1
|
Ossola C, Kalebic N. Roots of the Malformations of Cortical Development in the Cell Biology of Neural Progenitor Cells. Front Neurosci 2022; 15:817218. [PMID: 35069108 PMCID: PMC8766818 DOI: 10.3389/fnins.2021.817218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
The cerebral cortex is a structure that underlies various brain functions, including cognition and language. Mammalian cerebral cortex starts developing during the embryonic period with the neural progenitor cells generating neurons. Newborn neurons migrate along progenitors’ radial processes from the site of their origin in the germinal zones to the cortical plate, where they mature and integrate in the forming circuitry. Cell biological features of neural progenitors, such as the location and timing of their mitoses, together with their characteristic morphologies, can directly or indirectly regulate the abundance and the identity of their neuronal progeny. Alterations in the complex and delicate process of cerebral cortex development can lead to malformations of cortical development (MCDs). They include various structural abnormalities that affect the size, thickness and/or folding pattern of the developing cortex. Their clinical manifestations can entail a neurodevelopmental disorder, such as epilepsy, developmental delay, intellectual disability, or autism spectrum disorder. The recent advancements of molecular and neuroimaging techniques, along with the development of appropriate in vitro and in vivo model systems, have enabled the assessment of the genetic and environmental causes of MCDs. Here we broadly review the cell biological characteristics of neural progenitor cells and focus on those features whose perturbations have been linked to MCDs.
Collapse
|
2
|
Haploinsufficiency of ARFGEF1 is associated with developmental delay, intellectual disability, and epilepsy with variable expressivity. Genet Med 2021; 23:1901-1911. [PMID: 34113008 DOI: 10.1038/s41436-021-01218-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 11/08/2022] Open
Abstract
PURPOSE ADP ribosylation factor guanine nucleotide exchange factors (ARFGEFs) are a family of proteins implicated in cellular trafficking between the Golgi apparatus and the plasma membrane through vesicle formation. Among them is ARFGEF1/BIG1, a protein involved in axon elongation, neurite development, and polarization processes. ARFGEF1 has been previously suggested as a candidate gene for different types of epilepsies, although its implication in human disease has not been well characterized. METHODS International data sharing, in silico predictions, and in vitro assays with minigene study, western blot analyses, and RNA sequencing. RESULTS We identified 13 individuals with heterozygous likely pathogenic variants in ARFGEF1. These individuals displayed congruent clinical features of developmental delay, behavioral problems, abnormal findings on brain magnetic resonance image (MRI), and epilepsy for almost half of them. While nearly half of the cohort carried de novo variants, at least 40% of variants were inherited from mildly affected parents who were clinically re-evaluated by reverse phenotyping. Our in silico predictions and in vitro assays support the contention that ARFGEF1-related conditions are caused by haploinsufficiency, and are transmitted in an autosomal dominant fashion with variable expressivity. CONCLUSION We provide evidence that loss-of-function variants in ARFGEF1 are implicated in sporadic and familial cases of developmental delay with or without epilepsy.
Collapse
|
3
|
Zhou J, Kang X, An H, Lv Y, Liu X. The function and pathogenic mechanism of filamin A. Gene 2021; 784:145575. [PMID: 33737122 DOI: 10.1016/j.gene.2021.145575] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022]
Abstract
Filamin A(FLNa) is an actin-binding protein, which participates in the formation of the cytoskeleton, anchors a variety of proteins in the cytoskeleton and regulates cell adhesion and migration. It is involved in signal transduction, cell proliferation and differentiation, pseudopodia formation, vesicle transport, tumor resistance and genetic diseases by binding with interacting proteins. In order to fully elucidate the structure, function and pathogenesis of FLNa, we summarized all substances which directly or indirectly act on FLNa so far, upstream and downstream targets which having effect on it, signaling pathways and their functions. It also recorded the expression and effect of FLNa in different diseases, including hereditary disease and tumors.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China.
| | - Xinmei Kang
- Department of Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China.
| | - Hanxiang An
- Department of Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China.
| | - Yun Lv
- Department of Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China.
| | - Xin Liu
- Department of Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China.
| |
Collapse
|
4
|
Lian G, Chenn A, Ekuta V, Kanaujia S, Sheen V. Formin 2 Regulates Lysosomal Degradation of Wnt-Associated β-Catenin in Neural Progenitors. Cereb Cortex 2020; 29:1938-1952. [PMID: 29659741 DOI: 10.1093/cercor/bhy073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/14/2018] [Accepted: 03/13/2018] [Indexed: 01/07/2023] Open
Abstract
Although neural progenitor proliferation along the ventricular zone is regulated by β-catenin through Wnt signaling, the cytoskeletal mechanisms that regulate expression and localization of these proteins are not well understood. Our prior studies have shown that loss of the actin-binding Filamin A (FlnA) and actin-nucleating protein Formin 2 (Fmn2) impairs endocytosis of low-density-lipoprotein-receptor-related protein 6 (Lrp6), thereby disrupting β-catenin activation, resulting in decreased brain size. Here, we report that activated RhoA-GTPase disengages Fmn2 N- to C-terminal binding to promote Fmn2 activation and redistribution into lysosomal vesicles. Fmn2 colocalizes with β-catenin in lysosomes and promotes its degradation. Further, Fmn2 binds the E3 ligase Smurf2, enhances Smurf2-dependent ubiquitination, and degradation of Dishevelled-2 (Dvl2), thereby initiates β-catenin degradation. Finally, Fmn2 overexpression disrupts neuroepithelial integrity, neuronal migration, and proliferation-phenotypes in E13 mouse embryos, as seen with loss of Fmn2+FlnA function. Conversely, co-expression of Dvl2 with Fmn2 rescues the proliferation defect due to Fmn2 overexpression in mouse embryos. These findings suggest that there is a homeostatic feedback mechanism in the cytoskeletal-dependent regulation of neural proliferation within the cerebral cortex. Upstream, Fmn2 promotes proliferation by stabilizing the Lrp6 receptor, leading to β-catenin activation. Downstream, RhoA-activated Fmn2 promotes lysosomal degradation of Dvl2, leading to β-catenin degradation.
Collapse
Affiliation(s)
- Gewei Lian
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Anjen Chenn
- Department of Pathology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Victor Ekuta
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Sneha Kanaujia
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Volney Sheen
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Lian G, Wong T, Lu J, Hu J, Zhang J, Sheen V. Cytoskeletal Associated Filamin A and RhoA Affect Neural Progenitor Specification During Mitosis. Cereb Cortex 2020; 29:1280-1290. [PMID: 29462287 DOI: 10.1093/cercor/bhy033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Indexed: 12/23/2022] Open
Abstract
Neural progenitor proliferation and cell fate decision from self-renewal to differentiation are crucial factors in determining brain size and morphology. The cytoskeletal dependent regulation of these processes is not entirely known. The actin-binding filamin A (FlnA) was shown to regulate proliferation of progenitors by directing changes in cell cycles proteins such as Cdk1 during G2/M phase. Here we report that functional loss of FlnA not only affects the rate of proliferation by altering cell cycle length but also causes a defect in early differentiation through changes in cell fate specification. FlnA interacts with Rho GTPase RhoA, and FlnA loss impairs RhoA activation. Disruption of either of these cytoskeletal associated proteins delays neurogenesis and promotes neural progenitors to remain in proliferative states. Aurora kinase B (Aurkb) has been implicated in cytokinesis, and peaks in expression during the G2/M phase. Inhibition of FlnA or RhoA impairs Aurkb degradation and alters its localization during mitosis. Overexpression of Aurkb replicates the same delay in neurogenesis seen with loss of FlnA or RhoA. Our findings suggest that shared cytoskeletal processes can direct neural progenitor proliferation by regulating the expression and localization of proteins that are implicated in the cell cycle progression and cell fate specification.
Collapse
Affiliation(s)
- Gewei Lian
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Timothy Wong
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Jie Lu
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Jianjun Hu
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Jingping Zhang
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Volney Sheen
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Mangili F, Treppiedi D, Catalano R, Marra G, Di Muro G, Spada A, Arosio M, Peverelli E, Mantovani G. A Novel Mechanism Regulating Dopamine Receptor Type 2 Signal Transduction in Pituitary Tumoral Cells: The Role of cAMP/PKA-Induced Filamin A Phosphorylation. Front Endocrinol (Lausanne) 2020; 11:611752. [PMID: 33664708 PMCID: PMC7921166 DOI: 10.3389/fendo.2020.611752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
The actin binding protein filamin A (FLNA) is required for somatostatin receptor 2 (SSTR2) and dopamine receptor 2 (DRD2) expression and signaling in GH- and PRL-secreting PitNETs, respectively, playing a role in tumor responsiveness to somatostatin receptors ligands and dopaminergic drugs. FLNA functions are regulated by several mechanisms, including phosphorylation. It has been shown that in GH-secreting PitNETs FLNA phosphorylation on Ser2152 (P-FLNA) switches FLNA function from a scaffold that allows SSTR2 signal transduction, to a signal termination protein that hampers SSTR2 antitumoral effects. Aims of the present study were to evaluate in PRL- and ACTH-secreting PitNETs cell lines MMQ and AtT-20 the effects of cAMP pathway activation and DRD2 agonist on P-FLNA and the impact of P-FLNA on DRD2 signal transduction. We found that forskolin increased (+2.2 ± 0.8-fold, p < 0.01 in MMQ; +1.9 ± 0.58-fold, p < 0.05 in AtT-20), and DRD2 agonist BIM53097 reduced (-49.4 ± 25%, p < 0.001 in MMQ; -45.8 ± 28%, p < 0.05 in AtT-20), P-FLNA on Ser2152. The overexpression of a phosphomimetic (S2152D) FLNA mutant in both cell lines prevented DRD2 antiproliferative effects, that were comparable in cells transfected with empty vector, wild-type FLNA as well as phosphodeficient FLNA mutant (S2152A) (-20.6 ± 5% cell proliferation, p < 0.001 in MMQ; -36.6 ± 12%, p < 0.01 in AtT-20). Accordingly, S2152D FLNA expression abolished the expected ability of BIM53097 to increase or decrease, in MMQ and in AtT20 respectively, ERK phosphorylation, an effect that was maintained in S2152A FLNA expressing cells (+1.8 ± 0.65-fold, p < 0.05 in MMQ; -55 ± 13%, p < 0.01 in AtT-20). In addition, the inhibitory effects of DRD2 on hormone secretion (-34.3 ± 6% PRL, p < 0.05 in MMQ; -42.8 ± 22% ACTH, p < 0.05 in AtT-20, in cells expressing S2152A FLNA) were completely lost in S2152D FLNA transfected cells. In conclusion, our data demonstrated that cAMP pathway and DRD2 agonist regulated FLNA activity by increasing or decreasing, respectively, its phosphorylation. Moreover, we found that P-FLNA prevented DRD2 signaling in PRL- and ACTH-secreting tumoral pituitary cell lines, suggesting that this FLNA modification might represent a new regulatory mechanism shared by different GPCRs. In PitNETs expressing DRD2, modulation of P-FLNA might suggest new pharmacological strategies to overcome drug resistance, and P-FLNA might represent a new biomarker for tumor responsiveness to dopaminergic agents.
Collapse
Affiliation(s)
- Federica Mangili
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Donatella Treppiedi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Rosa Catalano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giusy Marra
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Genesio Di Muro
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Anna Spada
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Maura Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Erika Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- *Correspondence: Erika Peverelli,
| | - Giovanna Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
7
|
Mantovani G, Treppiedi D, Giardino E, Catalano R, Mangili F, Vercesi P, Arosio M, Spada A, Peverelli E. Cytoskeleton actin-binding proteins in clinical behavior of pituitary tumors. Endocr Relat Cancer 2019; 26:R95-R108. [PMID: 30589642 DOI: 10.1530/erc-18-0442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/04/2018] [Indexed: 12/16/2022]
Abstract
Although generally benign, pituitary tumors are frequently locally invasive, with reduced success of neurosurgery and unresponsive to pharmacological treatment with somatostatin or dopamine analogues. The molecular basis of the different biological behavior of pituitary tumors are still poorly identified, but a body of work now suggests that the activity of specific cytoskeleton proteins is a key factor regulating both the invasiveness and drug resistance of these tumors. This review recapitulates the experimental evidence supporting a role for the actin-binding protein filamin A (FLNA) in the regulation of somatostatin and dopamine receptors expression and signaling in pituitary tumors, thus in determining the responsiveness to currently used drugs, somatostatin analogues and dopamine receptor type 2 agonists. Regarding the regulation of invasive behavior of pituitary tumoral cells, we bring evidence to the role of the actin-severing protein cofilin, whose activation status may be modulated by dopaminergic and somatostatinergic drugs, through FLNA involvement. Molecular mechanisms involved in the regulation of FLNA expression and function in pituitary tumors will also be discussed.
Collapse
Affiliation(s)
- G Mantovani
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - D Treppiedi
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - E Giardino
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - R Catalano
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- PhD Program in Endocrinological Sciences, Sapienza University of Rome, Rome, Italy
| | - F Mangili
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - P Vercesi
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - M Arosio
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - A Spada
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - E Peverelli
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
8
|
cAMP/PKA-induced filamin A (FLNA) phosphorylation inhibits SST2 signal transduction in GH-secreting pituitary tumor cells. Cancer Lett 2018; 435:101-109. [PMID: 30098401 DOI: 10.1016/j.canlet.2018.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 12/17/2022]
Abstract
An efficient intracellular response to somatostatin analogs (SSA) in pituitary tumors requires filamin A (FLNA). Since cAMP pathway plays an important role in GH-secreting pituitary tumors pathogenesis and FLNA is phosphorylated by PKA on S2152, aim of this study was to investigate in tumoral somatotrophs the impact of cAMP pathway activation and SSA stimulation on FLNA phosphorylation and the consequences on SST2 function. We found a PKA-mediated increase (2-fold) and SST2 agonist-induced decrease (-50%) of FLNA phosphorylation in GH3, GH4C1 and primary somatotroph tumor cells. This modification regulates FLNA function. Indeed, phosphomimetic S2152D FLNA mutant, but not phosphodeficient S2152A, abolished the known SSA antitumoral effects, namely: 1) inhibition of cell proliferation, reduction of cyclin D3 and increase of p27; 2) increase of cell apoptosis; 3) inhibition of cell migration via RhoA activation and cofilin phosphorylation. Coimmunoprecipitation and immunofluorescence assays showed that S2152A FLNA was recruited to activated SST2, whereas S2152D FLNA constitutively bound SST2 on the plasma membrane, but prevented Gαi proteins recruitment to SST2. In conclusion, we demonstrated that FLNA phosphorylation, promoted by cAMP pathway activation and inhibited by SSA, prevented SST2 signaling in GH-secreting tumoral pituitary cells.
Collapse
|
9
|
Lorenz-Guertin JM, Jacob TC. GABA type a receptor trafficking and the architecture of synaptic inhibition. Dev Neurobiol 2018; 78:238-270. [PMID: 28901728 PMCID: PMC6589839 DOI: 10.1002/dneu.22536] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 12/21/2022]
Abstract
Ubiquitous expression of GABA type A receptors (GABAA R) in the central nervous system establishes their central role in coordinating most aspects of neural function and development. Dysregulation of GABAergic neurotransmission manifests in a number of human health disorders and conditions that in certain cases can be alleviated by drugs targeting these receptors. Precise changes in the quantity or activity of GABAA Rs localized at the cell surface and at GABAergic postsynaptic sites directly impact the strength of inhibition. The molecular mechanisms constituting receptor trafficking to and from these compartments therefore dictate the efficacy of GABAA R function. Here we review the current understanding of how GABAA Rs traffic through biogenesis, plasma membrane transport, and degradation. Emphasis is placed on discussing novel GABAergic synaptic proteins, receptor and scaffolding post-translational modifications, activity-dependent changes in GABAA R confinement, and neuropeptide and neurosteroid mediated changes. We further highlight modern techniques currently advancing the knowledge of GABAA R trafficking and clinically relevant neurodevelopmental diseases connected to GABAergic dysfunction. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 238-270, 2018.
Collapse
Affiliation(s)
- Joshua M Lorenz-Guertin
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| |
Collapse
|
10
|
BIG2-ARF1-RhoA-mDia1 Signaling Regulates Dendritic Golgi Polarization in Hippocampal Neurons. Mol Neurobiol 2018; 55:7701-7716. [PMID: 29455446 DOI: 10.1007/s12035-018-0954-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/05/2018] [Indexed: 01/08/2023]
Abstract
Proper dendrite development is essential for establishing neural circuitry, and Rho GTPases play key regulatory roles in this process. From mouse brain lysates, we identified Brefeldin A-inhibited guanine exchange factor 2 (BIG2) as a novel Rho GTPase regulatory protein involved in dendrite growth and maintenance. BIG2 was highly expressed during early development, and knockdown of the ARFGEF2 gene encoding BIG2 significantly reduced total dendrite length and the number of branches. Expression of the constitutively active ADP-ribosylation factor 1 ARF1 Q71L rescued the defective dendrite morphogenesis of ARFGEF2-null neurons, indicating that BIG2 controls dendrite growth and maintenance by activating ARF1. Moreover, BIG2 co-localizes with the Golgi apparatus and is required for Golgi deployment into major dendrites in cultured hippocampal neurons. Simultaneous overexpression of BIG2 and ARF1 activated RhoA, and treatment with the RhoA activator lysophosphatidic acid in neurons lacking BIG2 or ARF1 increased the number of cells with dendritic Golgi, suggesting that BIG2 and ARF1 activate RhoA to promote dendritic Golgi polarization. mDia1 was identified as a downstream effector of BIG2-ARF1-RhoA axis, mediating Golgi polarization and dendritic morphogenesis. Furthermore, in utero electroporation of ARFGEF2 shRNA into the embryonic mouse brain confirmed an in vivo role of BIG2 for Golgi deployment into the apical dendrite. Taken together, our results suggest that BIG2-ARF1-RhoA-mDia1 signaling regulates dendritic Golgi polarization and dendrite growth and maintenance in hippocampal neurons.
Collapse
|
11
|
Lopez JJ, Albarrán L, Jardín I, Sanchez-Collado J, Redondo PC, Bermejo N, Bobe R, Smani T, Rosado JA. Filamin A Modulates Store-Operated Ca2+Entry by Regulating STIM1 (Stromal Interaction Molecule 1)–Orai1 Association in Human Platelets. Arterioscler Thromb Vasc Biol 2018; 38:386-397. [PMID: 29284605 DOI: 10.1161/atvbaha.117.310139] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 12/13/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Jose J. Lopez
- From the Department of Physiology, University of Extremadura, Cáceres, Spain (J.J.L., L.A., I.J., J.S.-C., P.C.R., J.A.R.); Department of Hematology, Hospital San Pedro de Alcantara, Cáceres, Spain (N.B.); INSERM Unité Mixte de Recherche-Santé 1176, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France (R.B.); and Department of Medical Physiology and Biophysics, Institute of Biomedicine of Seville, University of Seville, Spain (T.S.)
| | - Letizia Albarrán
- From the Department of Physiology, University of Extremadura, Cáceres, Spain (J.J.L., L.A., I.J., J.S.-C., P.C.R., J.A.R.); Department of Hematology, Hospital San Pedro de Alcantara, Cáceres, Spain (N.B.); INSERM Unité Mixte de Recherche-Santé 1176, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France (R.B.); and Department of Medical Physiology and Biophysics, Institute of Biomedicine of Seville, University of Seville, Spain (T.S.)
| | - Isaac Jardín
- From the Department of Physiology, University of Extremadura, Cáceres, Spain (J.J.L., L.A., I.J., J.S.-C., P.C.R., J.A.R.); Department of Hematology, Hospital San Pedro de Alcantara, Cáceres, Spain (N.B.); INSERM Unité Mixte de Recherche-Santé 1176, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France (R.B.); and Department of Medical Physiology and Biophysics, Institute of Biomedicine of Seville, University of Seville, Spain (T.S.)
| | - Jose Sanchez-Collado
- From the Department of Physiology, University of Extremadura, Cáceres, Spain (J.J.L., L.A., I.J., J.S.-C., P.C.R., J.A.R.); Department of Hematology, Hospital San Pedro de Alcantara, Cáceres, Spain (N.B.); INSERM Unité Mixte de Recherche-Santé 1176, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France (R.B.); and Department of Medical Physiology and Biophysics, Institute of Biomedicine of Seville, University of Seville, Spain (T.S.)
| | - Pedro C. Redondo
- From the Department of Physiology, University of Extremadura, Cáceres, Spain (J.J.L., L.A., I.J., J.S.-C., P.C.R., J.A.R.); Department of Hematology, Hospital San Pedro de Alcantara, Cáceres, Spain (N.B.); INSERM Unité Mixte de Recherche-Santé 1176, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France (R.B.); and Department of Medical Physiology and Biophysics, Institute of Biomedicine of Seville, University of Seville, Spain (T.S.)
| | - Nuria Bermejo
- From the Department of Physiology, University of Extremadura, Cáceres, Spain (J.J.L., L.A., I.J., J.S.-C., P.C.R., J.A.R.); Department of Hematology, Hospital San Pedro de Alcantara, Cáceres, Spain (N.B.); INSERM Unité Mixte de Recherche-Santé 1176, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France (R.B.); and Department of Medical Physiology and Biophysics, Institute of Biomedicine of Seville, University of Seville, Spain (T.S.)
| | - Regis Bobe
- From the Department of Physiology, University of Extremadura, Cáceres, Spain (J.J.L., L.A., I.J., J.S.-C., P.C.R., J.A.R.); Department of Hematology, Hospital San Pedro de Alcantara, Cáceres, Spain (N.B.); INSERM Unité Mixte de Recherche-Santé 1176, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France (R.B.); and Department of Medical Physiology and Biophysics, Institute of Biomedicine of Seville, University of Seville, Spain (T.S.)
| | - Tarik Smani
- From the Department of Physiology, University of Extremadura, Cáceres, Spain (J.J.L., L.A., I.J., J.S.-C., P.C.R., J.A.R.); Department of Hematology, Hospital San Pedro de Alcantara, Cáceres, Spain (N.B.); INSERM Unité Mixte de Recherche-Santé 1176, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France (R.B.); and Department of Medical Physiology and Biophysics, Institute of Biomedicine of Seville, University of Seville, Spain (T.S.)
| | - Juan A. Rosado
- From the Department of Physiology, University of Extremadura, Cáceres, Spain (J.J.L., L.A., I.J., J.S.-C., P.C.R., J.A.R.); Department of Hematology, Hospital San Pedro de Alcantara, Cáceres, Spain (N.B.); INSERM Unité Mixte de Recherche-Santé 1176, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France (R.B.); and Department of Medical Physiology and Biophysics, Institute of Biomedicine of Seville, University of Seville, Spain (T.S.)
| |
Collapse
|
12
|
Lian G, Kanaujia S, Wong T, Sheen V. FilaminA and Formin2 regulate skeletal, muscular, and intestinal formation through mesenchymal progenitor proliferation. PLoS One 2017; 12:e0189285. [PMID: 29240780 PMCID: PMC5730144 DOI: 10.1371/journal.pone.0189285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/23/2017] [Indexed: 11/29/2022] Open
Abstract
The effects of actin dependent molecular mechanisms in coordinating cellular proliferation, migration and differentiation during embryogenesis are not well-understood. We have previously shown that actin-binding Filamin A (FlnA) and actin-nucleating Formin 2 (Fmn2) influence the development of the brain causing microcephaly in mice. In this study, we broaden this phenotype to explore the effects of these two proteins in the development of extra-CNS organ systems, including the gut, muscle, and skeleton. We observed defects in rib and sternum midline closure leading to thoracoabdominal schisis in FlnA+Fmn2 knockout mice, reminiscent of the pentalogy of Cantrell syndrome. These mice exhibit shortened guts, as well as thinned thoracic muscle mass. Immunostaining showed these changes are partially caused by a decrease in the number of presumptive mesenchymal proliferating cells with loss of either FlnA or FlnA+Fmn2. This proliferation defect appears to be in part due to delayed differentiation in these regions. While both FlnA and FlnA+Fmn2 mice show reduced cell death relative to WT control, increased caspase staining was seen in the double null relative to FlnA null suggesting that this could also contribute to the FlnA+Fmn2 phenotype. Therefore FlnA and Fmn2 are likely essential to cell proliferation, differentiation and cell death in a variety of tissues and organs, further reiterating the importance of vesicle trafficking in regulation of development.
Collapse
Affiliation(s)
- Gewei Lian
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States of America
| | - Sneha Kanaujia
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States of America
| | - Timothy Wong
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States of America
| | - Volney Sheen
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
13
|
Kasioulis I, Das RM, Storey KG. Inter-dependent apical microtubule and actin dynamics orchestrate centrosome retention and neuronal delamination. eLife 2017; 6:e26215. [PMID: 29058679 PMCID: PMC5653239 DOI: 10.7554/elife.26215] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 09/11/2017] [Indexed: 12/27/2022] Open
Abstract
Detachment of newborn neurons from the neuroepithelium is required for correct neuronal architecture and functional circuitry. This process, also known as delamination, involves adherens-junction disassembly and acto-myosin-mediated abscission, during which the centrosome is retained while apical/ciliary membranes are shed. Cell-biological mechanisms mediating delamination are, however, poorly understood. Using live-tissue and super-resolution imaging, we uncover a centrosome-nucleated wheel-like microtubule configuration, aligned with the apical actin cable and adherens-junctions within chick and mouse neuroepithelial cells. These microtubules maintain adherens-junctions while actin maintains microtubules, adherens-junctions and apical end-foot dimensions. During neuronal delamination, acto-myosin constriction generates a tunnel-like actin-microtubule configuration through which the centrosome translocates. This movement requires inter-dependent actin and microtubule activity, and we identify drebrin as a potential coordinator of these cytoskeletal dynamics. Furthermore, centrosome compromise revealed that this organelle is required for delamination. These findings identify new cytoskeletal configurations and regulatory relationships that orchestrate neuronal delamination and may inform mechanisms underlying pathological epithelial cell detachment.
Collapse
Affiliation(s)
- Ioannis Kasioulis
- Division of Cell and Developmental Biology, School of Life SciencesUniversity of DundeeDundeeUnited Kingdom
| | - Raman M Das
- Division of Cell and Developmental Biology, School of Life SciencesUniversity of DundeeDundeeUnited Kingdom
| | - Kate G Storey
- Division of Cell and Developmental Biology, School of Life SciencesUniversity of DundeeDundeeUnited Kingdom
| |
Collapse
|
14
|
Hu J, Lu J, Goyal A, Wong T, Lian G, Zhang J, Hecht JL, Feng Y, Sheen VL. Opposing FlnA and FlnB interactions regulate RhoA activation in guiding dynamic actin stress fiber formation and cell spreading. Hum Mol Genet 2017; 26:1294-1304. [PMID: 28175289 DOI: 10.1093/hmg/ddx047] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/02/2017] [Indexed: 12/26/2022] Open
Abstract
Filamins are a family of actin-binding proteins responsible for diverse biological functions in the context of regulating actin dynamics and vesicle trafficking. Disruption of these proteins has been implicated in multiple human developmental disorders. To investigate the roles of different filamin isoforms, we focused on FlnA and FlnB interactions in the cartilage growth plate, since mutations in both molecules cause chondrodysplasias. Current studies show that FlnA and FlnB share a common function in stabilizing the actin cytoskeleton, they physically interact in the cytoplasm of chondrocytes, and loss of FlnA enhances FlnB expression of chondrocytes in the growth plate (and vice versa), suggesting compensation. Prolonged FlnB loss, however, promotes actin-stress fiber formation following plating onto an integrin activating substrate whereas FlnA inhibition leads to decreased actin formation. FlnA more strongly binds RhoA, although both filamins overlap with RhoA expression in the cell cytoplasm. FlnA promotes RhoA activation whereas FlnB indirectly inhibits this pathway. Moreover, FlnA loss leads to diminished expression of β1-integrin, whereas FlnB loss promotes integrin expression. Finally, fibronectin mediated integrin activation has been shown to activate RhoA and activated RhoA leads to stress fiber formation and cell spreading. Fibronectin stimulation in null FlnA cells impairs enhanced spreading whereas FlnB inhibited cells show enhanced spreading. While filamins serve a primary static function in stabilization of the actin cytoskeleton, these studies are the first to demonstrate a dynamic and antagonistic relationship between different filamin isoforms in the dynamic regulation of integrin expression, RhoGTPase activity and actin stress fiber remodeling.
Collapse
Affiliation(s)
- Jianjun Hu
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Jie Lu
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Akshay Goyal
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Timothy Wong
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Gewei Lian
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Jingping Zhang
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan L Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Yuanyi Feng
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Volney L Sheen
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
15
|
Teoh JJ, Iwano T, Kunii M, Atik N, Avriyanti E, Yoshimura SI, Moriwaki K, Harada A. BIG1 is required for the survival of deep layer neurons, neuronal polarity, and the formation of axonal tracts between the thalamus and neocortex in developing brain. PLoS One 2017; 12:e0175888. [PMID: 28414797 PMCID: PMC5393877 DOI: 10.1371/journal.pone.0175888] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/02/2017] [Indexed: 12/17/2022] Open
Abstract
BIG1, an activator protein of the small GTPase, Arf, and encoded by the Arfgef1 gene, is one of candidate genes for epileptic encephalopathy. To know the involvement of BIG1 in epileptic encephalopathy, we analyzed BIG1-deficient mice and found that BIG1 regulates neurite outgrowth and brain development in vitro and in vivo. The loss of BIG1 decreased the size of the neocortex and hippocampus. In BIG1-deficient mice, the neuronal progenitor cells (NPCs) and the interneurons were unaffected. However, Tbr1+ and Ctip2+ deep layer (DL) neurons showed spatial-temporal dependent apoptosis. This apoptosis gradually progressed from the piriform cortex (PIR), peaked in the neocortex, and then progressed into the hippocampus from embryonic day 13.5 (E13.5) to E17.5. The upper layer (UL) and DL order in the neocortex was maintained in BIG1-deficient mice, but the excitatory neurons tended to accumulate before their destination layers. Further pulse-chase migration assay showed that the migration defect was non-cell autonomous and secondary to the progression of apoptosis into the BIG1-deficient neocortex after E15.5. In BIG1-deficient mice, we observed an ectopic projection of corticothalamic axons from the primary somatosensory cortex (S1) into the dorsal lateral geniculate nucleus (dLGN). The thalamocortical axons were unable to cross the diencephalon-telencephalon boundary (DTB). In vitro, BIG1-deficient neurons showed a delay in neuronal polarization. BIG1-deficient neurons were also hypersensitive to low dose glutamate (5 μM), and died via apoptosis. This study showed the role of BIG1 in the survival of DL neurons in developing embryonic brain and in the generation of neuronal polarity.
Collapse
Affiliation(s)
- Jia-Jie Teoh
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Tomohiko Iwano
- Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Masataka Kunii
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Nur Atik
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Anatomy and Cell Biology, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| | - Erda Avriyanti
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Dermatology and Venereology, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| | - Shin-ichiro Yoshimura
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kenta Moriwaki
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
16
|
Ithychanda SS, Dou K, Robertson SP, Qin J. Structural and thermodynamic basis of a frontometaphyseal dysplasia mutation in filamin A. J Biol Chem 2017; 292:8390-8400. [PMID: 28348077 DOI: 10.1074/jbc.m117.776740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/10/2017] [Indexed: 01/12/2023] Open
Abstract
Filamin-mediated linkages between transmembrane receptors (TR) and the actin cytoskeleton are crucial for regulating many cytoskeleton-dependent cellular processes such as cell shape change and migration. A major TR binding site in the immunoglobulin repeat 21 (Ig21) of filamin is masked by the adjacent repeat Ig20, resulting in autoinhibition. The TR binding to this site triggers the relief of Ig20 and protein kinase A (PKA)-mediated phosphorylation of Ser-2152, thereby dynamically regulating the TR-actin linkages. A P2204L mutation in Ig20 reportedly cause frontometaphyseal dysplasia, a skeletal disorder with unknown pathogenesis. We show here that the P2204L mutation impairs a hydrophobic core of Ig20, generating a conformationally fluctuating molten globule-like state. Consequently, unlike in WT filamin, where PKA-mediated Ser-2152 phosphorylation is ligand-dependent, the P2204L mutant is readily accessible to PKA, promoting ligand-independent phosphorylation on Ser-2152. Strong TR peptide ligands from platelet GP1bα and G-protein-coupled receptor MAS effectively bound Ig21 by displacing Ig20 from autoinhibited WT filamin, but surprisingly, the capacity of these ligands to bind the P2204L mutant was much reduced despite the mutation-induced destabilization of the Ig20 structure that supposedly weakens the autoinhibition. Thermodynamic analysis indicated that compared with WT filamin, the conformationally fluctuating state of the Ig20 mutant makes Ig21 enthalpically favorable to bind ligand but with substantial entropic penalty, resulting in total higher free energy and reduced ligand affinity. Overall, our results reveal an unusual structural and thermodynamic basis for the P2204L-induced dysfunction of filamin and frontometaphyseal dysplasia disease.
Collapse
Affiliation(s)
- Sujay S Ithychanda
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Kevin Dou
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | | | - Jun Qin
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.
| |
Collapse
|
17
|
Lian G, Dettenhofer M, Lu J, Downing M, Chenn A, Wong T, Sheen V. Filamin A- and formin 2-dependent endocytosis regulates proliferation via the canonical Wnt pathway. Development 2016; 143:4509-4520. [PMID: 27789627 DOI: 10.1242/dev.139295] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/18/2016] [Indexed: 01/07/2023]
Abstract
Actin-associated proteins regulate multiple cellular processes, including proliferation and differentiation, but the molecular mechanisms underlying these processes are unclear. Here, we report that the actin-binding protein filamin A (FlnA) physically interacts with the actin-nucleating protein formin 2 (Fmn2). Loss of FlnA and Fmn2 impairs proliferation, thereby generating multiple embryonic phenotypes, including microcephaly. FlnA interacts with the Wnt co-receptor Lrp6. Loss of FlnA and Fmn2 impairs Lrp6 endocytosis, downstream Gsk3β activity, and β-catenin accumulation in the nucleus. The proliferative defect in Flna and Fmn2 null neural progenitors is rescued by inhibiting Gsk3β activity. Our findings thus reveal a novel mechanism whereby actin-associated proteins regulate proliferation by mediating the endocytosis and transportation of components in the canonical Wnt pathway. Moreover, the Fmn2-dependent signaling in this pathway parallels that seen in the non-canonical Wnt-dependent regulation of planar cell polarity through the Formin homology protein Daam. These studies provide evidence for integration of actin-associated processes in directing neuroepithelial proliferation.
Collapse
Affiliation(s)
- Gewei Lian
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Markus Dettenhofer
- Central European Institute of Technology, Žerotínovo nám. 9, Brno 601 77, Czech Republic
| | - Jie Lu
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Michael Downing
- Department of Pathology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Anjen Chenn
- Department of Pathology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Timothy Wong
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Volney Sheen
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
18
|
Enhancement of β-catenin activity by BIG1 plus BIG2 via Arf activation and cAMP signals. Proc Natl Acad Sci U S A 2016; 113:5946-51. [PMID: 27162341 DOI: 10.1073/pnas.1601918113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Multifunctional β-catenin, with critical roles in both cell-cell adhesion and Wnt-signaling pathways, was among HeLa cell proteins coimmunoprecipitated by antibodies against brefeldin A-inhibited guanine nucleotide-exchange factors 1 and 2 (BIG1 or BIG2) that activate ADP-ribosylation factors (Arfs) by accelerating the replacement of bound GDP with GTP. BIG proteins also contain A-kinase anchoring protein (AKAP) sequences that can act as scaffolds for multimolecular assemblies that facilitate and limit cAMP signaling temporally and spatially. Direct interaction of BIG1 N-terminal sequence with β-catenin was confirmed using yeast two-hybrid assays and in vitro synthesized proteins. Depletion of BIG1 and/or BIG2 or overexpression of guanine nucleotide-exchange factor inactive mutant, but not wild-type, proteins interfered with β-catenin trafficking, leading to accumulation at perinuclear Golgi structures. Both phospholipase D activity and vesicular trafficking were required for effects of BIG1 and BIG2 on β-catenin activation. Levels of PKA-phosphorylated β-catenin S675 and β-catenin association with PKA, BIG1, and BIG2 were also diminished after BIG1/BIG2 depletion. Inferring a requirement for BIG1 and/or BIG2 AKAP sequence in PKA modification of β-catenin and its effect on transcription activation, we confirmed dependence of S675 phosphorylation and transcription coactivator function on BIG2 AKAP-C sequence.
Collapse
|
19
|
Sato T, Ishii J, Ota Y, Sasaki E, Shibagaki Y, Hattori S. Mammalian target of rapamycin (mTOR) complex 2 regulates filamin A-dependent focal adhesion dynamics and cell migration. Genes Cells 2016; 21:579-93. [DOI: 10.1111/gtc.12366] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/01/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Tatsuhiro Sato
- Division of Biochemistry; School of Pharmaceutical Sciences; Kitasato University; 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Junko Ishii
- Division of Biochemistry; School of Pharmaceutical Sciences; Kitasato University; 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Yuki Ota
- Division of Biochemistry; School of Pharmaceutical Sciences; Kitasato University; 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Eri Sasaki
- Division of Biochemistry; School of Pharmaceutical Sciences; Kitasato University; 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Yoshio Shibagaki
- Division of Biochemistry; School of Pharmaceutical Sciences; Kitasato University; 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Seisuke Hattori
- Division of Biochemistry; School of Pharmaceutical Sciences; Kitasato University; 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| |
Collapse
|
20
|
Segura I, Lange C, Knevels E, Moskalyuk A, Pulizzi R, Eelen G, Chaze T, Tudor C, Boulegue C, Holt M, Daelemans D, Matondo M, Ghesquière B, Giugliano M, Ruiz de Almodovar C, Dewerchin M, Carmeliet P. The Oxygen Sensor PHD2 Controls Dendritic Spines and Synapses via Modification of Filamin A. Cell Rep 2016; 14:2653-67. [PMID: 26972007 PMCID: PMC4805856 DOI: 10.1016/j.celrep.2016.02.047] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/21/2015] [Accepted: 02/05/2016] [Indexed: 01/09/2023] Open
Abstract
Neuronal function is highly sensitive to changes in oxygen levels, but how hypoxia affects dendritic spine formation and synaptogenesis is unknown. Here we report that hypoxia, chemical inhibition of the oxygen-sensing prolyl hydroxylase domain proteins (PHDs), and silencing of Phd2 induce immature filopodium-like dendritic protrusions, promote spine regression, reduce synaptic density, and decrease the frequency of spontaneous action potentials independently of HIF signaling. We identified the actin cross-linker filamin A (FLNA) as a target of PHD2 mediating these effects. In normoxia, PHD2 hydroxylates the proline residues P2309 and P2316 in FLNA, leading to von Hippel-Lindau (VHL)-mediated ubiquitination and proteasomal degradation. In hypoxia, PHD2 inactivation rapidly upregulates FLNA protein levels because of blockage of its proteasomal degradation. FLNA upregulation induces more immature spines, whereas Flna silencing rescues the immature spine phenotype induced by PHD2 inhibition. The oxygen sensor PHD2 is present in dendritic spines PHD2 inhibition by hypoxia reduces spine maturation, synaptic density, and activity Through hydroxylation, PHD2 targets filamin A for proteasomal degradation Filamin A stabilization promotes dendritic spine remodeling
Collapse
Affiliation(s)
- Inmaculada Segura
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, 3000 Leuven, Belgium
| | - Christian Lange
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, 3000 Leuven, Belgium
| | - Ellen Knevels
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, 3000 Leuven, Belgium
| | - Anastasiya Moskalyuk
- Laboratory of Theoretical Neurobiology and Neuroengineering, University of Antwerp, 2610 Wilrijk, Belgium
| | - Rocco Pulizzi
- Laboratory of Theoretical Neurobiology and Neuroengineering, University of Antwerp, 2610 Wilrijk, Belgium
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, 3000 Leuven, Belgium
| | - Thibault Chaze
- Proteomics Platform, Institute Pasteur, 75015 Paris, France
| | | | - Cyril Boulegue
- Proteomics Platform, Institute Pasteur, 75015 Paris, France
| | - Matthew Holt
- Laboratory of Glia Biology, VIB, 3000 Leuven, Belgium
| | - Dirk Daelemans
- Laboratory of Virology and Chemotherapy, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | | | - Bart Ghesquière
- Metabolomics Core Facility, Vesalius Research Center, VIB, 3000 Leuven, Belgium
| | - Michele Giugliano
- Laboratory of Theoretical Neurobiology and Neuroengineering, University of Antwerp, 2610 Wilrijk, Belgium; Neuro-Electronics Research Flanders, 3001 Leuven, Belgium; Brain Mind Institute, Swiss Federal Institute of Technology of Lausanne, 1015 Lausanne, Switzerland
| | - Carmen Ruiz de Almodovar
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, 3000 Leuven, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, 3000 Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, 3000 Leuven, Belgium.
| |
Collapse
|
21
|
Pons M, Izquierdo I, Andreu-Carbó M, Garrido G, Planagumà J, Muriel O, Geli MI, Aragay AM. Regulation of chemokine receptor CCR2 recycling by filamin a phosphorylation. J Cell Sci 2016; 130:490-501. [DOI: 10.1242/jcs.193821] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/18/2016] [Indexed: 12/20/2022] Open
Abstract
Proper endosomal trafficking of ligand-activated G protein-coupled receptors (GPCRs) is essential to spatiotemporally tune their physiological responses. For the monocyte chemoattractant receptor 2 (CCR2B), endocytic recycling is important to sustain monocyte migration; while filamin A (FLNa) is essential for CCL2-induced monocyte migration. Here, we analyze the role of FLNa in the trafficking of CCR2B along the endocytic pathway. In FLNa knockdown cells, activated CCR2B accumulated in enlarged EEA-1-positive endosomes, which exhibited slow movement and fast fluorescence recovery, suggesting an imbalance between receptor entry and exit rates. Utilizing super-resolution microscopy, we observed that FLNa-GFP, CCR2B and β2-adrenergic receptor (β2AR) were present in actin-enriched endosomal microdomains. Depletion of FLNa decreased CCR2B association with these microdomains and concomitantly delayed CCR2B endosomal traffic, without apparently affecting the number of microdomains. Interestingly, CCR2B and β2AR signaling induced phosphorylation of FLNa at S2152 and this phosphorylation event was contributes to sustain receptor recycling. Thus, our data strongly suggest that CCR2B and β2AR signals to FLNa to stimulate its endocytosis and recycling to the plasma membrane.
Collapse
Affiliation(s)
- Mònica Pons
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain
| | - Ismael Izquierdo
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain
| | - Mireia Andreu-Carbó
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain
| | - Georgina Garrido
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain
- Present addresse: Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
| | - Jesús Planagumà
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Present addresse: Department of Neuroimmunology, IDIBAPS, Barcelona, Spain
| | - Olivia Muriel
- Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - M. Isabel Geli
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain
| | - Anna M. Aragay
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain
| |
Collapse
|
22
|
Ohtaka-Maruyama C, Okado H. Molecular Pathways Underlying Projection Neuron Production and Migration during Cerebral Cortical Development. Front Neurosci 2015; 9:447. [PMID: 26733777 PMCID: PMC4682034 DOI: 10.3389/fnins.2015.00447] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 11/09/2015] [Indexed: 12/25/2022] Open
Abstract
Glutamatergic neurons of the mammalian cerebral cortex originate from radial glia (RG) progenitors in the ventricular zone (VZ). During corticogenesis, neuroblasts migrate toward the pial surface using two different migration modes. One is multipolar (MP) migration with random directional movement, and the other is locomotion, which is a unidirectional movement guided by the RG fiber. After reaching their final destination, the neurons finalize their migration by terminal translocation, which is followed by maturation via dendrite extension to initiate synaptogenesis and thereby complete neural circuit formation. This switching of migration modes during cortical development is unique in mammals, which suggests that the RG-guided locomotion mode may contribute to the evolution of the mammalian neocortical 6-layer structure. Many factors have been reported to be involved in the regulation of this radial neuronal migration process. In general, the radial migration can be largely divided into four steps; (1) maintenance and departure from the VZ of neural progenitor cells, (2) MP migration and transition to bipolar cells, (3) RG-guided locomotion, and (4) terminal translocation and dendrite maturation. Among these, many different gene mutations or knockdown effects have resulted in failure of the MP to bipolar transition (step 2), suggesting that it is a critical step, particularly in radial migration. Moreover, this transition occurs at the subplate layer. In this review, we summarize recent advances in our understanding of the molecular mechanisms underlying each of these steps. Finally, we discuss the evolutionary aspects of neuronal migration in corticogenesis.
Collapse
Affiliation(s)
- Chiaki Ohtaka-Maruyama
- Neural Network Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science Tokyo, Japan
| | - Haruo Okado
- Neural Development Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science Tokyo, Japan
| |
Collapse
|
23
|
Tirupula KC, Ithychanda SS, Mohan ML, Naga Prasad SV, Qin J, Karnik SS. G protein-coupled receptors directly bind filamin A with high affinity and promote filamin phosphorylation. Biochemistry 2015; 54:6673-83. [PMID: 26460884 PMCID: PMC4642222 DOI: 10.1021/acs.biochem.5b00975] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Although interaction of a few G protein-coupled receptors (GPCRs) with Filamin A, a key actin cross-linking and biomechanical signal transducer protein, has been observed, a comprehensive structure-function analysis of this interaction is lacking. Through a systematic sequence-based analysis, we found that a conserved filamin binding motif is present in the cytoplasmic domains of >20% of the 824 GPCRs encoded in the human genome. Direct high-affinity interaction of filamin binding motif peptides of select GPCRs with the Ig domain of Filamin A was confirmed by nuclear magnetic resonance spectroscopy and isothermal titration calorimetric experiments. Engagement of the filamin binding motif with the Filamin A Ig domain induced the phosphorylation of filamin by protein kinase A in vitro. In transfected cells, agonist activation as well as constitutive activation of representative GPCRs dramatically elicited recruitment and phosphorylation of cellular Filamin A, a phenomenon long known to be crucial for regulating the structure and dynamics of the cytoskeleton. Our data suggest a molecular mechanism for direct GPCR-cytoskeleton coupling via filamin. Until now, GPCR signaling to the cytoskeleton was predominantly thought to be indirect, through canonical G protein-mediated signaling cascades involving GTPases, adenylyl cyclases, phospholipases, ion channels, and protein kinases. We propose that the GPCR-induced filamin phosphorylation pathway is a conserved, novel biochemical signaling paradigm.
Collapse
Affiliation(s)
- Kalyan C Tirupula
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio 44195, United States
| | - Sujay S Ithychanda
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio 44195, United States
| | - Maradumane L Mohan
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio 44195, United States
| | - Sathyamangla V Naga Prasad
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio 44195, United States
| | - Jun Qin
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio 44195, United States
| | - Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio 44195, United States
| |
Collapse
|
24
|
Stouffer MA, Golden JA, Francis F. Neuronal migration disorders: Focus on the cytoskeleton and epilepsy. Neurobiol Dis 2015; 92:18-45. [PMID: 26299390 DOI: 10.1016/j.nbd.2015.08.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/05/2015] [Accepted: 08/12/2015] [Indexed: 01/28/2023] Open
Abstract
A wide spectrum of focal, regional, or diffuse structural brain abnormalities, collectively known as malformations of cortical development (MCDs), frequently manifest with intellectual disability (ID), epilepsy, and/or autistic spectrum disorder (ASD). As the acronym suggests, MCDs are perturbations of the normal architecture of the cerebral cortex and hippocampus. The pathogenesis of these disorders remains incompletely understood; however, one area that has provided important insights has been the study of neuronal migration. The amalgamation of human genetics and experimental studies in animal models has led to the recognition that common genetic causes of neurodevelopmental disorders, including many severe epilepsy syndromes, are due to mutations in genes regulating the migration of newly born post-mitotic neurons. Neuronal migration genes often, though not exclusively, code for proteins involved in the function of the cytoskeleton. Other cellular processes, such as cell division and axon/dendrite formation, which similarly depend on cytoskeletal functions, may also be affected. We focus here on how the susceptibility of the highly organized neocortex and hippocampus may be due to their laminar organization, which involves the tight regulation, both temporally and spatially, of gene expression, specialized progenitor cells, the migration of neurons over large distances and a birthdate-specific layering of neurons. Perturbations in neuronal migration result in abnormal lamination, neuronal differentiation defects, abnormal cellular morphology and circuit formation. Ultimately this results in disorganized excitatory and inhibitory activity leading to the symptoms observed in individuals with these disorders.
Collapse
Affiliation(s)
- Melissa A Stouffer
- INSERM UMRS 839, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Jeffrey A Golden
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Fiona Francis
- INSERM UMRS 839, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Paris, France; Institut du Fer à Moulin, Paris, France.
| |
Collapse
|
25
|
Lian G, Sheen VL. Cytoskeletal proteins in cortical development and disease: actin associated proteins in periventricular heterotopia. Front Cell Neurosci 2015; 9:99. [PMID: 25883548 PMCID: PMC4381626 DOI: 10.3389/fncel.2015.00099] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/07/2015] [Indexed: 01/28/2023] Open
Abstract
The actin cytoskeleton regulates many important cellular processes in the brain, including cell division and proliferation, migration, and cytokinesis and differentiation. These developmental processes can be regulated through actin dependent vesicle and organelle movement, cell signaling, and the establishment and maintenance of cell junctions and cell shape. Many of these processes are mediated by extensive and intimate interactions of actin with cellular membranes and proteins. Disruption in the actin cytoskeleton in the brain gives rise to periventricular heterotopia (PH), a malformation of cortical development, characterized by abnormal neurons clustered deep in the brain along the lateral ventricles. This disorder can give rise to seizures, dyslexia and psychiatric disturbances. Anatomically, PH is characterized by a smaller brain (impaired proliferation), heterotopia (impaired initial migration) and disruption along the neuroependymal lining (impaired cell-cell adhesion). Genes causal for PH have also been implicated in actin-dependent processes. The current review provides mechanistic insight into actin cytoskeletal regulation of cortical development in the context of this malformation of cortical development.
Collapse
Affiliation(s)
- Gewei Lian
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School Boston, MA, USA
| | - Volney L Sheen
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School Boston, MA, USA
| |
Collapse
|
26
|
Ithychanda SS, Fang X, Mohan ML, Zhu L, Tirupula KC, Naga Prasad SV, Wang YX, Karnik SS, Qin J. A mechanism of global shape-dependent recognition and phosphorylation of filamin by protein kinase A. J Biol Chem 2015; 290:8527-38. [PMID: 25666618 PMCID: PMC4375502 DOI: 10.1074/jbc.m114.633446] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/27/2015] [Indexed: 12/23/2022] Open
Abstract
Protein phosphorylation mediates essentially all aspects of cellular life. In humans, this is achieved by ∼500 kinases, each recognizing a specific consensus motif (CM) in the substrates. The majority of CMs are surface-exposed and are thought to be accessible to kinases for phosphorylation. Here we investigated the archetypical protein kinase A (PKA)-mediated phosphorylation of filamin, a major cytoskeletal protein that can adopt an autoinhibited conformation. Surprisingly, autoinhibited filamin is refractory to phosphorylation by PKA on a known Ser(2152) site despite its CM being exposed and the corresponding isolated peptide being readily phosphorylated. Structural analysis revealed that although the CM fits into the PKA active site its surrounding regions sterically clash with the kinase. However, upon ligand binding, filamin undergoes a conformational adjustment, allowing rapid phosphorylation on Ser(2152). These data uncover a novel ligand-induced conformational switch to trigger filamin phosphorylation. They further suggest a substrate shape-dependent filtering mechanism that channels specific exposed CM/kinase recognition in diverse signaling responses.
Collapse
Affiliation(s)
- Sujay Subbayya Ithychanda
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Xianyang Fang
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, NCI, National Institutes of Health, Frederick, Maryland 21702, and
| | - Maradumane L Mohan
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Liang Zhu
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Kalyan C Tirupula
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Sathyamangla V Naga Prasad
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, NCI, National Institutes of Health, Frederick, Maryland 21702, and
| | - Sadashiva S Karnik
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Jun Qin
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
27
|
Oliva C, Molina-Fernandez C, Maureira M, Candia N, López E, Hassan B, Aerts S, Cánovas J, Olguín P, Sierralta J. Hindsight regulates photoreceptor axon targeting through transcriptional control of jitterbug/Filamin and multiple genes involved in axon guidance in Drosophila. Dev Neurobiol 2015; 75:1018-32. [PMID: 25652545 DOI: 10.1002/dneu.22271] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/19/2015] [Accepted: 01/19/2015] [Indexed: 01/20/2023]
Abstract
During axon targeting, a stereotyped pattern of connectivity is achieved by the integration of intrinsic genetic programs and the response to extrinsic long and short-range directional cues. How this coordination occurs is the subject of intense study. Transcription factors play a central role due to their ability to regulate the expression of multiple genes required to sense and respond to these cues during development. Here we show that the transcription factor HNT regulates layer-specific photoreceptor axon targeting in Drosophila through transcriptional control of jbug/Filamin and multiple genes involved in axon guidance and cytoskeleton organization.Using a microarray analysis we identified 235 genes whose expression levels were changed by HNT overexpression in the eye primordia. We analyzed nine candidate genes involved in cytoskeleton regulation and axon guidance, six of which displayed significantly altered gene expression levels in hnt mutant retinas. Functional analysis confirmed the role of OTK/PTK7 in photoreceptor axon targeting and uncovered Tiggrin, an integrin ligand, and Jbug/Filamin, a conserved actin- binding protein, as new factors that participate of photoreceptor axon targeting. Moreover, we provided in silico and molecular evidence that supports jbug/Filamin as a direct transcriptional target of HNT and that HNT acts partially through Jbug/Filamin in vivo to regulate axon guidance. Our work broadens the understanding of how HNT regulates the coordinated expression of a group of genes to achieve the correct connectivity pattern in the Drosophila visual system. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1018-1032, 2015.
Collapse
Affiliation(s)
- Carlos Oliva
- Laboratorio de Neurobiología Celular y Molecular, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile.,Biomedical Neurosciences Institute, ICM, Facultad de Medicina, Universidad de Chile
| | - Claudia Molina-Fernandez
- Laboratorio de Genética del Desarrollo de Drosophila, Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
| | - Miguel Maureira
- Laboratorio de Genética del Desarrollo de Drosophila, Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
| | - Noemi Candia
- Laboratorio de Genética del Desarrollo de Drosophila, Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
| | - Estefanía López
- Laboratorio de Neurobiología Celular y Molecular, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile.,Biomedical Neurosciences Institute, ICM, Facultad de Medicina, Universidad de Chile
| | - Bassem Hassan
- Laboratory of Neurogenetics, Department of Molecular and Developmental Genetics, VIB, K.U. Leuven, Leuven, Belgium
| | - Stein Aerts
- Laboratory of Neurogenetics, Department of Molecular and Developmental Genetics, VIB, K.U. Leuven, Leuven, Belgium
| | - José Cánovas
- Laboratorio de Neurobiología Celular y Molecular, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile.,Biomedical Neurosciences Institute, ICM, Facultad de Medicina, Universidad de Chile
| | - Patricio Olguín
- Laboratorio de Genética del Desarrollo de Drosophila, Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
| | - Jimena Sierralta
- Laboratorio de Neurobiología Celular y Molecular, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile.,Biomedical Neurosciences Institute, ICM, Facultad de Medicina, Universidad de Chile
| |
Collapse
|
28
|
Using positive-ion electrospray ionization mass spectrometry and H/D exchange study phosphoryl group transfer reactions involved in amino acid ester isopropyl phosphoramidates of Brefeldin A. Anal Chim Acta 2015; 853:391-401. [PMID: 25467484 DOI: 10.1016/j.aca.2014.09.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/22/2014] [Accepted: 09/29/2014] [Indexed: 11/21/2022]
Abstract
As mini-chemical models, amino acid ester isopropyl phosphoramidates of Brefeldin A (compounds 2a-2d) were synthesized and investigated by electrospray ionization tandem mass spectrometry in combination with H/D exchange. To further confirm the fragments's structures, off-line Fourier transform resonance tandem mass spectrometry (FT-ICR-MS/MS) was also performed. The fragmentation rules of compounds 2a-2d have been summarized and the plausible schemes for the fragmentation pathways were proposed. In this study, one dephosphorylated ion and two phosphorylated ions were observed in ESI-MS(2) spectra of [M+Na](+) ions for compounds 2a-2d. The possible mechanisms about phosphorylation and dephosphorylation were proposed and confirmed by H/D exchange. For the "dephosphorylation" rearrangement, a nitrogen atom was migrated from the phosphoryl group to the carbon atom of Brefeldin A's backbone with losing a molecule of C3H7PO3 (122 Da). For the "phosphorylation" rearrangement, an oxygen atom of one phosphoryl group attacked the sideward phosphorus atom to form a nine-member ring intermediate, then two steps of CH covalent bond cleavage with consecutive migration of hydrogen atom to lose a molecule of C16H20O2 (244 Da). The two proposed rearrangement mechanisms about phosphoryl group transfer might be valuable for the structure analysis of other analogs and provide insights into elucidating the dynamic process of the phosphorylation-dephosphorylation of proteins.
Collapse
|
29
|
Sheen VL. Filamin A mediated Big2 dependent endocytosis: From apical abscission to periventricular heterotopia. Tissue Barriers 2014; 2:e29431. [PMID: 25097827 PMCID: PMC4117685 DOI: 10.4161/tisb.29431] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 01/23/2023] Open
Abstract
Periventricular heterotopia (PH) is one of the most common malformations of cortical development (MCD). Nodules along the lateral ventricles of the brain, disruption of the ventricular lining, and a reduced brain size are hallmarks of this disorder. PH results in a disruption of the neuroependyma, inhibition of neural proliferation and differentiation, and altered neuronal migration. Human mutations in the genes encoding the actin-binding Filamin A (FLNA) and the vesicle trafficking Brefeldin A-associated guanine exchange factor 2 (BIG2 is encoded by the ARFGEF2 gene) proteins are implicated in PH formation. Recent studies have shown that the transition from proliferating neural progenitors to post-mitotic neurons relies on apical abscission along the neuroepithelium. This mechanism involves an actin dependent contraction of the apical portion of a neural progenitor along the ventricular lining to complete abscission. Actin also maintains stability of various cell adhesion molecules along the neuroependyma. Loss of cadherin directs disassembly of the primary cilium, which transduces sonic-hedgehog (Shh) signaling. Shh signaling is required for continued proliferation. In this context, apical abscission regulates neuronal progenitor exit and migration from the ventricular zone by detachment from the neuroependyma, relies on adhesion molecules that maintain the integrity of the neuroepithelial lining, and directs neural proliferation. Each of these processes is disrupted in PH, suggesting that genes causal for this MCD, may fundamentally mediate apical abscission in cortical development. Here we discuss several recent reports that demonstrate a coordinated role for actin and vesicle trafficking in modulating neural development along the neurepithelium, and potentially the neural stem cell to neuronal transition.
Collapse
Affiliation(s)
- Volney L Sheen
- Department of Neurology; Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA USA
| |
Collapse
|
30
|
Regulating the large Sec7 ARF guanine nucleotide exchange factors: the when, where and how of activation. Cell Mol Life Sci 2014; 71:3419-38. [PMID: 24728583 DOI: 10.1007/s00018-014-1602-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/27/2014] [Accepted: 03/03/2014] [Indexed: 10/25/2022]
Abstract
Eukaryotic cells require selective sorting and transport of cargo between intracellular compartments. This is accomplished at least in part by vesicles that bud from a donor compartment, sequestering a subset of resident protein "cargos" destined for transport to an acceptor compartment. A key step in vesicle formation and targeting is the recruitment of specific proteins that form a coat on the outside of the vesicle in a process requiring the activation of regulatory GTPases of the ARF family. Like all such GTPases, ARFs cycle between inactive, GDP-bound, and membrane-associated active, GTP-bound, conformations. And like most regulatory GTPases the activating step is slow and thought to be rate limiting in cells, requiring the use of ARF guanine nucleotide exchange factor (GEFs). ARF GEFs are characterized by the presence of a conserved, catalytic Sec7 domain, though they also contain motifs or additional domains that confer specificity to localization and regulation of activity. These domains have been used to define and classify five different sub-families of ARF GEFs. One of these, the BIG/GBF1 family, includes three proteins that are each key regulators of the secretory pathway. GEF activity initiates the coating of nascent vesicles via the localized generation of activated ARFs and thus these GEFs are the upstream regulators that define the site and timing of vesicle production. Paradoxically, while we have detailed molecular knowledge of how GEFs activate ARFs, we know very little about how GEFs are recruited and/or activated at the right time and place to initiate transport. This review summarizes the current knowledge of GEF regulation and explores the still uncertain mechanisms that position GEFs at "budding ready" membrane sites to generate highly localized activated ARFs.
Collapse
|
31
|
Abstract
Neural proliferation, migration and differentiation require reorganization of the actin cytoskeleton and regulation of vesicle trafficking to provide stability in maintaining cell adhesions, allow for changes in cell shape, and establishing cell polarity. Human disorders involving the actin-binding Filamin A (FLNA) and vesicle trafficking Brefeldin-associated guanine exchange factor 2 (BIG2 is encoded by the ARFGEF2 gene) proteins are implicated in these various developmental processes, resulting in a malformation of cortical development called periventricular heterotopia (nodules along the ventricular lining) and microcephaly (small brain). Here we discuss several recent reports from our laboratory that demonstrate a shared role for both proteins in actin-associated vesicle trafficking, which is required to maintain the expression and stability of cell adhesion and cell cycle associated molecules during cortical development. While changes in FLNA and BIG2 have first been linked to disorders involving the central nervous system, increasing reports suggest they are associated with aberrant development of various other organ systems in the body. These studies suggest that vesicle trafficking defects in FLN-GEF dependent pathways may contribute to a much broader phenotype than previously realized.
Collapse
Affiliation(s)
- Volney L Sheen
- Department of Neurology; Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA USA
| |
Collapse
|
32
|
BIG1, a brefeldin A-inhibited guanine nucleotide-exchange protein regulates neurite development via PI3K–AKT and ERK signaling pathways. Neuroscience 2013; 254:361-8. [DOI: 10.1016/j.neuroscience.2013.09.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 11/20/2022]
|
33
|
Bony G, Szczurkowska J, Tamagno I, Shelly M, Contestabile A, Cancedda L. Non-hyperpolarizing GABAB receptor activation regulates neuronal migration and neurite growth and specification by cAMP/LKB1. Nat Commun 2013; 4:1800. [PMID: 23653212 DOI: 10.1038/ncomms2820] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 03/28/2013] [Indexed: 12/28/2022] Open
Abstract
γ-Aminobutyric acid is the principal inhibitory neurotransmitter in adults, acting through ionotropic chloride-permeable GABAA receptors (GABAARs), and metabotropic GABABRs coupled to calcium or potassium channels, and cyclic AMP signalling. During early development, γ-aminobutyric acid is the main neurotransmitter and is not hyperpolarizing, as GABAAR activation is depolarizing while GABABRs lack coupling to potassium channels. Despite extensive knowledge on GABAARs as key factors in neuronal development, the role of GABABRs remains unclear. Here we address GABABR function during rat cortical development by in utero knockdown (short interfering RNA) of GABABR in pyramidal-neuron progenitors. GABABR short interfering RNA impairs neuronal migration and axon/dendrite morphological maturation by disrupting cyclic AMP signalling. Furthermore, GABABR activation reduces cyclic AMP-dependent phosphorylation of LKB1, a kinase involved in neuronal polarization, and rescues LKB1 overexpression-induced defects in cortical development. Thus, non-hyperpolarizing activation of GABABRs during development promotes neuronal migration and morphological maturation by cyclic AMP/LKB1 signalling.
Collapse
Affiliation(s)
- Guillaume Bony
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego, 30 Genoa 16163, Italy
| | | | | | | | | | | |
Collapse
|
34
|
Filamin A regulates neuronal migration through brefeldin A-inhibited guanine exchange factor 2-dependent Arf1 activation. J Neurosci 2013; 33:15735-46. [PMID: 24089482 DOI: 10.1523/jneurosci.1939-13.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Periventricular heterotopias is a malformation of cortical development, characterized by ectopic neuronal nodules around ventricle lining and caused by an initial migration defect during early brain development. Human mutations in the Filamin A (FLNA) and ADP-ribosylation factor guanine exchange factor 2 [ARFGEF2; encoding brefeldin-A-inhibited guanine exchange factor-2 (BIG2)] genes give rise to this disorder. Previously, we have reported that Big2 inhibition impairs neuronal migration and binds to FlnA, and its loss promotes FlnA phosphorylation. FlnA phosphorylation dictates FlnA-actin binding affinity and consequently alters focal adhesion size and number to effect neuronal migration. Here we show that FlnA loss similarly impairs migration, reciprocally enhances Big2 expression, but also alters Big2 subcellular localization in both null and conditional FlnA mice. FlnA phosphorylation promotes relocalization of Big2 from the Golgi toward the lipid ruffles, thereby activating Big2-dependent Arf1 at the cell membrane. Loss of FlnA phosphorylation or Big2 function impairs Arf1-dependent vesicle trafficking at the periphery, and Arf1 is required for maintenance of cell-cell junction connectivity and focal adhesion assembly. Loss of Arf1 activity disrupts neuronal migration and cell adhesion. Collectively, these studies demonstrate a potential mechanism whereby coordinated interactions between actin (through FlnA) and vesicle trafficking (through Big2-Arf) direct the assembly and disassembly of membrane protein complexes required for neuronal migration and neuroependymal integrity.
Collapse
|
35
|
Abstract
Rho-GTPases have been found to be crucial for cytoskeleton remodelling and cell polarity, as well as key players in directed cell migration in various tissues and organs, therefore becoming good candidates for involvement in neuronal migration disorders. We recently found that genetic deletion of the small GTPase RhoA in the developing mouse cerebral cortex results in three distinct cortical malformations: a defect in the proliferation of progenitor cells during development that leads to a bigger cerebral cortex in the adult mouse, a change in the morphology of radial glial cells that results in the formation of a subcortical band heterotopia (SBH, also called Double Cortex) and an increase in the speed of migrating newborn neurons. The latter, together with the aberrant radial glial shape, is likely to be the cause of cobblestone lissencephaly, where neurons protrude beyond layer I at the pial surface of the brain.
Collapse
Affiliation(s)
- Silvia Cappello
- Helmholtz Center Munich, German Research Center for Environmental Health; Institute for Stem Cell Research, Neuherberg, Germany.
| |
Collapse
|
36
|
De Matteis MA, Vicinanza M, Venditti R, Wilson C. Cellular Assays for Drug Discovery in Genetic Disorders of Intracellular Trafficking. Annu Rev Genomics Hum Genet 2013; 14:159-90. [DOI: 10.1146/annurev-genom-091212-153415] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | - Cathal Wilson
- Telethon Institute of Genetics and Medicine, 80131 Naples, Italy;
| |
Collapse
|
37
|
Evsyukova I, Plestant C, Anton ES. Integrative mechanisms of oriented neuronal migration in the developing brain. Annu Rev Cell Dev Biol 2013; 29:299-353. [PMID: 23937349 DOI: 10.1146/annurev-cellbio-101512-122400] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The emergence of functional neuronal connectivity in the developing cerebral cortex depends on neuronal migration. This process enables appropriate positioning of neurons and the emergence of neuronal identity so that the correct patterns of functional synaptic connectivity between the right types and numbers of neurons can emerge. Delineating the complexities of neuronal migration is critical to our understanding of normal cerebral cortical formation and neurodevelopmental disorders resulting from neuronal migration defects. For the most part, the integrated cell biological basis of the complex behavior of oriented neuronal migration within the developing mammalian cerebral cortex remains an enigma. This review aims to analyze the integrative mechanisms that enable neurons to sense environmental guidance cues and translate them into oriented patterns of migration toward defined areas of the cerebral cortex. We discuss how signals emanating from different domains of neurons get integrated to control distinct aspects of migratory behavior and how different types of cortical neurons coordinate their migratory activities within the developing cerebral cortex to produce functionally critical laminar organization.
Collapse
Affiliation(s)
- Irina Evsyukova
- Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599;
| | | | | |
Collapse
|
38
|
Arf guanine nucleotide-exchange factors BIG1 and BIG2 regulate nonmuscle myosin IIA activity by anchoring myosin phosphatase complex. Proc Natl Acad Sci U S A 2013; 110:E3162-70. [PMID: 23918382 DOI: 10.1073/pnas.1312531110] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Brefeldin A-inhibited guanine nucleotide-exchange factors BIG1 and BIG2 activate, through their Sec7 domains, ADP ribosylation factors (Arfs) by accelerating the replacement of Arf-bound GDP with GTP for initiation of vesicular transport or activation of specific enzymes that modify important phospholipids. They are also implicated in regulation of cell polarization and actin dynamics for directed migration. Reciprocal coimmunoprecipitation of endogenous HeLa cell BIG1 and BIG2 with myosin IIA was demonstrably independent of Arf guanine nucleotide-exchange factor activity, because effects of BIG1 and BIG2 depletion were reversed by overexpression of the cognate BIG molecule C-terminal sequence that follows the Arf activation site. Selective depletion of BIG1 or BIG2 enhanced specific phosphorylation of myosin regulatory light chain (T18/S19) and F-actin content, which impaired cell migration in Transwell assays. Our data are clear evidence of these newly recognized functions for BIG1 and BIG2 in transduction or integration of mechanical signals from integrin adhesions and myosin IIA-dependent actin dynamics. Thus, by anchoring or scaffolding the assembly, organization, and efficient operation of multimolecular myosin phosphatase complexes that include myosin IIA, protein phosphatase 1δ, and myosin phosphatase-targeting subunit 1, BIG1 and BIG2 serve to integrate diverse biophysical and biochemical events in cells.
Collapse
|
39
|
Sheen VL. Periventricular Heterotopia: Shuttling of Proteins through Vesicles and Actin in Cortical Development and Disease. SCIENTIFICA 2012; 2012:480129. [PMID: 24278701 PMCID: PMC3820590 DOI: 10.6064/2012/480129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 10/14/2012] [Indexed: 06/02/2023]
Abstract
During cortical development, proliferating neural progenitors exhibit polarized apical and basolateral membranes that are maintained by tightly controlled and membrane-specific vesicular trafficking pathways. Disruption of polarity through impaired delivery of proteins can alter cell fate decisions and consequent expansion of the progenitor pool, as well as impact the integrity of the neuroependymal lining. Loss of neuroependymal integrity disrupts radial glial scaffolding and alters initial neuronal migration from the ventricular zone. Vesicle trafficking is also required for maintenance of lipid and protein cycling within the leading and trailing edge of migratory neurons, as well as dendrites and synapses of mature neurons. Defects in this transport machinery disrupt neuronal identity, migration, and connectivity and give rise to a malformation of cortical development termed as periventricular heterotopia (PH). PH is characterized by a reduction in brain size, ectopic clusters of neurons localized along the lateral ventricle, and epilepsy and dyslexia. These anatomical anomalies correlate with developmental impairments in neural progenitor proliferation and specification, migration from loss of neuroependymal integrity and neuronal motility, and aberrant neuronal process extension. Genes causal for PH regulate vesicle-mediated endocytosis along an actin cytoskeletal network. This paper explores the role of these dynamic processes in cortical development and disease.
Collapse
Affiliation(s)
- Volney L. Sheen
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|