
| | | | - M. Bugiani
- Department of Pathology; VU University Medical Centre; Amsterdam The Netherlands
- Department of Child Neurology; Neuroscience Campus Amsterdam; VU University Medical Centre; Amsterdam The Netherlands
| | - S. Amor
- Department of Pathology; VU University Medical Centre; Amsterdam The Netherlands
- Queen Mary University of London; Blizard Institute; Barts and The London School of Medicine and Dentistry; London UK
| |
Collapse
|
16
|
Leal‐Lasarte MM, Franco JM, Labrador‐Garrido A, Pozo D, Roodveldt C. Extracellular TDP‐43 aggregates target MAPK/MAK/MRK overlapping kinase (MOK) and trigger caspase‐3/IL‐18 signaling in microglia. FASEB J 2017; 31:2797-2816. [DOI: 10.1096/fj.201601163r] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/26/2017] [Indexed: 12/12/2022]
Affiliation(s)
- María M. Leal‐Lasarte
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER)University of Seville–Spanish Research Council (CSIC)–University Paplo de OlavideSeville Spain
| | - Jaime M. Franco
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER)University of Seville–Spanish Research Council (CSIC)–University Paplo de OlavideSeville Spain
- Department of Medical BiochemistryMolecular Biology and ImmunologySchool of MedicineUniversity of SevilleSeville Spain
| | - Adahir Labrador‐Garrido
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER)University of Seville–Spanish Research Council (CSIC)–University Paplo de OlavideSeville Spain
- Department of Medical BiochemistryMolecular Biology and ImmunologySchool of MedicineUniversity of SevilleSeville Spain
| | - David Pozo
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER)University of Seville–Spanish Research Council (CSIC)–University Paplo de OlavideSeville Spain
- Department of Medical BiochemistryMolecular Biology and ImmunologySchool of MedicineUniversity of SevilleSeville Spain
| | - Cintia Roodveldt
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER)University of Seville–Spanish Research Council (CSIC)–University Paplo de OlavideSeville Spain
| |
Collapse
|
17
|
Haslbeck M, Peschek J, Buchner J, Weinkauf S. Structure and function of α-crystallins: Traversing from in vitro to in vivo. Biochim Biophys Acta Gen Subj 2015; 1860:149-66. [PMID: 26116912 DOI: 10.1016/j.bbagen.2015.06.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/10/2015] [Accepted: 06/22/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND The two α-crystallins (αA- and αB-crystallin) are major components of our eye lenses. Their key function there is to preserve lens transparency which is a challenging task as the protein turnover in the lens is low necessitating the stability and longevity of the constituent proteins. α-Crystallins are members of the small heat shock protein family. αB-crystallin is also expressed in other cell types. SCOPE OF THE REVIEW The review summarizes the current concepts on the polydisperse structure of the α-crystallin oligomer and its chaperone function with a focus on the inherent complexity and highlighting gaps between in vitro and in vivo studies. MAJOR CONCLUSIONS Both α-crystallins protect proteins from irreversible aggregation in a promiscuous manner. In maintaining eye lens transparency, they reduce the formation of light scattering particles and balance the interactions between lens crystallins. Important for these functions is their structural dynamics and heterogeneity as well as the regulation of these processes which we are beginning to understand. However, currently, it still remains elusive to which extent the in vitro observed properties of α-crystallins reflect the highly crowded situation in the lens. GENERAL SIGNIFICANCE Since α-crystallins play an important role in preventing cataract in the eye lens and in the development of diverse diseases, understanding their mechanism and substrate spectra is of importance. To bridge the gap between the concepts established in vitro and the in vivo function of α-crystallins, the joining of forces between different scientific disciplines and the combination of diverse techniques in hybrid approaches are necessary. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Martin Haslbeck
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Jirka Peschek
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany.
| | - Sevil Weinkauf
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany.
| |
Collapse
|
18
|
Hsp20 Protects against Oxygen-Glucose Deprivation/Reperfusion-Induced Golgi Fragmentation and Apoptosis through Fas/FasL Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015. [PMID: 26199678 PMCID: PMC4495232 DOI: 10.1155/2015/606934] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cerebral ischemia-reperfusion injury plays an important role in the development of tissue injury after acute ischemic stroke. Finding effective neuroprotective agents has become a priority in the treatment of ischemic stroke. The Golgi apparatus (GA) is a pivotal organelle and its protection is an attractive target in the treatment of cerebral ischemia-reperfusion injury. Protective effects of Hsp20, a potential cytoprotective agent due to its chaperone-like activity and involvement in regulation of many vital processes, on GA were assessed in an ischemia-reperfusion injury model. Mouse neuroblastoma Neuro2a (N2a) cells were subjected to oxygen-glucose deprivation/reperfusion (OGDR) insult. OGDR induces Golgi fragmentation, apoptosis, and p115 cleavage in N2a cells. However, transfection with Hsp20 significantly attenuates OGDR-induced Golgi fragmentation and apoptosis. Hsp20 interacts with Bax, decreases FasL and Bax expression, and inhibits caspases 3 and p115 cleavage in N2a cells exposed to OGDR. Our data demonstrate that increased Hsp20 expression protects against OGDR-induced Golgi fragmentation and apoptosis, likely through interaction with Bax and subsequent amelioration of the OGDR-induced elevation in p115 cleavage via the Fas/FasL signaling pathway. This neuroprotective potential of Hsp20 against OGDR insult and the underlying mechanism will pave the way for its potential clinical application for cerebral ischemia-reperfusion related disorders.
Collapse
|
19
|
Mymrikov EV, Haslbeck M. Medical implications of understanding the functions of human small heat shock proteins. Expert Rev Proteomics 2015; 12:295-308. [PMID: 25915440 DOI: 10.1586/14789450.2015.1039993] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Small heat shock proteins (sHsps) are ubiquitous molecular chaperones that are implicated in a variety of diseases. Upon stress, they stabilize unfolding proteins and prevent them from aggregating. However, under physiological conditions without severe stress, some sHsps interact with other proteins. In a perspective view, their ability to bind specific client proteins might allow them to fine-tune the availability of the client for other, client-dependent cellular processes. Additionally, some sHsps seem to interact with specific co-chaperones. These co-chaperones are usually part of large protein machineries that are functionally modulated upon sHsps interaction. Finally, secreted human sHsps seem to interact with receptor proteins, potentially as signal molecules transmitting the stress status from one cell to another. This review focuses on the mechanistic description of these different binding modes for human sHsps and how this might help to understand and modulate the function of sHsps in the context of disease.
Collapse
Affiliation(s)
- Evgeny V Mymrikov
- Department Chemie, Technische Universität München, D-85747 Garching, Germany
| | | |
Collapse
|
20
|
Positive or negative involvement of heat shock proteins in multiple sclerosis pathogenesis: an overview. J Neuropathol Exp Neurol 2015; 73:1092-106. [PMID: 25383635 DOI: 10.1097/nen.0000000000000136] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Multiple sclerosis (MS) is the most diffuse chronic inflammatory disease of the central nervous system. Both immune-mediated and neurodegenerative processes apparently play roles in the pathogenesis of this disease. Heat shock proteins (HSPs) are a family of highly evolutionarily conserved proteins; their expression in the nervous system is induced in a variety of pathologic states, including cerebral ischemia, neurodegenerative diseases, epilepsy, and trauma. To date, investigators have observed protective effects of HSPs in a variety of brain disease models (e.g. of Alzheimer disease and Parkinson disease). In contrast, unequivocal data have been obtained for their roles in MS that depend on the HSP family and particularly on their localization (i.e. intracellular or extracellular). This article reviews our current understanding of the involvement of the principal HSP families in MS.
Collapse
|
21
|
Abstract
The expression of heat shock proteins (HSPs) is a basic and well-conserved cellular response to an array of stresses. These proteins are involved in the repair of cellular damage induced by the stress, which is necessary for the salutary resolution from the insult. Moreover, they confer protection from subsequent insults, which has been coined stress tolerance. Because these proteins are expressed in subcellular compartments, it was thought that their function during stress conditions was circumscribed to the intracellular environment. However, it is now well established that HSPs can also be present outside cells where they appear to display a function different than the well-understood chaperone role. Extracellular HSPs act as alert stress signals priming other cells, particularly of the immune system, to avoid the propagation of the insult and favor resolution. Because the majority of HSPs do not possess a secretory peptide signal, they are likely to be exported by a nonclassic secretory pathway. Different mechanisms have been proposed to explain the export of HSPs, including translocation across the plasma membrane and release associated with lipid vesicles, as well as the passive release after cell death by necrosis. Extracellular HSPs appear in various flavors, including membrane-bound and membrane-free forms. All of these variants of extracellular HSPs suggest that their interactions with cells may be quite diverse, both in target cell types and the activation signaling pathways. This review addresses some of our current knowledge about the release and relevance of extracellular HSPs.
Collapse
|
22
|
Carrano A, Snkhchyan H, Kooij G, van der Pol S, van Horssen J, Veerhuis R, Hoozemans J, Rozemuller A, de Vries HE. ATP-binding cassette transporters P-glycoprotein and breast cancer related protein are reduced in capillary cerebral amyloid angiopathy. Neurobiol Aging 2014; 35:565-75. [DOI: 10.1016/j.neurobiolaging.2013.09.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 08/30/2013] [Accepted: 09/10/2013] [Indexed: 12/12/2022]
|
23
|
Boelens WC. Cell biological roles of αB-crystallin. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:3-10. [PMID: 24576798 DOI: 10.1016/j.pbiomolbio.2014.02.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 10/25/2022]
Abstract
αB-crystallin, also called HspB5, is a molecular chaperone able to interact with unfolding proteins. By interacting, it inhibits further unfolding, thereby preventing protein aggregation and allowing ATP-dependent chaperones to refold the proteins. αB-crystallin belongs to the family of small heat-shock proteins (sHsps), which in humans consists of 10 different members. The protein forms large oligomeric complexes, containing up to 40 or more subunits, which in vivo consist of heterooligomeric complexes formed by a mixture of αB-crystallin and other sHsps. αB-crystallin is highly expressed in the lens and to a lesser extent in several other tissues, among which heart, skeletal muscle and brain. αB-crystallin plays a role in several cellular processes, such as signal transduction, protein degradation, stabilization of cytoskeletal structures and apoptosis. Mutations in the αB-crystallin gene can have detrimental effects, leading to pathologies such as cataract and cardiomyopathy. This review describes the biological roles of αB-crystallin, with a special focus on its function in the eye lens, heart muscle and brain. In addition its therapeutic potential is discussed.
Collapse
Affiliation(s)
- Wilbert C Boelens
- Department of Biomolecular Chemistry, Institute for Molecules and Materials and Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
24
|
Dubińska-Magiera M, Jabłońska J, Saczko J, Kulbacka J, Jagla T, Daczewska M. Contribution of small heat shock proteins to muscle development and function. FEBS Lett 2014; 588:517-30. [PMID: 24440355 DOI: 10.1016/j.febslet.2014.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/17/2013] [Accepted: 01/02/2014] [Indexed: 12/17/2022]
Abstract
Investigations undertaken over the past years have led scientists to introduce the concept of protein quality control (PQC) systems, which are responsible for polypeptide processing. The PQC system monitors proteostasis and involves activity of different chaperones such as small heat shock proteins (sHSPs). These proteins act during normal conditions as housekeeping proteins regulating cellular processes, and during stress conditions. They also mediate the removal of toxic misfolded polypeptides and thereby prevent development of pathogenic states. It is postulated that sHSPs are involved in muscle development. They could act via modulation of myogenesis or by maintenance of the structural integrity of signaling complexes. Moreover, mutations in genes coding for sHSPs lead to pathological states affecting muscular tissue functioning. This review focuses on the question how sHSPs, still relatively poorly understood proteins, contribute to the development and function of three types of muscle tissue: skeletal, cardiac and smooth.
Collapse
Affiliation(s)
- Magda Dubińska-Magiera
- Department of Animal Developmental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland
| | - Jadwiga Jabłońska
- Department of Animal Developmental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland
| | - Jolanta Saczko
- Department of Medical Biochemistry, Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Medical Biochemistry, Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Teresa Jagla
- Institut National de la Santé et de la Recherche Médicale U384, Faculté de Medecine, Clermont-Ferrand, France
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| |
Collapse
|
25
|
de Tullio MB, Castelletto V, Hamley IW, Martino Adami PV, Morelli L, Castaño EM. Proteolytically inactive insulin-degrading enzyme inhibits amyloid formation yielding non-neurotoxic aβ peptide aggregates. PLoS One 2013; 8:e59113. [PMID: 23593132 PMCID: PMC3623905 DOI: 10.1371/journal.pone.0059113] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/11/2013] [Indexed: 01/18/2023] Open
Abstract
Insulin-degrading enzyme (IDE) is a neutral Zn2+ peptidase that degrades short peptides based on substrate conformation, size and charge. Some of these substrates, including amyloid β (Aβ) are capable of self-assembling into cytotoxic oligomers. Based on IDE recognition mechanism and our previous report of the formation of a stable complex between IDE and intact Aβ in vitro and in vivo, we analyzed the possibility of a chaperone-like function of IDE. A proteolytically inactive recombinant IDE with Glu111 replaced by Gln (IDEQ) was used. IDEQ blocked the amyloidogenic pathway of Aβ yielding non-fibrillar structures as assessed by electron microscopy. Measurements of the kinetics of Aβ aggregation by light scattering showed that 1) IDEQ effect was promoted by ATP independent of its hydrolysis, 2) end products of Aβ-IDEQ co-incubation were incapable of “seeding” the assembly of monomeric Aβ and 3) IDEQ was ineffective in reversing Aβ aggregation. Moreover, Aβ aggregates formed in the presence of IDEQ were non-neurotoxic. IDEQ had no conformational effects upon insulin (a non-amyloidogenic protein under physiological conditions) and did not disturb insulin receptor activation in cultured cells. Our results suggest that IDE has a chaperone-like activity upon amyloid-forming peptides. It remains to be explored whether other highly conserved metallopeptidases have a dual protease-chaperone function to prevent the formation of toxic peptide oligomers from bacteria to mammals.
Collapse
Affiliation(s)
- Matias B. de Tullio
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Valeria Castelletto
- Department of Chemistry, University of Reading, Whiteknights, Reading, United Kingdom
| | - Ian W. Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading, United Kingdom
| | - Pamela V. Martino Adami
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Laura Morelli
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Eduardo M. Castaño
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
26
|
Kimura A, Sakurai T, Yoshikura N, Hayashi Y, Takemura M, Takahashi H, Inuzuka T. Corticosteroid therapy in a patient with cerebral amyloid angiopathy-related inflammation. J Neuroinflammation 2013; 10:39. [PMID: 23497126 PMCID: PMC3635896 DOI: 10.1186/1742-2094-10-39] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/27/2013] [Indexed: 11/22/2022] Open
Abstract
We studied longitudinal changes of the levels of anti-amyloid β (anti-Aβ) antibody, amyloid β (Aβ) protein, and interleukin 8 (IL-8) in cerebrospinal fluid (CSF) of a patient with cerebral amyloid angiopathy-related inflammation (CAA-ri) in whom steroid treatment resulted in clinical improvement. The diagnosis of CAA-ri was established with brain biopsy. Levels of anti-Aβ 42 antibody, Aβ 40, Aβ 42 and IL-8 in CSF were measured in the CAA-ri patient at 23 time points in the 8-month clinical course. These CSF samples were divided into 2 groups: those obtained before (n = 12) and those after (n = 11) oral corticosteroid therapy was started. We compared these levels between CSF samples obtained before and after therapy. The mean levels of anti-Aβ 42 antibody and IL-8 were significantly higher in CSF samples of the CAA-ri patient before oral corticosteroid therapy than those after therapy. A positive correlation was noted between levels of anti-Aβ 42 antibodies and IL-8 in CSF of this patient. There were no significant differences of mean levels of Aβ 40 and Aβ 42 between CSF samples obtained before and after oral corticosteroid therapy. It was possible that the autoinflammatory process with anti-Aβ 42 antibodies and IL-8 may have been involved in the pathogenesis of CAA-ri, and that corticosteroid therapy directly affected levels of anti-Aβ 42 antibody and IL-8. In summary, CAA-ri encephalopathy is a relapsing or progressive disorder and may be treatable by adequate immunosuppressive therapy. The anti-Aβ 42 antibody in CSF is a useful biological marker for therapeutic monitoring of CAA-ri.
Collapse
Affiliation(s)
- Akio Kimura
- Department of Neurology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | | | | | | | | | | | | |
Collapse
|
27
|
van Noort JM, Bsibsi M, Nacken P, Gerritsen WH, Amor S. The link between small heat shock proteins and the immune system. Int J Biochem Cell Biol 2012; 44:1670-9. [PMID: 22233974 DOI: 10.1016/j.biocel.2011.12.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/15/2011] [Accepted: 12/16/2011] [Indexed: 02/04/2023]
Abstract
There is now compelling evidence that members of the family of small heat shock proteins (HSP) can be secreted by a variety of different types of cells. Secretion of small HSP may at times represent altruistic delivery of supporting and stabilizing factors from one cell to another. A probably more general effect of extracellular small HSP, however, is exerted by their ability to activate macrophages and macrophage-like cells. When doing so, small HSP induce an immune-regulatory state of activation, stimulating macrophages to suppress inflammation. For this reason, small HSP deserve consideration as broadly applicable therapeutic agents for inflammatory disorders. In one particular case, however, adaptive immune responses to the small HSP itself may subvert the protective quality of the innate immune response it triggers. This situation only applies to alpha B-crystallin, and is unique for humans as well. In this special case, local concentrations of alpha B-crystallin determine the balance between protective innate responses and destructive adaptive responses, the latter of which are held responsible for the development of multiple sclerosis lesions. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology.
Collapse
|