1
|
Alves SDM, Lisboa-Filho PN, Zilli Vieira CL, Piacenti-Silva M. Alzheimer's disease and gut-brain axis: Drosophila melanogaster as a model. Front Neurosci 2025; 19:1543826. [PMID: 39967802 PMCID: PMC11832644 DOI: 10.3389/fnins.2025.1543826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Research indicates that by 2050, more than 150 million people will be living with Alzheimer's disease (AD), a condition associated with neurodegeneration due to the accumulation of amyloid-beta and tau proteins. In addition to genetic background, endocrine disruption, and cellular senescence, management of the gut microbiota has emerged as a key element in the diagnosis, progression, and treatment of AD, as certain bacterial metabolites can travel through the bloodstream and cross the blood-brain barrier. This mini-review explores the relationship between tau protein accumulation and gut dysbiosis in Drosophila melanogaster. This model facilitates the investigation of how gut-derived metabolites contribute to neurocognitive impairment and dementia. Understanding the role of direct and indirect bacterial by-products, such as lactate and acetate, in glial cell activation and tau protein dynamics may provide insights into the mechanisms of AD progression and contribute to more effective treatments. Here we discuss how the simplicity and extensive genetic tools of Drosophila make it a valuable model for studying these interactions and testing potential therapeutics, including probiotics. Integrating Drosophila studies with other established models may reveal conserved pathways and accelerate the translation of findings into clinical applications.
Collapse
Affiliation(s)
- Samuel de Mattos Alves
- Institute of Biosciences of Botucatu, Campus Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | | | - Marina Piacenti-Silva
- School of Sciences, Campus Bauru, São Paulo State University (UNESP), Bauru, SP, Brazil
| |
Collapse
|
2
|
Monticelli S, Giangrande A. Evolutionary Conservation of the Gcm/Glide Cascade: Of Glia and Beyond. BRAIN, BEHAVIOR AND EVOLUTION 2024; 100:58-66. [PMID: 39586239 DOI: 10.1159/000542753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/25/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Glia represent a major cell population of the nervous system, and they take part in virtually any process sustaining the development, the functioning, and the pathology of the nervous system. Glial cells diversified significantly during evolution and distinct signals have been adopted to initiate glial development in mammals as compared to flies. In the invertebrate model Drosophila melanogaster, the transcription factor Gcm is necessary and sufficient to generate glial cells. Although Gcm orthologs have been found in protostomes and deuterostomes, they do not act in glial fate commitment as in flies, calling for further investigations of the evolutionarily conserved role of Gcm. SUMMARY Here, we review the impact of the fly Gcm transcription factor in the differentiation of phagocytic competent cells inside and outside the nervous system, glia, and macrophages, respectively. Then, we discuss the evolutionary conservation of Gcm and the neural/nonneural functions of Gcm orthologs. Finally, we present a recent work from Pavlidaki et al. [Cell Rep. 2022;41(3):111506] showing that the Gcm cascade is conserved from fly macrophages to mammalian microglia to counteract acute and chronic inflammation. KEY MESSAGES Gcm has an ancestral role in immunity, and its anti-inflammatory effect is evolutionarily conserved. This opens new avenues to assess Gcm function in other species/animal models, its potential involvement in inflammation-related processes, such as regeneration, and to expand the investigation on glia evolution.
Collapse
Affiliation(s)
- Sara Monticelli
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, UMR-S 1258, Illkirch, France
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
| | - Angela Giangrande
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, UMR-S 1258, Illkirch, France
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
| |
Collapse
|
3
|
Sheloukhova L, Watanabe H. Evolution of glial cells: a non-bilaterian perspective. Neural Dev 2024; 19:10. [PMID: 38907299 PMCID: PMC11193209 DOI: 10.1186/s13064-024-00184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/06/2024] [Indexed: 06/23/2024] Open
Abstract
Nervous systems of bilaterian animals generally consist of two cell types: neurons and glial cells. Despite accumulating data about the many important functions glial cells serve in bilaterian nervous systems, the evolutionary origin of this abundant cell type remains unclear. Current hypotheses regarding glial evolution are mostly based on data from model bilaterians. Non-bilaterian animals have been largely overlooked in glial studies and have been subjected only to morphological analysis. Here, we provide a comprehensive overview of conservation of the bilateral gliogenic genetic repertoire of non-bilaterian phyla (Cnidaria, Placozoa, Ctenophora, and Porifera). We overview molecular and functional features of bilaterian glial cell types and discuss their possible evolutionary history. We then examine which glial features are present in non-bilaterians. Of these, cnidarians show the highest degree of gliogenic program conservation and may therefore be crucial to answer questions about glial evolution.
Collapse
Affiliation(s)
- Larisa Sheloukhova
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan
| | - Hiroshi Watanabe
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan.
| |
Collapse
|
4
|
Tsap MI, Yatsenko AS, Hegermann J, Beckmann B, Tsikas D, Shcherbata HR. Unraveling the link between neuropathy target esterase NTE/SWS, lysosomal storage diseases, inflammation, abnormal fatty acid metabolism, and leaky brain barrier. eLife 2024; 13:e98020. [PMID: 38660940 PMCID: PMC11090517 DOI: 10.7554/elife.98020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
Mutations in Drosophila Swiss cheese (SWS) gene or its vertebrate orthologue neuropathy target esterase (NTE) lead to progressive neuronal degeneration in flies and humans. Despite its enzymatic function as a phospholipase is well established, the molecular mechanism responsible for maintaining nervous system integrity remains unclear. In this study, we found that NTE/SWS is present in surface glia that forms the blood-brain barrier (BBB) and that NTE/SWS is important to maintain its structure and permeability. Importantly, BBB glia-specific expression of Drosophila NTE/SWS or human NTE in the sws mutant background fully rescues surface glial organization and partially restores BBB integrity, suggesting a conserved function of NTE/SWS. Interestingly, sws mutant glia showed abnormal organization of plasma membrane domains and tight junction rafts accompanied by the accumulation of lipid droplets, lysosomes, and multilamellar bodies. Since the observed cellular phenotypes closely resemble the characteristics described in a group of metabolic disorders known as lysosomal storage diseases (LSDs), our data established a novel connection between NTE/SWS and these conditions. We found that mutants with defective BBB exhibit elevated levels of fatty acids, which are precursors of eicosanoids and are involved in the inflammatory response. Also, as a consequence of a permeable BBB, several innate immunity factors are upregulated in an age-dependent manner, while BBB glia-specific expression of NTE/SWS normalizes inflammatory response. Treatment with anti-inflammatory agents prevents the abnormal architecture of the BBB, suggesting that inflammation contributes to the maintenance of a healthy brain barrier. Considering the link between a malfunctioning BBB and various neurodegenerative diseases, gaining a deeper understanding of the molecular mechanisms causing inflammation due to a defective BBB could help to promote the use of anti-inflammatory therapies for age-related neurodegeneration.
Collapse
Affiliation(s)
- Mariana I Tsap
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Andriy S Yatsenko
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Bibiana Beckmann
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Dimitrios Tsikas
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Halyna R Shcherbata
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
- Mount Desert Island Biological Laboratory, Bar Harbor, United States
| |
Collapse
|
5
|
Fu X, Zhu X. Key homeobox transcription factors regulate the development of the firefly's adult light organ and bioluminescence. Nat Commun 2024; 15:1736. [PMID: 38443352 PMCID: PMC10914744 DOI: 10.1038/s41467-024-45559-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 01/26/2024] [Indexed: 03/07/2024] Open
Abstract
Adult fireflies exhibit unique flashing courtship signals, emitted by specialized light organs, which develop mostly independently from larval light organs during the pupal stage. The mechanisms of adult light organ development have not been thoroughly studied until now. Here we show that key homeobox transcription factors AlABD-B and AlUNC-4 regulate the development of adult light organs and bioluminescence in the firefly Aquatica leii. Interference with the expression of AlAbd-B and AlUnc-4 genes results in undeveloped or non-luminescent adult light organs. AlABD-B regulates AlUnc-4, and they interact with each other. AlABD-B and AlUNC-4 activate the expression of the luciferase gene AlLuc1 and some peroxins. Four peroxins are involved in the import of AlLUC1 into peroxisomes. Our study provides key insights into the development of adult light organs and flash signal control in fireflies.
Collapse
Affiliation(s)
- Xinhua Fu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xinlei Zhu
- Firefly Conservation Research Centre, Wuhan, 430070, China
| |
Collapse
|
6
|
Heron R, Amato C, Wood W, Davidson AJ. Understanding the diversity and dynamics of in vivo efferocytosis: Insights from the fly embryo. Immunol Rev 2023; 319:27-44. [PMID: 37589239 PMCID: PMC10952863 DOI: 10.1111/imr.13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
The clearance of dead and dying cells, termed efferocytosis, is a rapid and efficient process and one that is critical for organismal health. The extraordinary speed and efficiency with which dead cells are detected and engulfed by immune cells within tissues presents a challenge to researchers who wish to unravel this fascinating process, since these fleeting moments of uptake are almost impossible to catch in vivo. In recent years, the fruit fly (Drosophila melanogaster) embryo has emerged as a powerful model to circumvent this problem. With its abundance of dying cells, specialist phagocytes and relative ease of live imaging, the humble fly embryo provides a unique opportunity to catch and study the moment of cell engulfment in real-time within a living animal. In this review, we explore the recent advances that have come from studies in the fly, and how live imaging and genetics have revealed a previously unappreciated level of diversity in the efferocytic program. A variety of efferocytic strategies across the phagocytic cell population ensure efficient and rapid clearance of corpses wherever death is encountered within the varied and complex setting of a multicellular living organism.
Collapse
Affiliation(s)
- Rosalind Heron
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Clelia Amato
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Will Wood
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Andrew J. Davidson
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
- School of Cancer SciencesWolfson Wohl Cancer Research Centre, University of GlasgowGlasgowUK
| |
Collapse
|
7
|
An anti-inflammatory transcriptional cascade conserved from flies to humans. Cell Rep 2022; 41:111506. [DOI: 10.1016/j.celrep.2022.111506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/19/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022] Open
|
8
|
Luo W, Liu S, Zhang F, Zhao L, Su Y. Metabolic strategy of macrophages under homeostasis or immune stress in Drosophila. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:291-302. [PMID: 37073169 PMCID: PMC10077226 DOI: 10.1007/s42995-022-00134-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/06/2022] [Indexed: 05/03/2023]
Abstract
Macrophages are well known for their phagocytic functions in innate immunity across species. In mammals, they rapidly consume a large amount of energy by shifting their metabolism from mitochondrial oxidative phosphorylation toward aerobic glycolysis, to perform the effective bactericidal function upon infection. Meanwhile, they strive for sufficient energy resources by restricting systemic metabolism. In contrast, under nutrient deprivation, the macrophage population is down-regulated to save energy for survival. Drosophila melanogaster possesses a highly conserved and comparatively simple innate immune system. Intriguingly, recent studies have shown that Drosophila plasmatocytes, the macrophage-like blood cells, adopt comparable metabolic remodeling and signaling pathways to achieve energy reassignment when challenged by pathogens, indicating the conservation of such metabolic strategies between insects and mammals. Here, focusing on Drosophila macrophages (plasmatocytes), we review recent advances regarding their comprehensive roles in local or systemic metabolism under homeostasis or stress, emphasizing macrophages as critical players in the crosstalk between the immune system and organic metabolism from a Drosophila perspective.
Collapse
Affiliation(s)
- Wang Luo
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Sumin Liu
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Fang Zhang
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Long Zhao
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Fisheries College, Ocean University of China, Qingdao, 266003 China
- Key Laboratory of Mariculture (OUC), Ministry of Education, Qingdao, 266003 China
| | - Ying Su
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
9
|
Tse J, Li TH, Zhang J, Lee ACK, Lee I, Qu Z, Lin X, Hui J, Chan TF. Single-Cell Atlas of the Drosophila Leg Disc Identifies a Long Non-Coding RNA in Late Development. Int J Mol Sci 2022; 23:ijms23126796. [PMID: 35743238 PMCID: PMC9224501 DOI: 10.3390/ijms23126796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
The Drosophila imaginal disc has been an excellent model for the study of developmental gene regulation. In particular, long non-coding RNAs (lncRNAs) have gained widespread attention in recent years due to their important role in gene regulation. Their specific spatiotemporal expressions further support their role in developmental processes and diseases. In this study, we explored the role of a novel lncRNA in Drosophila leg development by dissecting and dissociating w1118 third-instar larval third leg (L3) discs into single cells and single nuclei, and performing single-cell RNA-sequencing (scRNA-seq) and single-cell assays for transposase-accessible chromatin (scATAC-seq). Single-cell transcriptomics analysis of the L3 discs across three developmental timepoints revealed different cell types and identified lncRNA:CR33938 as a distal specific gene with high expression in late development. This was further validated by fluorescence in-situ hybridization (FISH). The scATAC-seq results reproduced the single-cell transcriptomics landscape and elucidated the distal cell functions at different timepoints. Furthermore, overexpression of lncRNA:CR33938 in the S2 cell line increased the expression of leg development genes, further elucidating its potential role in development.
Collapse
Affiliation(s)
- Joyce Tse
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (J.T.); (T.H.L.); (J.Z.); (A.C.K.L.); (I.L.); (Z.Q.); (X.L.); (J.H.)
- State Key Lab of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Tsz Ho Li
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (J.T.); (T.H.L.); (J.Z.); (A.C.K.L.); (I.L.); (Z.Q.); (X.L.); (J.H.)
- State Key Lab of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Jizhou Zhang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (J.T.); (T.H.L.); (J.Z.); (A.C.K.L.); (I.L.); (Z.Q.); (X.L.); (J.H.)
- State Key Lab of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Alan Chun Kit Lee
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (J.T.); (T.H.L.); (J.Z.); (A.C.K.L.); (I.L.); (Z.Q.); (X.L.); (J.H.)
- State Key Lab of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Ivy Lee
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (J.T.); (T.H.L.); (J.Z.); (A.C.K.L.); (I.L.); (Z.Q.); (X.L.); (J.H.)
- State Key Lab of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Zhe Qu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (J.T.); (T.H.L.); (J.Z.); (A.C.K.L.); (I.L.); (Z.Q.); (X.L.); (J.H.)
- State Key Lab of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Xiao Lin
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (J.T.); (T.H.L.); (J.Z.); (A.C.K.L.); (I.L.); (Z.Q.); (X.L.); (J.H.)
- State Key Lab of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Jerome Hui
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (J.T.); (T.H.L.); (J.Z.); (A.C.K.L.); (I.L.); (Z.Q.); (X.L.); (J.H.)
- State Key Lab of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (J.T.); (T.H.L.); (J.Z.); (A.C.K.L.); (I.L.); (Z.Q.); (X.L.); (J.H.)
- State Key Lab of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
- Correspondence:
| |
Collapse
|
10
|
Raymond MH, Davidson AJ, Shen Y, Tudor DR, Lucas CD, Morioka S, Perry JS, Krapivkina J, Perrais D, Schumacher LJ, Campbell RE, Wood W, Ravichandran KS. Live cell tracking of macrophage efferocytosis during Drosophila embryo development in vivo. Science 2022; 375:1182-1187. [PMID: 35271315 PMCID: PMC7612538 DOI: 10.1126/science.abl4430] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Apoptosis of cells and their subsequent removal through efferocytosis occurs in nearly all tissues during development, homeostasis, and disease. However, it has been difficult to track cell death and subsequent corpse removal in vivo. We developed a genetically encoded fluorescent reporter, CharON (Caspase and pH Activated Reporter, Fluorescence ON), that could track emerging apoptotic cells and their efferocytic clearance by phagocytes. Using Drosophila expressing CharON, we uncovered multiple qualitative and quantitative features of coordinated clearance of apoptotic corpses during embryonic development. When confronted with high rates of emerging apoptotic corpses, the macrophages displayed heterogeneity in engulfment behaviors, leading to some efferocytic macrophages carrying high corpse burden. Overburdened macrophages were compromised in clearing wound debris. These findings reveal known and unexpected features of apoptosis and macrophage efferocytosis in vivo.
Collapse
Affiliation(s)
- Michael H. Raymond
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesvill, VA, USA
| | - Andrew J. Davidson
- Centre for Inflammation Research, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Yi Shen
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Daniel R. Tudor
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Christopher D. Lucas
- Centre for Inflammation Research, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Sho Morioka
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Department of Medicine, Division of Nephrology and CIIR, University of Virginia, Charlottesville, VA, USA
| | - Justin S.A. Perry
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Julia Krapivkina
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - David Perrais
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Linus J. Schumacher
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | | | - Will Wood
- Centre for Inflammation Research, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Kodi S. Ravichandran
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- VIB/UGent Inflammation Research Centre, and Biomedical Molecular Biology, Ghent University, Belgium
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
11
|
Mase A, Augsburger J, Brückner K. Macrophages and Their Organ Locations Shape Each Other in Development and Homeostasis - A Drosophila Perspective. Front Cell Dev Biol 2021; 9:630272. [PMID: 33777939 PMCID: PMC7991785 DOI: 10.3389/fcell.2021.630272] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
Across the animal kingdom, macrophages are known for their functions in innate immunity, but they also play key roles in development and homeostasis. Recent insights from single cell profiling and other approaches in the invertebrate model organism Drosophila melanogaster reveal substantial diversity among Drosophila macrophages (plasmatocytes). Together with vertebrate studies that show genuine expression signatures of macrophages based on their organ microenvironments, it is expected that Drosophila macrophage functional diversity is shaped by their anatomical locations and systemic conditions. In vivo evidence for diverse macrophage functions has already been well established by Drosophila genetics: Drosophila macrophages play key roles in various aspects of development and organogenesis, including embryogenesis and development of the nervous, digestive, and reproductive systems. Macrophages further maintain homeostasis in various organ systems and promote regeneration following organ damage and injury. The interdependence and interplay of tissues and their local macrophage populations in Drosophila have implications for understanding principles of organ development and homeostasis in a wide range of species.
Collapse
Affiliation(s)
- Anjeli Mase
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, United States
| | - Jordan Augsburger
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, United States
| | - Katja Brückner
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
12
|
Bordet G, Lodhi N, Guo D, Kossenkov A, Tulin AV. Poly(ADP-ribose) polymerase 1 in genome-wide expression control in Drosophila. Sci Rep 2020; 10:21151. [PMID: 33273587 PMCID: PMC7712786 DOI: 10.1038/s41598-020-78116-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/20/2020] [Indexed: 11/13/2022] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP-1) is a nuclear enzyme involved in DNA repair and transcription regulation, among other processes. Malignant transformations, tumor progression, the onset of some neuropathies and other disorders have been linked to misregulation of PARP-1 activity. Despite intensive studies during the last few decades, the role of PARP-1 in transcription regulation is still not well understood. In this study, a transcriptomic analysis in Drosophila melanogaster third instar larvae was carried out. A total of 602 genes were identified, showing large-scale changes in their expression levels in the absence of PARP-1 in vivo. Among these genes, several functional gene groups were present, including transcription factors and cytochrome family members. The transcription levels of genes from the same functional group were affected by the absence of PARP-1 in a similar manner. In the absence of PARP-1, all misregulated genes coding for transcription factors were downregulated, whereas all genes coding for members of the cytochrome P450 family were upregulated. The cytochrome P450 proteins contain heme as a cofactor and are involved in oxidoreduction. Significant changes were also observed in the expression of several mobile elements in the absence of PARP-1, suggesting that PARP-1 may be involved in regulating the expression of mobile elements.
Collapse
Affiliation(s)
- Guillaume Bordet
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 501 North Columbia Road, Stop 9061, Grand Forks, ND, 58202, USA
| | - Niraj Lodhi
- Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Danping Guo
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 501 North Columbia Road, Stop 9061, Grand Forks, ND, 58202, USA
| | | | - Alexei V Tulin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 501 North Columbia Road, Stop 9061, Grand Forks, ND, 58202, USA.
| |
Collapse
|
13
|
Junkunlo K, Söderhäll K, Söderhäll I. A transcription factor glial cell missing (Gcm) in the freshwater crayfish Pacifastacus leniusculus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 113:103782. [PMID: 32679114 DOI: 10.1016/j.dci.2020.103782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
The transcription factor glial cell missing, Gcm, is known to be an important protein in the determination of glial cell fate as well as embryonic plasmatocyte differentiation in Drosophila melanogaster. So far, no function for Gcm in crustaceans has been reported. In this study, we show the cDNA sequence of a Gcm homologue in the freshwater crayfish Pacifastacus leniusculus. The P. leniusculus Gcm transcript is expressed exclusively in brain and nervous tissue, and by in situ hybridization we show that the expression is restricted to a small number of large cells with morphology similar to neurosecretory cells. Furthermore, we show that the expression of Gcm coincides with the expression of a Repo homologue, that is induced in expression by Gcm in Drosophila. Moreover, the Gcm transcript is increased shortly and transiently after injection of cystamine, a substance that inhibits transglutaminase and also strongly affects the movement behavior of crayfish. This finding of Gcm transcripts in a subpopulation of brain cells in very low numbers may enable more detailed studies about Gcm in adult crustaceans.
Collapse
Affiliation(s)
- Kingkamon Junkunlo
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18 A, SE752 36, Uppsala, Sweden
| | - Kenneth Söderhäll
- Science for Life Laboratory, Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden
| | - Irene Söderhäll
- Science for Life Laboratory, Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden.
| |
Collapse
|
14
|
Tsao CK, Huang YF, Sun YH. Early lineage segregation of the retinal basal glia in the Drosophila eye disc. Sci Rep 2020; 10:18522. [PMID: 33116242 PMCID: PMC7595039 DOI: 10.1038/s41598-020-75581-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/16/2020] [Indexed: 11/09/2022] Open
Abstract
The retinal basal glia (RBG) is a group of glia that migrates from the optic stalk into the third instar larval eye disc while the photoreceptor cells (PR) are differentiating. The RBGs are grouped into three major classes based on molecular and morphological characteristics: surface glia (SG), wrapping glia (WG) and carpet glia (CG). The SGs migrate and divide. The WGs are postmitotic and wraps PR axons. The CGs have giant nucleus and extensive membrane extension that each covers half of the eye disc. In this study, we used lineage tracing methods to determine the lineage relationships among these glia subtypes and the temporal profile of the lineage decisions for RBG development. We found that the CG lineage segregated from the other RBG very early in the embryonic stage. It has been proposed that the SGs migrate under the CG membrane, which prevented SGs from contacting with the PR axons lying above the CG membrane. Upon passing the front of the CG membrane, which is slightly behind the morphogenetic furrow that marks the front of PR differentiation, the migrating SG contact the nascent PR axon, which in turn release FGF to induce SGs' differentiation into WG. Interestingly, we found that SGs are equally distributed apical and basal to the CG membrane, so that the apical SGs are not prevented from contacting PR axons by CG membrane. Clonal analysis reveals that the apical and basal RBG are derived from distinct lineages determined before they enter the eye disc. Moreover, the basal SG lack the competence to respond to FGFR signaling, preventing its differentiation into WG. Our findings suggest that this novel glia-to-glia differentiation is both dependent on early lineage decision and on a yet unidentified regulatory mechanism, which can provide spatiotemporal coordination of WG differentiation with the progressive differentiation of photoreceptor neurons.
Collapse
Affiliation(s)
- Chia-Kang Tsao
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan, ROC.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC
| | - Yu Fen Huang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan, ROC.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC.,, 64 Marvin Lane, Piscataway, NJ, 08854, USA
| | - Y Henry Sun
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan, ROC. .,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC.
| |
Collapse
|
15
|
Armitage EL, Roddie HG, Evans IR. Overexposure to apoptosis via disrupted glial specification perturbs Drosophila macrophage function and reveals roles of the CNS during injury. Cell Death Dis 2020; 11:627. [PMID: 32796812 PMCID: PMC7428013 DOI: 10.1038/s41419-020-02875-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022]
Abstract
Apoptotic cell clearance by phagocytes is a fundamental process during development, homeostasis and the resolution of inflammation. However, the demands placed on phagocytic cells such as macrophages by this process, and the limitations these interactions impose on subsequent cellular behaviours are not yet clear. Here, we seek to understand how apoptotic cells affect macrophage function in the context of a genetically tractable Drosophila model in which macrophages encounter excessive amounts of apoptotic cells. Loss of the glial-specific transcription factor Repo prevents glia from contributing to apoptotic cell clearance in the developing embryo. We show that this leads to the challenge of macrophages with large numbers of apoptotic cells in vivo. As a consequence, macrophages become highly vacuolated with cleared apoptotic cells, and their developmental dispersal and migration is perturbed. We also show that the requirement to deal with excess apoptosis caused by a loss of repo function leads to impaired inflammatory responses to injury. However, in contrast to migratory phenotypes, defects in wound responses cannot be rescued by preventing apoptosis from occurring within a repo mutant background. In investigating the underlying cause of these impaired inflammatory responses, we demonstrate that wound-induced calcium waves propagate into surrounding tissues, including neurons and glia of the ventral nerve cord, which exhibit striking calcium waves on wounding, revealing a previously unanticipated contribution of these cells during responses to injury. Taken together, these results demonstrate important insights into macrophage biology and how repo mutants can be used to study macrophage-apoptotic cell interactions in the fly embryo. Furthermore, this work shows how these multipurpose cells can be 'overtasked' to the detriment of their other functions, alongside providing new insights into which cells govern macrophage responses to injury in vivo.
Collapse
Affiliation(s)
- Emma Louise Armitage
- Department of Infection, Immunity and Cardiovascular Disease and The Bateson Centre, University of Sheffield, Sheffield, UK
| | - Hannah Grace Roddie
- Department of Infection, Immunity and Cardiovascular Disease and The Bateson Centre, University of Sheffield, Sheffield, UK
| | - Iwan Robert Evans
- Department of Infection, Immunity and Cardiovascular Disease and The Bateson Centre, University of Sheffield, Sheffield, UK.
| |
Collapse
|
16
|
Gonçalves-Pimentel C, Mazaud D, Kottler B, Proelss S, Hirth F, Fanto M. A miRNA screen procedure identifies garz as an essential factor in adult glia functions and validates Drosophila as a beneficial 3Rs model to study glial functions and GBF1 biology. F1000Res 2020; 9:317. [PMID: 32595956 PMCID: PMC7309417 DOI: 10.12688/f1000research.23154.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/21/2020] [Indexed: 03/21/2024] Open
Abstract
Invertebrate glia performs most of the key functions controlled by mammalian glia in the nervous system and provides an ideal model for genetic studies of glial functions. To study the influence of adult glial cells in ageing we have performed a genetic screen in Drosophila using a collection of transgenic lines providing conditional expression of micro-RNAs (miRNAs). Here, we describe a methodological algorithm to identify and rank genes that are candidate to be targeted by miRNAs that shorten lifespan when expressed in adult glia. We have used four different databases for miRNA target prediction in Drosophila but find little agreement between them, overall. However, top candidate gene analysis shows potential to identify essential genes involved in adult glial functions. One example from our top candidates' analysis is gartenzwerg ( garz). We establish that garz is necessary in many glial cell types, that it affects motor behaviour and, at the sub-cellular level, is responsible for defects in cellular membranes, autophagy and mitochondria quality control. We also verify the remarkable conservation of functions between garz and its mammalian orthologue, GBF1, validating the use of Drosophila as an alternative 3Rs-beneficial model to knock-out mice for studying the biology of GBF1, potentially involved in human neurodegenerative diseases.
Collapse
Affiliation(s)
- Catarina Gonçalves-Pimentel
- Department of Basic and Clinical Neuroscience, King's College London, London, SE5 9NU, UK
- Champalimaud Research, Champalimaud Foundation, Av. Brasília, Lisbon, 1400-038, Portugal
| | - David Mazaud
- Department of Basic and Clinical Neuroscience, King's College London, London, SE5 9NU, UK
| | - Benjamin Kottler
- Department of Basic and Clinical Neuroscience, King's College London, London, SE5 9NU, UK
| | - Sandra Proelss
- Department of Basic and Clinical Neuroscience, King's College London, London, SE5 9NU, UK
| | - Frank Hirth
- Department of Basic and Clinical Neuroscience, King's College London, London, SE5 9NU, UK
| | - Manolis Fanto
- Department of Basic and Clinical Neuroscience, King's College London, London, SE5 9NU, UK
- Institut du Cerveau et de la Moelle épinière (ICM), 47, bd de l'hôpital, Paris, F-75013, France
| |
Collapse
|
17
|
Gonçalves-Pimentel C, Mazaud D, Kottler B, Proelss S, Hirth F, Fanto M. A miRNA screen procedure identifies garz as an essential factor in adult glia functions and validates Drosophila as a beneficial 3Rs model to study glial functions and GBF1 biology. F1000Res 2020; 9:317. [PMID: 32595956 PMCID: PMC7309417 DOI: 10.12688/f1000research.23154.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2020] [Indexed: 11/25/2022] Open
Abstract
Invertebrate glia performs most of the key functions controlled by mammalian glia in the nervous system and provides an ideal model for genetic studies of glial functions. To study the influence of adult glial cells in ageing we have performed a genetic screen in Drosophila using a collection of transgenic lines providing conditional expression of micro-RNAs (miRNAs). Here, we describe a methodological algorithm to identify and rank genes that are candidate to be targeted by miRNAs that shorten lifespan when expressed in adult glia. We have used four different databases for miRNA target prediction in Drosophila but find little agreement between them, overall. However, top candidate gene analysis shows potential to identify essential genes involved in adult glial functions. One example from our top candidates' analysis is gartenzwerg ( garz). We establish that garz is necessary in many glial cell types, that it affects motor behaviour and, at the sub-cellular level, is responsible for defects in cellular membranes, autophagy and mitochondria quality control. We also verify the remarkable conservation of functions between garz and its mammalian orthologue, GBF1, validating the use of Drosophila as an alternative 3Rs-beneficial model to knock-out mice for studying the biology of GBF1, potentially involved in human neurodegenerative diseases.
Collapse
Affiliation(s)
- Catarina Gonçalves-Pimentel
- Department of Basic and Clinical Neuroscience, King's College London, London, SE5 9NU, UK
- Champalimaud Research, Champalimaud Foundation, Av. Brasília, Lisbon, 1400-038, Portugal
| | - David Mazaud
- Department of Basic and Clinical Neuroscience, King's College London, London, SE5 9NU, UK
| | - Benjamin Kottler
- Department of Basic and Clinical Neuroscience, King's College London, London, SE5 9NU, UK
| | - Sandra Proelss
- Department of Basic and Clinical Neuroscience, King's College London, London, SE5 9NU, UK
| | - Frank Hirth
- Department of Basic and Clinical Neuroscience, King's College London, London, SE5 9NU, UK
| | - Manolis Fanto
- Department of Basic and Clinical Neuroscience, King's College London, London, SE5 9NU, UK
- Institut du Cerveau et de la Moelle épinière (ICM), 47, bd de l'hôpital, Paris, F-75013, France
| |
Collapse
|
18
|
Crews ST. Drosophila Embryonic CNS Development: Neurogenesis, Gliogenesis, Cell Fate, and Differentiation. Genetics 2019; 213:1111-1144. [PMID: 31796551 PMCID: PMC6893389 DOI: 10.1534/genetics.119.300974] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/26/2019] [Indexed: 01/04/2023] Open
Abstract
The Drosophila embryonic central nervous system (CNS) is a complex organ consisting of ∼15,000 neurons and glia that is generated in ∼1 day of development. For the past 40 years, Drosophila developmental neuroscientists have described each step of CNS development in precise molecular genetic detail. This has led to an understanding of how an intricate nervous system emerges from a single cell. These studies have also provided important, new concepts in developmental biology, and provided an essential model for understanding similar processes in other organisms. In this article, the key genes that guide Drosophila CNS development and how they function is reviewed. Features of CNS development covered in this review are neurogenesis, gliogenesis, cell fate specification, and differentiation.
Collapse
Affiliation(s)
- Stephen T Crews
- Department of Biochemistry and Biophysics, Integrative Program for Biological and Genome Sciences, School of Medicine, The University of North Carolina at Chapel Hill, North Carolina 27599
| |
Collapse
|
19
|
Transcriptional Regulation of the Glutamate/GABA/Glutamine Cycle in Adult Glia Controls Motor Activity and Seizures in Drosophila. J Neurosci 2019; 39:5269-5283. [PMID: 31064860 PMCID: PMC6607755 DOI: 10.1523/jneurosci.1833-18.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 01/23/2023] Open
Abstract
The fruitfly Drosophila melanogaster has been extensively used as a genetic model for the maintenance of nervous system's functions. Glial cells are of utmost importance in regulating the neuronal functions in the adult organism and in the progression of neurological pathologies. Through a microRNA-based screen in adult Drosophila glia, we uncovered the essential role of a major glia developmental determinant, repo, in the adult fly. Here, we report that Repo expression is continuously required in adult glia to transcriptionally regulate the highly conserved function of neurotransmitter recycling in both males and females. Transient loss of Repo dramatically shortens fly lifespan, triggers motor deficits, and increases the sensibility to seizures, partly due to the impairment of the glutamate/GABA/glutamine cycle. Our findings highlight the pivotal role of transcriptional regulation of genes involved in the glutamate/GABA/glutamine cycle in glia to control neurotransmitter levels in neurons and their behavioral output. The mechanism identified here in Drosophila exemplifies how adult functions can be modulated at the transcriptional level and suggest an active synchronized regulation of genes involved in the same pathway. The process of neurotransmitter recycling is of essential importance in human epileptic and psychiatric disorders and our findings may thus have important consequences for the understanding of the role that transcriptional regulation of neurotransmitter recycling in astrocytes has in human disease. SIGNIFICANCE STATEMENT Glial cells are an essential support to neurons in adult life and have been involved in a number of neurological disorders. What controls the maintenance and modulation of glial functions in adult life is not fully characterized. Through a miR overexpression screen in adult glia in Drosophila, we identify an essential role in adult glia of repo, which directs glial differentiation during embryonic development. Repo levels modulate, via transcriptional regulation, the ability of glial cells to support neurons in the glutamate/GABA/glutamine cycle. This leads to significant abnormalities in motor behavior as assessed through a novel automated paradigm. Our work points to the importance of transcriptional regulation in adult glia for neurotransmitter recycling, a key process in several human neurological disorders.
Collapse
|