1
|
Hilscher MM, Mikulovic S, Perry S, Lundberg S, Kullander K. The alpha2 nicotinic acetylcholine receptor, a subunit with unique and selective expression in inhibitory interneurons associated with principal cells. Pharmacol Res 2023; 196:106895. [PMID: 37652281 DOI: 10.1016/j.phrs.2023.106895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) play crucial roles in various human disorders, with the α7, α4, α6, and α3-containing nAChR subtypes extensively studied in relation to conditions such as Alzheimer's disease, Parkinson's disease, nicotine dependence, mood disorders, and stress disorders. In contrast, the α2-nAChR subunit has received less attention due to its more restricted expression and the scarcity of specific agonists and antagonists for studying its function. Nevertheless, recent research has shed light on the unique expression pattern of the Chrna2 gene, which encodes the α2-nAChR subunit, and its involvement in distinct populations of inhibitory interneurons. This review highlights the structure, pharmacology, localization, function, and disease associations of α2-containing nAChRs and points to the unique expression pattern of the Chrna2 gene and its role in different inhibitory interneuron populations. These populations, including the oriens lacunosum moleculare (OLM) cells in the hippocampus, Martinotti cells in the neocortex, and Renshaw cells in the spinal cord, share common features and contribute to recurrent inhibitory microcircuits. Thus, the α2-nAChR subunit's unique expression pattern in specific interneuron populations and its role in recurrent inhibitory microcircuits highlight its importance in various physiological processes. Further research is necessary to uncover the comprehensive functionality of α2-containing nAChRs, delineate their specific contributions to neuronal circuits, and investigate their potential as therapeutic targets for related disorders.
Collapse
Affiliation(s)
- Markus M Hilscher
- Department of Immunology, Genetics and Pathology, Uppsala University, IGP/BMC, Box 815, 751 08 Uppsala, Sweden; Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Sanja Mikulovic
- Department of Immunology, Genetics and Pathology, Uppsala University, IGP/BMC, Box 815, 751 08 Uppsala, Sweden; Leibniz Institute for Neurobiology, Cognition & Emotion Laboratory, Magdeburg, Germany; German Center for Mental Health(DZPG), Germany
| | - Sharn Perry
- Department of Immunology, Genetics and Pathology, Uppsala University, IGP/BMC, Box 815, 751 08 Uppsala, Sweden; Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia
| | - Stina Lundberg
- Department of Immunology, Genetics and Pathology, Uppsala University, IGP/BMC, Box 815, 751 08 Uppsala, Sweden
| | - Klas Kullander
- Department of Immunology, Genetics and Pathology, Uppsala University, IGP/BMC, Box 815, 751 08 Uppsala, Sweden.
| |
Collapse
|
2
|
Spinal Cord Circuits: Models and Reality. NEUROPHYSIOLOGY+ 2022. [DOI: 10.1007/s11062-022-09927-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
3
|
Migalev AS, Vigasina KD, Gotovtsev PM. A review of motor neural system robotic modeling approaches and instruments. BIOLOGICAL CYBERNETICS 2022; 116:271-306. [PMID: 35041073 DOI: 10.1007/s00422-021-00918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
In this review, we are considering an actively developing tool in neuroscience-robotic modeling. The new perspective and existing application fields, tools, and methods are discussed. We try to determine starting positions and approaches that are useful at the beginning of new research in this field. Among multiple directions of the research is robotic modeling on the level of muscles fibers and their afferents, skin surface sensors, muscles, and joints proprioceptors. Some examples of technical implementation for physical modeling are reviewed. They are software and hardware tools like event-related modeling algorithms, reduced neuron models, robotic drives constructions. We observe existing drives technologies and prospective electric motor types: switched reluctance and transverse flux motors. Next, we look at the existing examples and approaches for robotic modeling of the cerebellum and spinal cord neural networks. These examples show practical methods for the model neural network architecture and adaptation. Those methods allow the use of cortical and spinal cord reflexes for the network training and apply additional artificial blocks for data processing in other brain structures that transmit and receive data from biologically realistic models.
Collapse
Affiliation(s)
- Alexander S Migalev
- National Research Center "Kurchatov Intitute", 1, Akademika Kurchatova pl., Moscow, 123182, Russia
| | - Kristina D Vigasina
- Institute of Higher Nervous Activity and Neurophysiology of RAS, 5A, Butlerova st., Moscow, 117485, Russia
| | - Pavel M Gotovtsev
- National Research Center "Kurchatov Intitute", 1, Akademika Kurchatova pl., Moscow, 123182, Russia
- Moscow Institute of Physics and Technology 9, Institutsky per., Dolgoprudny, Moscow Region, 141701, Russian Federation
| |
Collapse
|
4
|
Pardieck J, Harb M, Sakiyama-Elbert SE. A transgenic mouse embryonic stem cell line for puromycin selection of V0 V interneurons from heterogenous induced cultures. Stem Cell Res Ther 2022; 13:131. [PMID: 35346349 PMCID: PMC8962475 DOI: 10.1186/s13287-022-02801-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 03/07/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Spinal interneurons (INs) relay sensory and motor control information between the brain and body. When this relay circuitry is disrupted from injury or disease, it is devastating to patients due to the lack of native recovery in central nervous system (CNS) tissues. Obtaining a purified population of INs is necessary to better understand their role in normal function and as potential therapies in CNS. The ventral V0 (V0V) INs are excitatory neurons involved in locomotor circuits and are thus of interest for understanding normal and pathological spinal cord function. To achieve scalable amounts of V0V INs, they can be derived from pluripotent sources, such as mouse embryonic stem cells (mESCs), but the resultant culture is heterogenous, obscuring the specific role of V0V INs. This study generated a transgenic mESC line to enrich V0V INs from induced cultures to allow for a scalable, enriched population for future in vitro and in vivo studies. METHODS The transgenic Evx1-PAC mESC line was created by CRISPR-Cas9-mediated insertion of puromycin-N-acetyltransferase (PAC) into the locus of V0V IN marker Evx1. Evx1 and PAC mRNA expression were measured by qPCR. Viability staining helped establish the selection protocol for V0V INs derived from Evx1-PAC mESCs inductions. Immunostaining was used to examine composition of selected inductions. Cultures were maintained up to 30 days to examine maturation by expression of mature/synaptic markers, determined by immunostaining, and functional activity in co-cultures with selected motor neurons (MNs) and V2a INs on microelectrode arrays (MEAs). RESULTS V0V IN inductions were best selected with 4 µg/mL puromycin on day 10 to 11 and showed reduction of other IN populations and elimination of proliferative cells. Long-term selected cultures were highly neuronal, expressing neuronal nuclear marker NeuN, dendritic marker MAP2, pre-synaptic marker Bassoon, and glutamatergic marker VGLUT2, with some cholinergic VAChT-expressing cells. Functional studies on MEAs showed that co-cultures with MNs or MNs plus V2a INs created neuronal networks with synchronized bursting. CONCLUSIONS Evx1-PAC mESCs can be used to purify V0V IN cultures for largely glutamatergic neurons that can be used in network formation studies or for rodent models requiring transplanted V0V INs.
Collapse
Affiliation(s)
- Jennifer Pardieck
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton St., Austin, TX 78712-1139 USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO USA
| | - Manwal Harb
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton St., Austin, TX 78712-1139 USA
| | - Shelly E. Sakiyama-Elbert
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton St., Austin, TX 78712-1139 USA
| |
Collapse
|
5
|
Chalif JI, de Lourdes Martínez-Silva M, Pagiazitis JG, Murray AJ, Mentis GZ. Control of mammalian locomotion by ventral spinocerebellar tract neurons. Cell 2022; 185:328-344.e26. [PMID: 35063074 PMCID: PMC8852337 DOI: 10.1016/j.cell.2021.12.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 11/09/2021] [Accepted: 12/13/2021] [Indexed: 01/22/2023]
Abstract
Locomotion is a complex behavior required for animal survival. Vertebrate locomotion depends on spinal interneurons termed the central pattern generator (CPG), which generates activity responsible for the alternation of flexor and extensor muscles and the left and right side of the body. It is unknown whether multiple or a single neuronal type is responsible for the control of mammalian locomotion. Here, we show that ventral spinocerebellar tract neurons (VSCTs) drive generation and maintenance of locomotor behavior in neonatal and adult mice. Using mouse genetics, physiological, anatomical, and behavioral assays, we demonstrate that VSCTs exhibit rhythmogenic properties and neuronal circuit connectivity consistent with their essential role in the locomotor CPG. Importantly, optogenetic activation and chemogenetic silencing reveals that VSCTs are necessary and sufficient for locomotion. These findings identify VSCTs as critical components for mammalian locomotion and provide a paradigm shift in our understanding of neural control of complex behaviors.
Collapse
Affiliation(s)
- Joshua I. Chalif
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA,Dept. of Neurology, Columbia University, New York, NY 10032, USA
| | - María de Lourdes Martínez-Silva
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA,Dept. of Neurology, Columbia University, New York, NY 10032, USA
| | - John G. Pagiazitis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA,Dept. of Neurology, Columbia University, New York, NY 10032, USA
| | - Andrew J. Murray
- Sainsbury Wellcome Centre, University College London, 25 Howland Street, London W1T 4JG, UK
| | - George Z. Mentis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA,Dept. of Neurology, Columbia University, New York, NY 10032, USA,Dept. of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA,Corresponding author & Lead contact: Tel: +1-212-305-9846,
| |
Collapse
|
6
|
Falgairolle M, O'Donovan MJ. Motoneuronal Regulation of Central Pattern Generator and Network Function. ADVANCES IN NEUROBIOLOGY 2022; 28:259-280. [PMID: 36066829 DOI: 10.1007/978-3-031-07167-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This chapter reviews recent work showing that vertebrate motoneurons can trigger spontaneous rhythmic activity in the developing spinal cord and can modulate the function of several different central pattern generators later in development. In both the embryonic chick and the fetal mouse spinal cords, antidromic activation of motoneurons can trigger bouts of rhythmic activity. In the neonatal mouse, optogenetic manipulation of motoneuron firing can modulate the frequency of fictive locomotion activated by a drug cocktail. In adult animals, motoneurons have been shown to regulate swimming in the zebrafish, and vocalization in fish and frogs. We discuss the significance of these findings and the degree to which motoneurons may be considered a part of these central pattern generators.
Collapse
|
7
|
Beato M, Bhumbra G. Synaptic Projections of Motoneurons Within the Spinal Cord. ADVANCES IN NEUROBIOLOGY 2022; 28:151-168. [PMID: 36066825 DOI: 10.1007/978-3-031-07167-6_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Motoneurons have long been considered as the final common pathway of the nervous system, transmitting the neural impulses that are transduced into action.While many studies have focussed on the inputs that motoneurons receive from local circuits within the spinal cord and from other parts of the CNS, relatively few have investigated the targets of local axonal projections from motoneurons themselves, with the notable exception of those contacting Renshaw cells or other motoneurons.Recent research has not only characterised the detailed features of the excitatory connections between motoneurons and Renshaw cells but has also established that Renshaw cells are not the only target of motoneurons axons within the spinal cord. Motoneurons also form synaptic contacts with other motoneurons as well as with a subset of ventrally located V3 interneurons. These findings indicate that motoneurons cannot be simply viewed as the last relay station delivering the command drive to muscles, but perform an active role in the generation and modulation of motor patterns.
Collapse
Affiliation(s)
- Marco Beato
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| | - Gary Bhumbra
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
8
|
Lane AR, Cogdell IC, Jessell TM, Bikoff JB, Alvarez FJ. Genetic targeting of adult Renshaw cells using a Calbindin 1 destabilized Cre allele for intersection with Parvalbumin or Engrailed1. Sci Rep 2021; 11:19861. [PMID: 34615947 PMCID: PMC8494874 DOI: 10.1038/s41598-021-99333-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/16/2021] [Indexed: 11/09/2022] Open
Abstract
Renshaw cells (RCs) are one of the most studied spinal interneurons; however, their roles in motor control remain enigmatic in part due to the lack of experimental models to interfere with RC function, specifically in adults. To overcome this limitation, we leveraged the distinct temporal regulation of Calbindin (Calb1) expression in RCs to create genetic models for timed RC manipulation. We used a Calb1 allele expressing a destabilized Cre (dgCre) theoretically active only upon trimethoprim (TMP) administration. TMP timing and dose influenced RC targeting efficiency, which was highest within the first three postnatal weeks, but specificity was low with many other spinal neurons also targeted. In addition, dgCre showed TMP-independent activity resulting in spontaneous recombination events that accumulated with age. Combining Calb1-dgCre with Parvalbumin (Pvalb) or Engrailed1 (En1) Flpo alleles in dual conditional systems increased cellular and timing specificity. Under optimal conditions, Calb1-dgCre/Pvalb-Flpo mice targeted 90% of RCs and few dorsal horn neurons; Calb1-dgCre/En1-Flpo mice showed higher specificity, but only a maximum of 70% of RCs targeted. Both models targeted neurons throughout the brain. Restricted spinal expression was obtained by injecting intraspinally AAVs carrying dual conditional genes. These results describe the first models to genetically target RCs bypassing development.
Collapse
Affiliation(s)
- Alicia R Lane
- Department of Physiology, Emory University, Atlanta, GA, 30322, USA
| | | | - Thomas M Jessell
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Jay B Bikoff
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | | |
Collapse
|
9
|
Conditional RAC1 knockout in motor neurons restores H-reflex rate-dependent depression after spinal cord injury. Sci Rep 2021; 11:7838. [PMID: 33837249 PMCID: PMC8035187 DOI: 10.1038/s41598-021-87476-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/30/2021] [Indexed: 12/27/2022] Open
Abstract
A major complication with spinal cord injury (SCI) is the development of spasticity, a clinical symptom of hyperexcitability within the spinal H-reflex pathway. We have previously demonstrated a common structural motif of dendritic spine dysgenesis associated with hyperexcitability disorders after injury or disease insults to the CNS. Here, we used an adeno-associated viral (AAV)-mediated Cre-Lox system to knockout Rac1 protein expression in motor neurons after SCI. Three weeks after AAV9-Cre delivery into the soleus/gastrocnemius of Rac1-“floxed” adult mice to retrogradely infect spinal alpha-motor neurons, we observed significant restoration of RDD and reduced H-reflex excitability in SCI animals. Additionally, viral-mediated Rac1 knockdown reduced presence of dendritic spine dysgenesis on motor neurons. In control SCI animals without Rac1 knockout, we continued to observe abnormal dendritic spine morphology associated with hyperexcitability disorder, including an increase in mature, mushroom dendritic spines, and an increase in overall spine length and spine head size. Taken together, our results demonstrate that viral-mediated disruption of Rac1 expression in ventral horn motor neurons can mitigate dendritic spine morphological correlates of neuronal hyperexcitability, and reverse hyperreflexia associated with spasticity after SCI. Finally, our findings provide evidence of a putative mechanistic relationship between motor neuron dendritic spine dysgenesis and SCI-induced spasticity.
Collapse
|
10
|
Spinal Inhibitory Interneurons: Gatekeepers of Sensorimotor Pathways. Int J Mol Sci 2021; 22:ijms22052667. [PMID: 33800863 PMCID: PMC7961554 DOI: 10.3390/ijms22052667] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022] Open
Abstract
The ability to sense and move within an environment are complex functions necessary for the survival of nearly all species. The spinal cord is both the initial entry site for peripheral information and the final output site for motor response, placing spinal circuits as paramount in mediating sensory responses and coordinating movement. This is partly accomplished through the activation of complex spinal microcircuits that gate afferent signals to filter extraneous stimuli from various sensory modalities and determine which signals are transmitted to higher order structures in the CNS and to spinal motor pathways. A mechanistic understanding of how inhibitory interneurons are organized and employed within the spinal cord will provide potential access points for therapeutics targeting inhibitory deficits underlying various pathologies including sensory and movement disorders. Recent studies using transgenic manipulations, neurochemical profiling, and single-cell transcriptomics have identified distinct populations of inhibitory interneurons which express an array of genetic and/or neurochemical markers that constitute functional microcircuits. In this review, we provide an overview of identified neural components that make up inhibitory microcircuits within the dorsal and ventral spinal cord and highlight the importance of inhibitory control of sensorimotor pathways at the spinal level.
Collapse
|
11
|
Modified behavioural tests to detect white matter injury- induced motor deficits after intracerebral haemorrhage in mice. Sci Rep 2019; 9:16958. [PMID: 31740745 PMCID: PMC6861313 DOI: 10.1038/s41598-019-53263-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 10/26/2019] [Indexed: 01/17/2023] Open
Abstract
Motor function deficit induced by white matter injury (WMI) is one of the most severe complications of intracerebral haemorrhage (ICH). The degree of WMI is closely related to the prognosis of patients after ICH. However, the current behavioural assessment of motor function used in the ICH mouse model is mainly based on that for ischaemic stroke and lacks the behavioural methods that accurately respond to WMI. Here, a series of easy-to-implement behavioural tests were performed to detect motor deficits in mice after ICH. The results showed that the grip strength test and the modified pole test not only can better distinguish the degree of motor dysfunction between different volumes of blood ICH models than the Basso Mouse Scale and the beam walking test but can also accurately reflect the severity of WMI characterized by demyelination, axonal swelling and the latency of motor-evoked potential delay induced by ICH. In addition, after ICH, the results of grip tests and modified pole tests, rather than the Basso Mouse Scale and the beam walking test, were worse than those observed after intraventricular haemorrhage (IVH), which was used as a model of brain haemorrhage in non-white matter areas. These results indicate that the grip strength test and the modified pole test have advantages in detecting the degree of motor deficit induced by white matter injury after ICH in mice.
Collapse
|
12
|
Berg RW, Willumsen A, Lindén H. When networks walk a fine line: balance of excitation and inhibition in spinal motor circuits. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
|
14
|
Chopek JW, Nascimento F, Beato M, Brownstone RM, Zhang Y. Sub-populations of Spinal V3 Interneurons Form Focal Modules of Layered Pre-motor Microcircuits. Cell Rep 2018; 25:146-156.e3. [PMID: 30282024 PMCID: PMC6180347 DOI: 10.1016/j.celrep.2018.08.095] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/25/2018] [Accepted: 08/30/2018] [Indexed: 12/26/2022] Open
Abstract
Layering of neural circuits facilitates the separation of neurons with high spatial sensitivity from those that play integrative temporal roles. Although anatomical layers are readily identifiable in the brain, layering is not structurally obvious in the spinal cord. But computational studies of motor behaviors have led to the concept of layered processing in the spinal cord. It has been postulated that spinal V3 interneurons (INs) play multiple roles in locomotion, leading us to investigate whether they form layered microcircuits. Using patch-clamp recordings in combination with holographic glutamate uncaging, we demonstrate focal, layered modules, in which ventromedial V3 INs form synapses with one another and with ventrolateral V3 INs, which in turn form synapses with ipsilateral motoneurons. Motoneurons, in turn, provide recurrent excitatory, glutamatergic input to V3 INs. Thus, ventral V3 interneurons form layered microcircuits that could function to ensure well-timed, spatially specific movements.
Collapse
Affiliation(s)
- Jeremy W Chopek
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; Sobell Department of Neuromuscular Diseases, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Filipe Nascimento
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Marco Beato
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Robert M Brownstone
- Sobell Department of Neuromuscular Diseases, Institute of Neurology, University College London, London WC1N 3BG, UK.
| | - Ying Zhang
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
15
|
Kaur J, Rauti R, Nistri A. Nicotine‐mediated neuroprotection of rat spinal networks against excitotoxicity. Eur J Neurosci 2018; 47:1353-1374. [DOI: 10.1111/ejn.13950] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/19/2018] [Accepted: 04/10/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Jaspreet Kaur
- Department of NeuroscienceInternational School for Advanced Studies (SISSA) Trieste Italy
- Jaspreet Kaur, Institute of Neurosciences of Timone (IMAPATH Team) ‐ CERIMEDUMR 7289Aix‐Marseille University 27, boulevard Jean Moulin Marseille Cedex 05 13385 France
| | - Rossana Rauti
- Department of NeuroscienceInternational School for Advanced Studies (SISSA) Trieste Italy
| | - Andrea Nistri
- Department of NeuroscienceInternational School for Advanced Studies (SISSA) Trieste Italy
| |
Collapse
|
16
|
Delineating the Diversity of Spinal Interneurons in Locomotor Circuits. J Neurosci 2017; 37:10835-10841. [PMID: 29118212 DOI: 10.1523/jneurosci.1829-17.2017] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/27/2017] [Accepted: 10/11/2017] [Indexed: 11/21/2022] Open
Abstract
Locomotion is common to all animals and is essential for survival. Neural circuits located in the spinal cord have been shown to be necessary and sufficient for the generation and control of the basic locomotor rhythm by activating muscles on either side of the body in a specific sequence. Activity in these neural circuits determines the speed, gait pattern, and direction of movement, so the specific locomotor pattern generated relies on the diversity of the neurons within spinal locomotor circuits. Here, we review findings demonstrating that developmental genetics can be used to identify populations of neurons that comprise these circuits and focus on recent work indicating that many of these populations can be further subdivided into distinct subtypes, with each likely to play complementary functions during locomotion. Finally, we discuss data describing the manner in which these populations interact with each other to produce efficient, task-dependent locomotion.
Collapse
|
17
|
Black BJ, Atmaramani R, Pancrazio JJ. Spontaneous and Evoked Activity from Murine Ventral Horn Cultures on Microelectrode Arrays. Front Cell Neurosci 2017; 11:304. [PMID: 29033792 PMCID: PMC5626830 DOI: 10.3389/fncel.2017.00304] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/12/2017] [Indexed: 12/11/2022] Open
Abstract
Motor neurons are the site of action for several neurological disorders and paralytic toxins, with cell bodies located in the ventral horn (VH) of the spinal cord along with interneurons and support cells. Microelectrode arrays (MEAs) have emerged as a high content assay platform for mechanistic studies and drug discovery. Here, we explored the spontaneous and evoked electrical activity of VH cultures derived from embryonic mouse spinal cord on multi-well plates of MEAs. Primary VH cultures from embryonic day 15–16 mice were characterized by expression of choline acetyltransferase (ChAT) by immunocytochemistry. Well resolved, all-or-nothing spontaneous spikes with profiles consistent with extracellular action potentials were observed after 3 days in vitro, persisting with consistent firing rates until at least day in vitro 19. The majority of the spontaneous activity consisted of tonic firing interspersed with coordinated bursting across the network. After 5 days in vitro, spike activity was readily evoked by voltage pulses where a minimum amplitude and duration required for excitation was 300 mV and 100 μs/phase, respectively. We characterized the sensitivity of spontaneous and evoked activity to a host of pharmacological agents including AP5, CNQX, strychnine, ω-agatoxin IVA, and botulinum neurotoxin serotype A (BoNT/A). These experiments revealed sensitivity of the cultured VH to both agonist and antagonist compounds in a manner consistent with mature tissue derived from slices. In the case of BoNT/A, we also demonstrated intoxication persistence over an 18-day period, followed by partial intoxication recovery induced by N- and P/Q-type calcium channel agonist GV-58. In total, our findings suggest that VH cultures on multi-well MEA plates may represent a moderate throughput, high content assay for performing mechanistic studies and for screening potential therapeutics pertaining to paralytic toxins and neurological disorders.
Collapse
Affiliation(s)
- Bryan J Black
- Neuronal Networks and Interfaces Laboratory, Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Rahul Atmaramani
- Neuronal Networks and Interfaces Laboratory, Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Joseph J Pancrazio
- Neuronal Networks and Interfaces Laboratory, Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|