1
|
Lin J, Li H, Jiang L, Li J. Novel strategies for targeting tau oligomers in neurodegenerative diseases. J Neurol 2025; 272:383. [PMID: 40335778 DOI: 10.1007/s00415-025-13117-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/09/2025]
Abstract
Tau protein is a soluble microtubule-associated protein enriched in neurons, is mainly distributed in the central nervous system, and is responsible for stabilizing neurons. Tau maintains nerve cell morphology and internal transport by binding to normal microtubules. In neurodegenerative diseases, such as Alzheimer's disease (AD), tau proteins undergo aberrant phosphorylation, resulting in their removal from microtubules and the formation of neurofibrillary tangles (NFTs), which are key pathological features. In contrast to the late formation of non-soluble NFTs, early, smaller, soluble tau oligomers (tauO) with disseminated toxicity are considered necessary in neurodegenerative disorders, such as the primary form of tau toxicity in the AD process. Although an increasing number of studies are focusing on tauO, there are still problems to be solved, mainly concerning the molecular and inhibitory mechanisms of tauO toxicity. In this paper, we summarize the new strategies for the molecular mechanisms of tauO toxicity, detection methods, and interventions in the last five years. An outlook on these new strategies and the challenges that may be foreseen is presented to provide new directions for future applications in the clinical treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jing Lin
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410000, Hunan, China
| | - Hong Li
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410000, Hunan, China
| | - Lingxia Jiang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410000, Hunan, China
| | - Jian Li
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410000, Hunan, China.
| |
Collapse
|
2
|
Rawls A, Dziabis J, Nguyen D, Anbarci D, Clark M, Zhang G, Dzirasa K, Bilbo SD. Sex-specific regulation of microglial MyD88 in HMGB1-Induced anxiety phenotype in mice. Neurobiol Stress 2025; 36:100721. [PMID: 40236260 PMCID: PMC11997396 DOI: 10.1016/j.ynstr.2025.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 03/19/2025] [Accepted: 03/22/2025] [Indexed: 04/17/2025] Open
Abstract
Stress is a significant risk factor for the development and recurrence of anxiety disorders. Stress can profoundly impact the immune system, and lead to microglial functional alterations in the medial prefrontal cortex (mPFC), a brain region involved in the pathogenesis of anxiety. High mobility group box 1 protein (HMGB1) is a potent pro-inflammatory stimulus and danger-associated molecular pattern (DAMP) released from neuronal and non-neuronal cells following stress. HMGB1 provokes pro-inflammatory responses in the brain and, when administered locally, alters behavior in the absence of other stressors. In this study, we administered dsHMGB1 into the mPFC of male and female mice for 5 days to investigate the cellular and molecular mechanisms underlying HMGB1-induced behavioral dysfunction, with a focus on cell-type specificity and potential sex differences. Here, we demonstrate that dsHMGB1 infusion into the mPFC elicited behavior changes in both sexes but only altered microglial morphology robustly in female mice. Moreover, preventing microglial changes with cell-specific ablation of the MyD88 pathway prevented anxiety-like behaviors only in females. These results support the hypothesis that microglial MyD88 signaling is a critical mediator of HMGB1-induced stress responses, particularly in adult female mice.
Collapse
Affiliation(s)
- Ashleigh Rawls
- Department of Pharmacology, Duke University, Durham, NC, United States of America
| | - Julia Dziabis
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States of America
| | - Dang Nguyen
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States of America
| | - Dilara Anbarci
- Department of Cell Biology, Duke University, Durham, NC, United States of America
| | - Madeline Clark
- Department of Neurobiology, Duke University, Durham, NC, United States of America
| | - Grace Zhang
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States of America
| | - Kafui Dzirasa
- Department of Neurobiology, Duke University, Durham, NC, United States of America
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States of America
- Howard Hughes Medical Institute, Chevy Chase, MD, United States of America
| | - Staci D. Bilbo
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States of America
- Department of Neurobiology, Duke University, Durham, NC, United States of America
| |
Collapse
|
3
|
Anton PE, Twardy S, Nagpal P, Moreno JA, Burchill MA, Chatterjee A, Busquet N, Mesches M, Kovacs EJ, McCullough RL. Suppression of NF-κB/NLRP3 by nanoligomer therapy mitigates ethanol and advanced age-related neuroinflammation. J Leukoc Biol 2025; 117:qiaf024. [PMID: 40036603 PMCID: PMC12022636 DOI: 10.1093/jleuko/qiaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/02/2025] [Indexed: 03/06/2025] Open
Abstract
Binge alcohol use is increasing among aged adults (>65 yr). Alcohol-related toxicity in aged adults is associated with neurodegeneration; yet, the molecular underpinnings of this age-related sensitivity to alcohol are not well described. Studies utilizing rodent models of neurodegenerative disease reveal heightened activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Nod-like receptor 3 (NLRP3) mediate microglia activation and associated neuronal injury. Our group, and others, have implicated hippocampal-resident microglia as key producers of inflammatory mediators; yet, the link between inflammation and neurodegeneration has not been established in models of binge ethanol exposure and advanced age. Here, we report binge ethanol increased the proportion of NLRP3+ microglia in the hippocampus of aged (18 to 20 mo) female C57BL/6N mice compared with young (3 to 4 mo). In primary microglia, ethanol-induced expression of reactivity markers and NLRP3 inflammasome activation were more pronounced in microglia from aged mice compared with young. Using a NLRP3-specific inhibitor (OLT1177) and a novel brain-penetrant Nanoligomer that inhibits NF-κB and NLRP3 translation (SB_NI_112), we find ethanol-induced microglial reactivity can be attenuated by OLT1177 and SB_NI_112 in microglia from aged mice. In a model of intermittent binge ethanol exposure, SB_NI_112 prevented ethanol-mediated microglia reactivity, IL-1β production, and tau hyperphosphorylation in the hippocampus of aged mice. These data suggest early indicators of neurodegeneration occurring with advanced age and binge ethanol exposure are driven by NF-κB and NLRP3. Further investigation is warranted to explore the use of targeted immunosuppression via Nanoligomers to attenuate neuroinflammation after alcohol consumption in the aging populations.
Collapse
Affiliation(s)
- Paige E Anton
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
- Alcohol Research Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Shannon Twardy
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
- Alcohol Research Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | | | - Julie A Moreno
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Matthew A Burchill
- GI and Liver Innate Immune Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | | | - Nicolas Busquet
- Animal Behavior & In Vivo Neurophysiology Core, NeuroTechnology Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
- Department of Neurology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Michael Mesches
- Animal Behavior & In Vivo Neurophysiology Core, NeuroTechnology Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
- Department of Neurology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Elizabeth J Kovacs
- Alcohol Research Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
- Division of GI Trauma and Endocrine Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
- Veterans' Health Administration, Eastern Colorado Health Care System, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, United States
| | - Rebecca L McCullough
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
- Alcohol Research Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
- GI and Liver Innate Immune Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| |
Collapse
|
4
|
Barrientos RM, Baratta MV, Frank MG. Dr. Steven F. Maier: A fearless scientist, a rigorous mentor, and a legacy of excellence. Brain Behav Immun 2025; 128:303-304. [PMID: 40233866 DOI: 10.1016/j.bbi.2025.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Accepted: 04/12/2025] [Indexed: 04/17/2025] Open
Abstract
For more than 40 years, Dr. Steven F. Maier has shaped the field of psychoneuroimmunology through innovative research, influential mentorship, and dedicated service to the scientific community. As he concludes his tenure as Associate Editor of Brain, Behavior, and Immunity, this tribute reflects on his most transformative scientific contributions-from conceptualizing learned helplessness to uncovering the neural and immune mechanisms linking stress to disease vulnerability. Drawing from our experiences as longtime mentees and later colleagues, we also share reflections on his unique mentoring style, unwavering commitment to scientific rigor, and enduring influence on the field.
Collapse
Affiliation(s)
- Ruth M Barrientos
- Institute for Behavioral Medicine Research and Department of Psychiatry and Behavioral Health Ohio State University, Columbus, OH, USA.
| | - Michael V Baratta
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Matthew G Frank
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA; Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
5
|
Denver P, Cunningham C. Microglial activation and neuroinflammation in acute and chronic cognitive deficits in sepsis. Neuropharmacology 2025; 267:110285. [PMID: 39746541 DOI: 10.1016/j.neuropharm.2024.110285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/11/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
Sepsis is characterised by dysregulated immune responses to infection, leading to multi-organ dysfunction and high rates of mortality. With increasing survival rates in recent years long-term neurological and psychiatric consequences have become more apparent in survivors. Many patients develop sepsis associated encephalopathy (SAE) which encompasses the profound but usually transient neuropsychiatric syndrome delirium but also new brain injury that emerges in the months and years post-sepsis. It is now clear that systemic inflammatory signals reach the brain during sepsis and that very significant neuroinflammation ensues. The major brain resident immune cell population, the microglia, has been implicated in acute and chronic cognitive dysfunction in animal models of sepsis based on a growing number of studies using bacterial endotoxin and in polymicrobial sepsis models such as cecal ligation and puncture. The current review explores the effects of sepsis on the brain, focussing on how systemic insults translate to microglial activation and neuroinflammation and how this disrupts neuronal function and integrity. We examine what has been demonstrated specifically with respect to microglial activation, revealing robust evidence for a role for neuroinflammation in sepsis-induced brain sequelae but less clear information on the extent of the specific microglial contribution to this, arising from findings using global knockout mice, non-selective drugs and treatments that equally target peripheral and central compartments. There is, nonetheless, clear evidence that microglia do become activated and do contribute to brain consequences of sepsis thus arguing for improved understanding of these neuroinflammatory processes toward the prevention and treatment of sepsis-induced brain dysfunction.
Collapse
Affiliation(s)
- Paul Denver
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
6
|
Loupy KM, Dawud LM, Zambrano CA, Lee T, Heinze JD, Elsayed AI, Hassell JE, D'Angelo HM, Frank MG, Maier SF, Brenner LA, Lowry CA. Effects of Oral Administration of the Probiotic Lactobacillus rhamnosus GG on the Proteomic Profiles of Cerebrospinal Fluid and Immunoregulatory Signaling in the Hippocampus of Adult Male Rats. Neuroimmunomodulation 2025; 32:94-109. [PMID: 40031897 DOI: 10.1159/000544842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/08/2025] [Indexed: 03/05/2025] Open
Abstract
INTRODUCTION The microbiome-gut-brain axis, by modulating bidirectional immune, metabolic, and neural signaling pathways in the host, has emerged as a target for the prevention and treatment of psychiatric and neurological disorders. Oral administration of the probiotic bacterium Lactobacillus rhamnosus GG (LGG; ATCC 53103) exhibits anti-inflammatory effects, although the precise mechanisms by which LGG benefits host physiology and behavior are not known. The goal of this study was to explore the general effects of LGG on the cerebrospinal fluid (CSF) proteome and a biological signature of anti-inflammatory signaling in the central nervous system (CNS) of undisturbed, adult male rats. METHODS Liquid chromatography-tandem mass spectrometry-based proteomics were conducted using CSF samples collected after 21 days of oral treatment with live LGG (3.34 × 107 colony-forming units (CFU)/mL in the drinking water (resulting in an estimated delivery of ∼1.17 × 109 CFU/day/rat) or water vehicle. Gene enrichment analysis (using DAVID, v. 6.8) and protein-protein interactions (using STRING, v. 11) were used to explore physiological network changes in CSF. Real-time reverse transcription polymerase chain reaction (real-time RT-PCR) was performed to assess gene expression changes of anti-inflammatory cytokines in the hippocampus. Genes associated with anti-inflammatory signaling that were analyzed included Il10, Tgfb1, Il4, and IL-4-responsive genes, Cd200, Cd200r1, and Mrc1 (Cd206). RESULTS Oral LGG administration altered the abundance of CSF proteins, increasing the abundance of five proteins (cochlin, NPTXR, reelin, Sez6l, and VPS13C) and decreasing the abundance of two proteins (CPQ, IGFBP-7) in the CSF. Simultaneously, LGG increased the expression of Il10 mRNA, encoding the anti-inflammatory cytokine interleukin 10, in the hippocampus. CONCLUSION Oral LGG altered the abundance of CSF proteins associated with extracellular scaffolding, synaptic plasticity, and glutamatergic signaling. These data are consistent with the hypothesis that oral administration of LGG improves memory and cognition, and promotes a physiological resilience to neurodegenerative disease, by increasing glutamatergic signaling and promoting an anti-inflammatory environment in the brain.
Collapse
Affiliation(s)
- Kelsey M Loupy
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Lamya'a M Dawud
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Cristian A Zambrano
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Thomas Lee
- Central Analytical Laboratory and Mass Spectrometry Facility, Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA
| | - Jared D Heinze
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Ahmed I Elsayed
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - James E Hassell
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Heather M D'Angelo
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Matthew G Frank
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
- Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Steven F Maier
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
- Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Lisa A Brenner
- Rocky Mountain Regional VA Medical Center (RMRVAMC), Aurora, Colorado, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, Colorado, USA
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
- Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
- Rocky Mountain Regional VA Medical Center (RMRVAMC), Aurora, Colorado, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, Colorado, USA
- Center for Microbial Exploration, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
7
|
Liu Y, Wang X, Zhao Q, Wei J, Yang S. Investigation of the association between circulating inflammatory proteins and encephalitis risk in Europeans by two-sample Mendelian randomization analysis. Front Neurol 2025; 15:1450735. [PMID: 40008261 PMCID: PMC11850273 DOI: 10.3389/fneur.2024.1450735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 12/13/2024] [Indexed: 02/27/2025] Open
Abstract
Background Cytokines are powerful immune response factors that operate at inflammation sites and are also found in the blood. Nevertheless, research on encephalitis and these circulating inflammatory proteins is quite limited. Methods This study investigated the potential causal effects of 91 circulating inflammatory proteins on three different types of encephalitis using a two-sample Mendelian randomisation analysis. The data source for encephalitis was the latest Finngen_R12 dataset, released in 2024. The study investigated causal effects mainly using Steiger, MR-Egger, weighted median and inverse variance weighting (IVW) methods. In addition, sensitivity analyses were performed, including heterogeneity assessment, horizontal pleiotropy and leave-one-out techniques. Results In this study, 91 circulating inflammatory proteins were subjected to MR analysis of causality with each of the three types of encephalitis. The results suggest that the inflammatory factors with a potential causal relationship with viral encephalitis are artemin, C-C motif chemokine 28, C-X-C motif chemokine 1, interleukin-10 and neurotrophin-3. Inflammatory factors potentially causally associated with acute disseminated encephalomyelitis are monocyte chemoattractant protein 2, interleukin-10 receptor subunit beta and matrix metalloproteinase-1. Inflammatory factors potentially causally associated with autoimmune encephalitis are C-C motif chemokine 28 levels and Macrophage inflammatory protein 1a levels. Conclusion This study identifies potential causal effects of certain circulating inflammatory factors on susceptibility to three types of encephalitis. Although the exact mechanisms by which inflammatory proteins contribute to the pathogenesis of different encephalitis subtypes remain unclear, our findings provide new perspectives on these potential causal relationships.
Collapse
Affiliation(s)
- Yanwei Liu
- Department of Neurology, First People’s Hospital of Yibin, Yibin, China
| | - Xilong Wang
- Department of Neurology, Five People’s Hospital of Yibin, Yibin, Sichuan, China
| | - Qiang Zhao
- Department of Neurology, Five People’s Hospital of Yibin, Yibin, Sichuan, China
| | - Jun Wei
- Department of Neurology, First People’s Hospital of Yibin, Yibin, China
| | - Shiqiang Yang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Koga M, Satoh Y, Kashitani M, Nakagawa R, Sato M, Asai F, Ishizuka T, Kinoshita M, Saitoh D, Nagamine M, Toda H, Yoshino A. Augmentation of psychiatric symptom onset vulnerability in male mice due to mild traumatic brain injury. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111153. [PMID: 39332579 DOI: 10.1016/j.pnpbp.2024.111153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Mild traumatic brain injury (mTBI) can induce psychiatric symptoms, including anxiety, depression, and diminished interest. These symptoms can manifest shortly after injury or exhibit delayed onset months or years later, often worsening in severity. Therefore, early intervention and effective treatment are crucial. However, mTBI lacks clear diagnostic markers, making the underlying pathophysiological mechanisms elusive. Additionally, there is a dearth of suitable animal models and a limited understanding of the biochemical changes in the brain that contribute to post-mTBI psychological symptoms. In this study, we hypothesized that mTBI can trigger brain vulnerability mechanisms, which eventually lead to symptom manifestation in response to subsequent stressors. Using a mouse model, we induced very mild blast-induced mTBI without overt trauma or behavioral changes and subsequently subjected the mice to psychological stress. We analyzed the behavioral alterations and gene expression changes in the brain, focusing on microglial and astrocytic markers involved in the immune system and immune responses. The mice exposed to both blast and defeat stress exhibited significantly lower preference scores in the social interaction test than the mice subjected to blast exposure alone, defeat stress alone, or the control condition. Gene expression analysis revealed a distinct set of genes associated with blast exposure during the development of psychiatric symptoms and genes associated with social defeat stress. The results revealed that neither blast exposure nor defeat stress alone significantly affected mouse social behavior; however, their combined influence resulted in noticeable aberrations in social interactions and/or interest. The findings of the present study provide critical insights into the complex interplay between mTBI and psychological stress. Additionally, they provide a novel mouse model for future research aimed at elucidating the pathophysiological mechanisms underlying the psychiatric symptoms associated with mTBI. Ultimately, this knowledge may enhance early intervention and therapeutic strategies for individuals with mTBI-related psychiatric disorders.
Collapse
Affiliation(s)
- Minori Koga
- Department of Psychiatry, The National Defense Medical College, Saitama, Japan.
| | - Yasushi Satoh
- Department of Biochemistry, The National Defense Medical College, Saitama, Japan
| | - Masashi Kashitani
- Department of Aerospace Engineering, National Defense Academy, Kanagawa, Japan
| | - Ryuichi Nakagawa
- Department of Psychiatry, The National Defense Medical College, Saitama, Japan
| | - Mayumi Sato
- Department of Psychiatry, The National Defense Medical College, Saitama, Japan
| | - Fumiho Asai
- Department of Psychiatry, The National Defense Medical College, Saitama, Japan
| | - Toshiaki Ishizuka
- Department of Pharmacology, National Defense Medical College, Saitama, Japan
| | - Manabu Kinoshita
- Department of Immunology and Microbiology, The National Defense Medical College, Saitama, Japan
| | - Daizoh Saitoh
- Division of Traumatology, National Defense Medical College Research Institute, The National Defense Medical College, Saitama, Japan
| | - Masanori Nagamine
- Division of Behavioral Science, National Defense Medical College Research Institute, The National Defense Medical College, Saitama, Japan
| | - Hiroyuki Toda
- Department of Psychiatry, The National Defense Medical College, Saitama, Japan
| | - Aihide Yoshino
- Department of Psychiatry, The National Defense Medical College, Saitama, Japan
| |
Collapse
|
9
|
Deak T, Burzynski HE, Nunes PT, Day SM, Savage LM. Adolescent Alcohol and the Spectrum of Cognitive Dysfunction in Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1473:257-298. [PMID: 40128483 DOI: 10.1007/978-3-031-81908-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Among the many changes associated with aging, inflammation in the central nervous system (CNS) and throughout the body likely contributes to the constellation of health-related maladies associated with aging. Genetics, lifestyle factors, and environmental experiences shape the trajectory of aging-associated inflammation, including the developmental timing, frequency, and intensity of alcohol consumption. This chapter posits that neuroinflammatory processes form a critical link between alcohol exposure and the trajectory of healthy aging, at least in part through direct or indirect interactions with cholinergic circuits that are crucial to cognitive integrity. In this chapter, we begin with a discussion of how inflammation changes from early development through late aging; discuss the role of inflammation and alcohol in the emergence of mild cognitive impairment (MCI); elaborate on critical findings on the contribution of alcohol-related thiamine deficiency to the loss of cholinergic function and subsequent development of Wernicke-Korsakoff syndrome (WKS); and present emerging findings at the intersection of alcohol and Alzheimer's disease and related dementias (ADRD). In doing so, our analysis points toward inflammation-mediated compromise of basal forebrain cholinergic function as a key culprit in cognitive dysfunction associated with chronic alcohol exposure, effects that may be rescuable through either pharmacological or behavioral approaches. Furthermore, our chapter reveals an interesting dichotomy in the effects of alcohol on neuropathological markers of ADRD that depend upon both biological sex and genetic vulnerability.
Collapse
Affiliation(s)
- Terrence Deak
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, NY, USA.
| | - Hannah E Burzynski
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, NY, USA
| | - Polliana T Nunes
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, NY, USA
| | - Stephen M Day
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, NY, USA
| | - Lisa M Savage
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, NY, USA
| |
Collapse
|
10
|
Yang S, Liu Y, Wang S, Peng H, Hui X, Yang A. Causal relationship between circulating inflammatory proteins and risk of different types of encephalitis: A two-sample Mendelian randomization study. Cytokine 2024; 184:156789. [PMID: 39447339 DOI: 10.1016/j.cyto.2024.156789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Cytokines are potent molecules of the immune response. They act at the site of inflammation and circulate in the bloodstream. However, there are few studies on encephalitis and circulating inflammatory proteins. METHODS In this study, Mendelian randomization (MR) was used to explore the potential causal effect of 91 circulating inflammatory proteins on 3 different types of encephalitis. Causal effects were examined using Steiger, MR-Egger, weighted median, and inverse variance weighting (IVW) methods. IVW methods were primarily used for results interpretation. In addition, sensitivity analyses were performed, including assessment of heterogeneity, horizontal pleiotropy, and Leave-one-out techniques. RESULTS We subjected 91 circulating inflammatory proteins to MR analysis of causality with each of the three types of encephalitis. The results suggested that the inflammatory factors with a potential causal relationship with viral encephalitis were caspase 8, C-X-C motif chemokine 6, interleukin-10, interleukin-15 receptor subunit alpha, interleukin-7, and TNF-beta. Inflammatory factors potentially causally associated with acute disseminated encephalomyelitis are beta-nerve growth factor, cystatin D, interleukin-7, Latency-associated peptide transforming growth factor beta 1,and neurotrophin-3.Inflammatory factors potentially causally associated with autoimmune encephalitis are C-C motif chemokine 25, hepatocyte growth factor, latency-associated peptide transforming growth factor beta 1, programmed cell death 1 ligand 1, sulfotransferase 1A1, and tumor necrosis factor. CONCLUSION This finding identifies potential causal effects of certain circulating inflammatory factors on susceptibility to three types of encephalitis. It also suggests the therapeutic potential of modulating the levels of these cytokines. A basis for further research is provided.
Collapse
Affiliation(s)
- Shiqiang Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurosurgery, First People's Hospital of Yibin, Yibin, Sichuan, China.
| | - Yanwei Liu
- Department of Neurology, First People's Hospital of Yibin, Yibin, Sichuan, China
| | - Shiqiang Wang
- Department of Neuro-Oncology, Cancer Hospital, Chongqing University, Chongqing, China
| | - Hua Peng
- Department of Neurosurgery, First People's Hospital of Yibin, Yibin, Sichuan, China
| | - Xuhui Hui
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Anqiang Yang
- Department of Neurosurgery, First People's Hospital of Yibin, Yibin, Sichuan, China.
| |
Collapse
|
11
|
Ruggieri E, Di Domenico E, Locatelli AG, Isopo F, Damanti S, De Lorenzo R, Milan E, Musco G, Rovere-Querini P, Cenci S, Vénéreau E. HMGB1, an evolving pleiotropic protein critical for cellular and tissue homeostasis: Role in aging and age-related diseases. Ageing Res Rev 2024; 102:102550. [PMID: 39427887 DOI: 10.1016/j.arr.2024.102550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/05/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
Aging is a universal biological process characterized by a progressive, cumulative decline in homeostatic capabilities and physiological functions, which inevitably increases vulnerability to diseases. A number of molecular pathomechanisms and hallmarks of aging have been recognized, yet we miss a thorough understanding of their complex interconnectedness. This review explores the molecular and cellular mechanisms underlying human aging, with a focus on the multiple roles of high mobility group Box 1 protein (HMGB1), the archetypal damage-associated molecular pattern (DAMP) molecule. In the nucleus, this non-histone chromatin-associated protein functions as a DNA chaperone and regulator of gene transcription, influencing DNA structure and gene expression. Moreover, this versatile protein can translocate to the cytoplasm to orchestrate other processes, such as autophagy, or be unconventionally secreted into the extracellular environment, where it acts as a DAMP, combining inflammatory and regenerative properties. Notably, lower expression of HMGB1 within the cell and its heightened extracellular release have been associated with diverse age-associated traits, making it a suitable candidate as a universal biomarker of aging. In this review, we outline the evidence implicating HMGB1 in aging, also in light of an evolutionary perspective on its functional pleiotropy, and propose critical issues that need to be addressed to gauge the value of HMGB1 as a potential biomarker across age-related diseases and therapeutic target to promote healthy longevity.
Collapse
Affiliation(s)
- Elena Ruggieri
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Erika Di Domenico
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | | | - Flavio Isopo
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Sarah Damanti
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Rebecca De Lorenzo
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Enrico Milan
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | | | - Patrizia Rovere-Querini
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Simone Cenci
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy.
| | - Emilie Vénéreau
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy.
| |
Collapse
|
12
|
Lerma-Martin C, Badia-I-Mompel P, Ramirez Flores RO, Sekol P, Schäfer PSL, Riedl CJ, Hofmann A, Thäwel T, Wünnemann F, Ibarra-Arellano MA, Trobisch T, Eisele P, Schapiro D, Haeussler M, Hametner S, Saez-Rodriguez J, Schirmer L. Cell type mapping reveals tissue niches and interactions in subcortical multiple sclerosis lesions. Nat Neurosci 2024; 27:2354-2365. [PMID: 39501036 PMCID: PMC11614744 DOI: 10.1038/s41593-024-01796-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 09/30/2024] [Indexed: 11/08/2024]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system. Inflammation is gradually compartmentalized and restricted to specific tissue niches such as the lesion rim. However, the precise cell type composition of such niches, their interactions and changes between chronic active and inactive stages are incompletely understood. We used single-nucleus and spatial transcriptomics from subcortical MS and corresponding control tissues to map cell types and associated pathways to lesion and nonlesion areas. We identified niches such as perivascular spaces, the inflamed lesion rim or the lesion core that are associated with the glial scar and a cilia-forming astrocyte subtype. Focusing on the inflamed rim of chronic active lesions, we uncovered cell-cell communication events between myeloid, endothelial and glial cell types. Our results provide insight into the cellular composition, multicellular programs and intercellular communication in tissue niches along the conversion from a homeostatic to a dysfunctional state underlying lesion progression in MS.
Collapse
Affiliation(s)
- Celia Lerma-Martin
- Department of Neurology, Division of Neuroimmunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Pau Badia-I-Mompel
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
- GSK, Cellzome, Heidelberg, Germany
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Ricardo O Ramirez Flores
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Patricia Sekol
- Department of Neurology, Division of Neuroimmunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Philipp S L Schäfer
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Christian J Riedl
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Annika Hofmann
- Department of Neurology, Division of Neuroimmunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Thomas Thäwel
- Department of Neurology, Division of Neuroimmunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Florian Wünnemann
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
| | - Miguel A Ibarra-Arellano
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
| | - Tim Trobisch
- Department of Neurology, Division of Neuroimmunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Philipp Eisele
- Department of Neurology, Division of Neuroimmunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Center for Translational Neuroscience, Medical Faculty, Mannheim Heidelberg University, Mannheim, Germany
| | - Denis Schapiro
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
- Institute of Pathology, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
- Translational Spatial Profiling Center (TSPC), Heidelberg, Germany
| | | | - Simon Hametner
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany.
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK.
| | - Lucas Schirmer
- Department of Neurology, Division of Neuroimmunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Mannheim Center for Translational Neuroscience, Medical Faculty, Mannheim Heidelberg University, Mannheim, Germany.
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
13
|
Almalki WH, Almujri SS. Therapeutic approaches to microglial dysfunction in Alzheimer's disease: Enhancing phagocytosis and metabolic regulation. Pathol Res Pract 2024; 263:155614. [PMID: 39342887 DOI: 10.1016/j.prp.2024.155614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Microglia are essential in neurogenesis, synaptic pruning, and homeostasis. Nevertheless, aging, and cellular senescence may modify their role, causing them to shift from being shields to being players of neurodegeneration. In the aging brain, the population of microglia increases, followed by enhanced activity of genes related to neuroinflammation. This change increases their ability to cause inflammation, resulting in a long-lasting state of inflammation in the brain that harms the condition of neurons. In Alzheimer's Disease (AD), microglia are located inside amyloid plaques and exhibit an inflammatory phenotype characterized by a diminished ability to engulf and remove waste material, worsening the illness's advancement. Genetic polymorphisms in TREM2, APOE, and CD33 highlight the significant impact of microglial dysfunction in AD. This review examines therapeutic approaches that aim to address microglial dysfunction, such as enhancing the microglial capability to engulf and remove amyloid-β clumps and regulating microglial metabolism and mitochondrial activity. Microglial transplanting and reprogramming advancements show the potential to restore their ability to reduce inflammation. Although there has been notable advancement, there are still voids in our knowledge of microglial biology, including their relationships with other brain cells. Further studies should prioritize the improvement of human AD models, establish standardized methods for characterizing microglia, and explore how various factors influence microglial responses. It is essential to tackle these problems to create effective treatment plans that focus on reducing inflammation in the brain and protecting against damage in age-related neurodegenerative illnesses.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Aseer 61421, Saudi Arabia
| |
Collapse
|
14
|
Mackey-Alfonso SE, Butler MJ, Taylor AM, Williams-Medina AR, Muscat SM, Fu H, Barrientos RM. Short-term high fat diet impairs memory, exacerbates the neuroimmune response, and evokes synaptic degradation via a complement-dependent mechanism in a mouse model of Alzheimer's disease. Brain Behav Immun 2024; 121:56-69. [PMID: 39043341 DOI: 10.1016/j.bbi.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024] Open
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disease characterized by profound memory impairments, synaptic loss, neuroinflammation, and hallmark pathological markers. High-fat diet (HFD) consumption increases the risk of developing AD even after controlling for metabolic syndrome, pointing to a role of the diet itself in increasing risk. In AD, the complement system, an arm of the immune system which normally tags redundant or damaged synapses for pruning, becomes pathologically overactivated leading to tagging of healthy synapses. While the unhealthy diet to AD link is strong, the underlying mechanisms are not well understood in part due to confounding variables associated with long-term HFD which can independently influence the brain. Therefore, we experimented with a short-term diet regimen to isolate the diet's impact on brain function without causing obesity. This project investigated the effect of short-term HFD on 1) memory, 2) neuroinflammation including complement, 3) AD pathology markers, 4) synaptic markers, and 5) in vitro microglial synaptic phagocytosis in the 3xTg-AD mouse model. Following the consumption of either standard chow or HFD, 3xTg-AD and non-Tg mice were tested for memory impairments. In a separate cohort of mice, levels of hippocampal inflammatory markers, complement proteins, AD pathology markers, and synaptic markers were measured. For the last set of experiments, BV2 microglial phagocytosis of synapses was evaluated. Synaptoneurosomes isolated from the hippocampus of 3xTg-AD mice fed chow or HFD were incubated with equal numbers of BV2 microglia. The number of BV2 microglia that phagocytosed synaptoneurosomes was tracked over time with a live-cell imaging assay. Finally, we incubated BV2 microglia with a complement receptor inhibitor (NIF) and repeated the assay. Behavioral analysis showed 3xTg-AD mice had significantly impaired long-term contextual and cued fear memory compared to non-Tg mice that was further impaired by HFD. HFD significantly increased inflammatory markers and complement expression while decreasing synaptic marker expression only in 3xTg-AD mice, without altering AD pathology markers. Synaptoneurosomes from HFD-fed 3xTg-AD mice were phagocytosed at a significantly higher rate than those from chow-fed mice, suggesting the synapses were altered by HFD. The complement receptor inhibitor blocked this effect in a dose-dependent manner, demonstrating the HFD-mediated increase in phagocytosis was complement dependent. This study indicates HFD consumption increases neuroinflammation and over-activates the complement cascade in 3xTg-AD mice, resulting in poorer memory. The in vitro data point to complement as a potential mechanistic culprit and therapeutic target underlying HFD's influence in increasing cognitive vulnerability to AD.
Collapse
Affiliation(s)
- Sabrina E Mackey-Alfonso
- Medical Scientist Training Program, The Ohio State University, Columbus, OH, USA; Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA; Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | - Michael J Butler
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA; Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, USA
| | - Ashton M Taylor
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | | | - Stephanie M Muscat
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | - Hongjun Fu
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA; Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
15
|
Ana B. Aged-Related Changes in Microglia and Neurodegenerative Diseases: Exploring the Connection. Biomedicines 2024; 12:1737. [PMID: 39200202 PMCID: PMC11351943 DOI: 10.3390/biomedicines12081737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 07/26/2024] [Indexed: 09/02/2024] Open
Abstract
Microglial cells exhibit properties akin to macrophages, thereby enabling them to support and protect the central nervous system environment. Aging induces alterations in microglial polarization, resulting in a shift toward a neurotoxic phenotype characterized by increased expression of pro-inflammatory markers. Dysregulation of microglial cells' regulatory pathways and interactions with neurons contribute to chronic activation and neurodegeneration. A better understanding of the involvement of microglia in neurodegenerative diseases such as Alzheimer's and Parkinson's is a critical topic for studying the role of inflammatory responses in disease progression. Furthermore, the metabolic changes in aged microglia, including the downregulation of oxidative phosphorylation, are discussed in this review. Understanding these mechanisms is crucial for developing better preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Borrajo Ana
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
16
|
Zhao H, Zong X, Li L, Li N, Liu C, Zhang W, Li J, Yang C, Huang S. Electroacupuncture Inhibits Neuroinflammation Induced by Astrocytic Necroptosis Through RIP1/MLKL/TLR4 Pathway in a Mouse Model of Spinal Cord Injury. Mol Neurobiol 2024; 61:3258-3271. [PMID: 37982922 DOI: 10.1007/s12035-023-03650-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/08/2023] [Indexed: 11/21/2023]
Abstract
Astrocytic necroptosis plays an essential role in the progression and regression of neurological disorders, which contributes to the neuroinflammation and disrupts neuronal regeneration and remyelination of severed axons. Electroacupuncture (EA), an effective therapeutic efficacy against spinal cord injury (SCI), has been proved to reduce neuronal cell apoptosis, inhibit inflammation, and prompt neural stem cell proliferation and differentiations. However, there have been few reports on whether EA regulate astrocytic necroptosis in SCI model. To investigate the effects of EA on astrocytic necroptosis and the mechanisms involved in the inhibition of astrocytic necroptosis after SCI in mice by EA, 8-week-old female C57BL/6 mice were subjected to SCI surgery and randomly divided into EA and SCI groups. Mice receiving sham surgery were included as sham group. "Jiaji" was selected as points for EA treatment, 10 min/day for 14 days. The in vitro data revealed that EA treatment significantly improved the nervous function and pathological changes after SCI. EA also reduced the number of GFAP/P-MLKL, GFAP/MLKL, GFAP/HMGB1, and Iba1/HMGB1 co-positive cells and inhibited the expressions of IL-6, IL-1β, and IL-33. The results indicate a significant reduction in inflammatory reaction and astrocytic necroptosis in mice with SCI by EA. Additionally, the expressions of RIP1, MLKL, and TLR4, which are associated with necroptosis, were found to be downregulated by EA. In this study, we confirmed that EA can inhibit neuroinflammation by reducing astrocytic necroptosis through downregulation of RIP1/MLKL/TLR4 pathway in mice with SCI.
Collapse
Affiliation(s)
- Hongdi Zhao
- Chongqing Medical University, Chongqing, 400016, China
- Affiliated Hospital of Chifeng University, Inner Mongolia Autonomous Region, Chifeng, 024099, China
| | - Xiaoqin Zong
- Chongqing Medical University, Chongqing, 400016, China
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Long Li
- Chongqing Medical University, Chongqing, 400016, China
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Na Li
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Chunlei Liu
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Wanchao Zhang
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Juan Li
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Cheng Yang
- Chongqing Medical University, Chongqing, 400016, China.
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China.
| | - Siqin Huang
- Chongqing Medical University, Chongqing, 400016, China.
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China.
| |
Collapse
|
17
|
Yang Y, Hang W, Li J, Liu T, Hu Y, Fang F, Yan D, McQuillan PM, Wang M, Hu Z. Effect of General Anesthetic Agents on Microglia. Aging Dis 2024; 15:1308-1328. [PMID: 37962460 PMCID: PMC11081156 DOI: 10.14336/ad.2023.1108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023] Open
Abstract
The effects of general anesthetic agents (GAAs) on microglia and their potential neurotoxicity have attracted the attention of neuroscientists. Microglia play important roles in the inflammatory process and in neuromodulation of the central nervous system. Microglia-mediated neuroinflammation is a key mechanism of neurocognitive dysfunction during the perioperative period. Microglial activation by GAAs induces anti-inflammatory and pro-inflammatory effects in microglia, suggesting that GAAs play a dual role in the mechanism of postoperative cognitive dysfunction. Understanding of the mechanisms by which GAAs regulate microglia may help to reduce the incidence of postoperative adverse effects. Here, we review the actions of GAAs on microglia and the consequent changes in microglial function. We summarize clinical and animal studies associating microglia with general anesthesia and describe how GAAs interact with neurons via microglia to further explore the mechanisms of action of GAAs in the nervous system.
Collapse
Affiliation(s)
- Yanchang Yang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Wenxin Hang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jun Li
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Anesthesiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China.
| | - Tiantian Liu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Anesthesiology, Ningbo Women and Children's Hospital, Ningbo, China.
| | - Yuhan Hu
- Cell Biology Department, Yale University, New Haven, CT, USA.
| | - Fuquan Fang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Dandan Yan
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Patrick M. McQuillan
- Department of Anesthesiology, Penn State Hershey Medical Center, Penn State College of Medicine, Hershey, PA, USA.
| | - Mi Wang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Zhiyong Hu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
18
|
Khumsri W, Payuhakrit W, Kongkaew A, Chattipakorn N, Chattipakorn S, Yasom S, Mutirangura A. Box A of HMGB1 Maintains the DNA Gap and Prevents DDR-induced Kidney Injury in D-galactose Induction Rats. In Vivo 2024; 38:1170-1181. [PMID: 38688613 PMCID: PMC11059889 DOI: 10.21873/invivo.13552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND/AIM Disability and mortality rates for renal failure are still increasing. DNA damage and oxidative stress intoxication from body metabolism, high blood glucose, or the environment cause significant kidney damage. Recently, we reported that Box A of HMGB1 (Box A) acts as molecular scissors, producing DNA gaps that prevent DNA damage in kidney cell lines and ultimately reverse aging phenotypes in aging rat models. The present study aimed to demonstrate the potency of Box A in preventing D-galactose (D-gal)-induced kidney injury. MATERIALS AND METHODS A Box A expression plasmid was constructed and administered to a rat model. D-gal was injected subcutaneously for eight weeks. Serum was collected to study renal function, and white blood cells were collected for DNA gap measurement. Kidney tissue was also collected for γ-H2AX and NF-κB immunostaining; Senescence-associated (SA)-beta-gal staining; and analysis of the mRNA expression of p16INK4A, TNF-α, and IL-6. Moreover, histopathology analysis was performed using hematoxylin & eosin and Masson trichome staining. RESULTS Pretreatment with Box A administration prevented the reduction of DNA gaps and the consequences of the DNA damage response, which include elevated serum creatinine; high serum BUN; an increased positive SA-beta-gal staining area; overexpression of p16INK4A, NF-κB and senescence-associated secretory phenotype molecules, including IL-6, TNF-α; and histological alterations, including tubular dilation and collagen accumulation. CONCLUSION Box A effectively prevents DNA gap reduction and all D-gal-induced kidney pathological changes at the molecular, histological, and physiological levels. Therefore, Box A administration is a promising novel therapeutic strategy to prevent DNA-damaging agent-induced kidney failure.
Collapse
Affiliation(s)
- Wilunplus Khumsri
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Witchuda Payuhakrit
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand;
- Pathobiology Information and Learning Center, Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Aphisek Kongkaew
- Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn Chattipakorn
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sakawdaurn Yasom
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand;
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
19
|
Anton PE, Nagpal P, Moreno J, Burchill MA, Chatterjee A, Busquet N, Mesches M, Kovacs EJ, McCullough RL. NF-κB/NLRP3 Translational Inhibition by Nanoligomer Therapy Mitigates Ethanol and Advanced Age-Related Neuroinflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582114. [PMID: 38464118 PMCID: PMC10925165 DOI: 10.1101/2024.02.26.582114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Binge alcohol use is increasing among aged adults (>65 years). Alcohol-related toxicity in aged adults is associated with neurodegeneration, yet the molecular underpinnings of age-related sensitivity to alcohol are not well described. Studies utilizing rodent models of neurodegenerative disease reveal heightened activation of Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Nod like receptor 3 (NLRP3) mediate microglia activation and associated neuronal injury. Our group, and others, have implicated hippocampal-resident microglia as key producers of inflammatory mediators, yet the link between inflammation and neurodegeneration has not been established in models of binge ethanol exposure and advanced age. Here, we report binge ethanol increased the proportion of NLRP3+ microglia in the hippocampus of aged (18-20 months) female C57BL/6N mice compared to young (3-4 months). In primary microglia, ethanol-induced expression of reactivity markers and NLRP3 inflammasome activation were more pronounced in microglia from aged mice compared to young. Making use of an NLRP3-specific inhibitor (OLT1177) and a novel brain-penetrant Nanoligomer that inhibits NF-κB and NLRP3 translation (SB_NI_112), we find ethanol-induced microglial reactivity can be attenuated by OLT1177 and SB_NI_112 in microglia from aged mice. In a model of intermittent binge ethanol exposure, SB_NI_112 prevented ethanol-mediated microglia reactivity, IL-1β production, and tau hyperphosphorylation in the hippocampus of aged mice. These data suggest early indicators of neurodegeneration occurring with advanced age and binge ethanol exposure are NF-κB- and NLRP3-dependent. Further investigation is warranted to explore the use of targeted immunosuppression via Nanoligomers to attenuate neuroinflammation after alcohol consumption in the aged.
Collapse
Affiliation(s)
- Paige E. Anton
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO
- Alcohol Research Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | - Julie Moreno
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - Matthew A. Burchill
- GI and Liver Innate Immune Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | - Nicolas Busquet
- Animal Behavior & In Vivo Neurophysiology Core, NeuroTechnology Center, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Neurology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora Colorado
| | - Michael Mesches
- Animal Behavior & In Vivo Neurophysiology Core, NeuroTechnology Center, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Neurology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora Colorado
| | - Elizabeth J. Kovacs
- Alcohol Research Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Division of GI Trauma and Endocrine Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Veterans’ Health Administration, Eastern Colorado Health Care System, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO
| | - Rebecca L. McCullough
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO
- Alcohol Research Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- GI and Liver Innate Immune Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
20
|
Anton PE, Rutt LN, Kaufman ML, Busquet N, Kovacs EJ, McCullough RL. Binge ethanol exposure in advanced age elevates neuroinflammation and early indicators of neurodegeneration and cognitive impairment in female mice. Brain Behav Immun 2024; 116:303-316. [PMID: 38151165 PMCID: PMC11446185 DOI: 10.1016/j.bbi.2023.12.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023] Open
Abstract
Binge drinking is rising among aged adults (>65 years of age), however the contribution of alcohol misuse to neurodegenerative disease development is not well understood. Both advanced age and repeated binge ethanol exposure increase neuroinflammation, which is an important component of neurodegeneration and cognitive dysfunction. Surprisingly, the distinct effects of binge ethanol exposure on neuroinflammation and associated degeneration in the aged brain have not been well characterized. Here, we establish a model of intermittent binge ethanol exposure in young and aged female mice to investigate the effects of advanced age and binge ethanol on these outcomes. Following intermittent binge ethanol exposure, expression of pro-inflammatory mediators (tnf-α, il-1β, ccl2) was distinctly increased in isolated hippocampal tissue by the combination of advanced age and ethanol. Binge ethanol exposure also increased measures of senescence, the nod like receptor pyrin domain containing 3 (NLRP3) inflammasome, and microglia reactivity in the brains of aged mice compared to young. Binge ethanol exposure also promoted neuropathology in the hippocampus of aged mice, including tau hyperphosphorylation and neuronal death. We further identified advanced age-related deficits in contextual memory that were further negatively impacted by ethanol exposure. These data suggest binge drinking superimposed with advanced age promotes early markers of neurodegenerative disease development and cognitive decline, which may be driven by heightened neuroinflammatory responses to ethanol. Taken together, we propose this novel exposure model of intermittent binge ethanol can be used to identify therapeutic targets to prevent advanced age- and ethanol-related neurodegeneration.
Collapse
Affiliation(s)
- Paige E Anton
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Alcohol Research Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lauren N Rutt
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Alcohol Research Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Michael L Kaufman
- RNA Bioscience Initiative, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Nicolas Busquet
- Animal Behavior and In Vivo Neurophysiology Core, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Elizabeth J Kovacs
- GI and Liver Innate Immune Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Division of GI Trauma and Endocrine Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Alcohol Research Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Rebecca L McCullough
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; GI and Liver Innate Immune Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Alcohol Research Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| |
Collapse
|
21
|
Leuner B. Microglia and age-related cognitive decline: Primed for sex differences. Brain Behav Immun 2024; 116:267-268. [PMID: 38096924 DOI: 10.1016/j.bbi.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/25/2023] Open
Affiliation(s)
- Benedetta Leuner
- Departments of Psychology and Neuroscience, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
22
|
Muscat SM, Butler MJ, Bettes MN, DeMarsh JW, Scaria EA, Deems NP, Barrientos RM. Post-operative cognitive dysfunction is exacerbated by high-fat diet via TLR4 and prevented by dietary DHA supplementation. Brain Behav Immun 2024; 116:385-401. [PMID: 38145855 PMCID: PMC10872288 DOI: 10.1016/j.bbi.2023.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023] Open
Abstract
Post-operative cognitive dysfunction (POCD) is an abrupt decline in neurocognitive function arising shortly after surgery and persisting for weeks to months, increasing the risk of dementia diagnosis. Advanced age, obesity, and comorbidities linked to high-fat diet (HFD) consumption such as diabetes and hypertension have been identified as risk factors for POCD, although underlying mechanisms remain unclear. We have previously shown that surgery alone, or 3-days of HFD can each evoke sufficient neuroinflammation to cause memory deficits in aged, but not young rats. The aim of the present study was to determine if HFD consumption before surgery would potentiate and prolong the subsequent neuroinflammatory response and memory deficits, and if so, to determine the extent to which these effects depend on activation of the innate immune receptor TLR4, which both insults are known to stimulate. Young-adult (3mo) & aged (24mo) male F344xBN F1 rats were fed standard chow or HFD for 3-days immediately before sham surgery or laparotomy. In aged rats, the combination of HFD and surgery caused persistent deficits in contextual memory and cued-fear memory, though it was determined that HFD alone was sufficient to cause the long-lasting cued-fear memory deficits. In young adult rats, HFD + surgery caused only cued-fear memory deficits. Elevated proinflammatory gene expression in the hippocampus of both young and aged rats that received HFD + surgery persisted for at least 3-weeks after surgery. In a separate experiment, rats were administered the TLR4-specific antagonist, LPS-RS, immediately before HFD onset, which ameliorated the HFD + surgery-associated neuroinflammation and memory deficits. Similarly, dietary DHA supplementation for 4 weeks prior to HFD onset blunted the neuroinflammatory response to surgery and prevented development of persistent memory deficits. These results suggest that HFD 1) increases risk of persistent POCD-associated memory impairments following surgery in male rats in 2) a TLR4-dependent manner, which 3) can be targeted by DHA supplementation to mitigate development of persistent POCD.
Collapse
Affiliation(s)
- Stephanie M Muscat
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Michael J Butler
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Menaz N Bettes
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - James W DeMarsh
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Emmanuel A Scaria
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Nicholas P Deems
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Department of Psychiatry & Behavioral Health, The Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
23
|
Seol SI, Davaanyam D, Oh SA, Lee EH, Han PL, Kim SW, Lee JK. Age-Dependent and Aβ-Induced Dynamic Changes in the Subcellular Localization of HMGB1 in Neurons and Microglia in the Brains of an Animal Model of Alzheimer's Disease. Cells 2024; 13:189. [PMID: 38247880 PMCID: PMC10814163 DOI: 10.3390/cells13020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
HMGB1 is a prototypical danger-associated molecular pattern (DAMP) molecule that co-localizes with amyloid beta (Aβ) in the brains of patients with Alzheimer's disease. HMGB1 levels are significantly higher in the cerebrospinal fluid of patients. However, the cellular and subcellular distribution of HMGB1 in relation to the pathology of Alzheimer's disease has not yet been studied in detail. Here, we investigated whether HMGB1 protein levels in brain tissue homogenates (frontal cortex and striatum) and sera from Tg-APP/PS1 mice, along with its cellular and subcellular localization in those regions, differed. Total HMGB1 levels were increased in the frontal cortices of aged wildtype (7.5 M) mice compared to young (3.5 M) mice, whereas total HMGB1 levels in the frontal cortices of Tg-APP/PS1 mice (7.5 M) were significantly lower than those in age-matched wildtype mice. In contrast, total serum HMGB1 levels were enhanced in aged wildtype (7.5 M) mice and Tg-APP/PS1 mice (7.5 M). Further analysis indicated that nuclear HMGB1 levels in the frontal cortices of Tg-APP/PS1 mice were significantly reduced compared to those in age-matched wildtype controls, and cytosolic HMGB1 levels were also significantly decreased. Triple-fluorescence immunohistochemical analysis indicated that HMGB1 appeared as a ring shape in the cytoplasm of most neurons and microglia in the frontal cortices of 9.5 M Tg-APP/PS1 mice, indicating that nuclear HMGB1 is reduced by aging and in Tg-APP/PS1 mice. Consistent with these observations, Aβ treatment of both primary cortical neuron and primary microglial cultures increased HMGB1 secretion in the media, in an Aβ-dose-dependent manner. Our results indicate that nuclear HMGB1 might be translocated from the nucleus to the cytoplasm in both neurons and microglia in the brains of Tg-APP/PS1 mice, and that it may subsequently be secreted extracellularly.
Collapse
Affiliation(s)
- Song-I Seol
- Department of Anatomy, Inha University School of Medicine, Incheon 22212, Republic of Korea; (S.-I.S.); (D.D.); (S.-A.O.)
| | - Dashdulam Davaanyam
- Department of Anatomy, Inha University School of Medicine, Incheon 22212, Republic of Korea; (S.-I.S.); (D.D.); (S.-A.O.)
| | - Sang-A Oh
- Department of Anatomy, Inha University School of Medicine, Incheon 22212, Republic of Korea; (S.-I.S.); (D.D.); (S.-A.O.)
| | - Eun-Hwa Lee
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul 03760, Republic of Korea; (E.-H.L.); (P.-L.H.)
| | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul 03760, Republic of Korea; (E.-H.L.); (P.-L.H.)
- Department of Chemistry and Nano Science, College of Natural Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seung-Woo Kim
- Department of Biomedical Sciences, Inha University School of Medicine, Inchon 22212, Republic of Korea
| | - Ja-Kyeong Lee
- Department of Anatomy, Inha University School of Medicine, Incheon 22212, Republic of Korea; (S.-I.S.); (D.D.); (S.-A.O.)
| |
Collapse
|
24
|
Gaikwad S, Senapati S, Haque MA, Kayed R. Senescence, brain inflammation, and oligomeric tau drive cognitive decline in Alzheimer's disease: Evidence from clinical and preclinical studies. Alzheimers Dement 2024; 20:709-727. [PMID: 37814508 PMCID: PMC10841264 DOI: 10.1002/alz.13490] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 10/11/2023]
Abstract
Aging, tau pathology, and chronic inflammation in the brain play crucial roles in synaptic loss, neurodegeneration, and cognitive decline in tauopathies, including Alzheimer's disease. Senescent cells accumulate in the aging brain, accelerate the aging process, and promote tauopathy progression through their abnormal inflammatory secretome known as the senescence-associated secretory phenotype (SASP). Tau oligomers (TauO)-the most neurotoxic tau species-are known to induce senescence and the SASP, which subsequently promote neuropathology, inflammation, oxidative stress, synaptic dysfunction, neuronal death, and cognitive dysfunction. TauO, brain inflammation, and senescence are associated with heterogeneity in tauopathy progression and cognitive decline. However, the underlying mechanisms driving the disease heterogeneity remain largely unknown, impeding the development of therapies for tauopathies. Based on clinical and preclinical evidence, this review highlights the critical role of TauO and senescence in neurodegeneration. We discuss key knowledge gaps and potential strategies for targeting senescence and TauO to treat tauopathies. HIGHLIGHTS: Senescence, oligomeric Tau (TauO), and brain inflammation accelerate the aging process and promote the progression of tauopathies, including Alzheimer's disease. We discuss their role in contributing to heterogeneity in tauopathy and cognitive decline. We highlight strategies to target senescence and TauO to treat tauopathies while addressing key knowledge gaps.
Collapse
Affiliation(s)
- Sagar Gaikwad
- The Mitchell Center for Neurodegenerative Diseasesand Department of NeurologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Sudipta Senapati
- The Mitchell Center for Neurodegenerative Diseasesand Department of NeurologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Md. Anzarul Haque
- The Mitchell Center for Neurodegenerative Diseasesand Department of NeurologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Rakez Kayed
- The Mitchell Center for Neurodegenerative Diseasesand Department of NeurologyUniversity of Texas Medical BranchGalvestonTexasUSA
| |
Collapse
|
25
|
Ince LM, Darling JS, Sanchez K, Bell KS, Melbourne JK, Davis LK, Nixon K, Gaudet AD, Fonken LK. Sex differences in microglia function in aged rats underlie vulnerability to cognitive decline. Brain Behav Immun 2023; 114:438-452. [PMID: 37709153 PMCID: PMC10790303 DOI: 10.1016/j.bbi.2023.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/07/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023] Open
Abstract
Aging is associated with a significant shift in immune system reactivity ("inflammaging"), as basal inflammation increases but protective responses to infection are compromised. The immune system exhibits considerable sex differences, which may influence the process of inflammaging, including immune cell activation and behavioral consequences of immune signaling (i.e., impaired memory). Here, we test the hypothesis that sex differences in immune aging may mediate sex differences in cognitive decline. Aged male and female rats received peripheral immune stimulation using lipopolysaccharide (LPS), then molecular, cellular, and behavioral outcomes were assessed. We observed that LPS-treated aged male rats showed cognitive impairment and increased neuroinflammatory responses relative to adult males. In contrast, aged female rats did not display these aging-related deficits. Using transcriptomic and flow cytometry analyses, we further observed significant age- and sex- dependent changes in immune cell populations in the brain parenchyma and meninges, indicating a broad shift in the neuroinflammatory environment that may potentiate these behavioral effects. Ovariectomized aged female rats were also resistant to inflammation-induced memory deficits, indicating that ovarian hormones are not required for the attenuated neuroinflammation in aged females. Overall, our results indicate that males have amplified inflammatory priming with age, which contributes to age-associated cognitive decline. Our findings highlight sexual dimorphism in mechanisms of aging, and suggest that sex is a crucial consideration for identifying therapies for aging and neuroinflammation.
Collapse
Affiliation(s)
- Louise M Ince
- Division of Pharmacology & Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | - Jeffrey S Darling
- Division of Pharmacology & Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | - Kevin Sanchez
- Division of Pharmacology & Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | - Kiersten S Bell
- Division of Pharmacology & Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | - Jennifer K Melbourne
- Division of Pharmacology & Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | - Lourdes K Davis
- Division of Pharmacology & Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| | - Kimberly Nixon
- Division of Pharmacology & Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | - Andrew D Gaudet
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA; Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
| | - Laura K Fonken
- Division of Pharmacology & Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
26
|
Zhao J, Xu F, Xu W, Lv R, Wang J, Yang X. Higher High-Mobility Group Box-1 Levels are Associated with White Matter Lesions in Ischemic Stroke Patients. J Inflamm Res 2023; 16:4441-4449. [PMID: 37842188 PMCID: PMC10572385 DOI: 10.2147/jir.s432109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023] Open
Abstract
Background and Purpose High-mobility group box-1 (HMGB1) is a useful biomarker for disease severity stratification and prognosis prediction. We aim to explore whether the circulating HMGB1 concentrations are associated with the white matter lesions (WMLs) burden in stroke patients. Methods Between 2022 June and December 2022, patients with acute ischemic stroke were prospectively enrolled. HMGB1 levels were measured by an enzyme-linked immunosorbent assay after admission for all patients. The WMLs severity was assessed by the Fazekas scale. We dichotomized patients into those with moderate-severe WMLs (Fazekas score 3-6) versus those with none-mild WMLs (Fazekas score 0-2). Furthermore, based on the severity of periventricular WMLs (PWMLs) and deep WMLs (DWMLs), patients were categorized as none-mild (Fazekas score 0-1) or moderate-severe (Fazekas score 2-3). Results A total of 287 participants (mean age: 64.9 years; 157 male) were analyzed. The median serum HMGB1 levels were 7.3 ng/mL (interquartile, 4.3 ng/mL-12.3 ng/mL). After adjustment for potential confounders, elevated HMGB1 levels were associated with the presence of moderate-severe WMLs (first quartile vs fourth quartile, odds ratio [OR], 4.101; 95% confidence interval [CI], 1.948-8.633; P = 0.001) and moderate-severe PWMLs (first quartile vs fourth quartile, OR, 9.181; 95% CI, 4.078-20.671; P = 0.001). Similar results were found when the HMGB1 levels were analyzed as a continuous variable. Conclusion This study demonstrated that increased HMGB1 levels were associated with the severity of WMLs, mainly in the periventricular region.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Geriatrics, Suzhou Ninth People’s Hospital, Soochow University, Suzhou, Jiangsu, 215200, People’s Republic of China
| | - Fang Xu
- Department of Obstetrics and Gynecology, Suzhou Wujiang District Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu, 215200, People’s Republic of China
| | - Wanying Xu
- Department of Geriatrics, Suzhou Ninth People’s Hospital, Soochow University, Suzhou, Jiangsu, 215200, People’s Republic of China
| | - Rong Lv
- Department of Geriatrics, Suzhou Ninth People’s Hospital, Soochow University, Suzhou, Jiangsu, 215200, People’s Republic of China
| | - Juan Wang
- Department of Endocrine, Suzhou Ninth People’s Hospital, Soochow University, Suzhou, Jiangsu, 215200, People’s Republic of China
| | - Xufeng Yang
- Department of Geriatrics, Suzhou Ninth People’s Hospital, Soochow University, Suzhou, Jiangsu, 215200, People’s Republic of China
| |
Collapse
|
27
|
Huang X, Wang B, Yang J, Lian YJ, Yu HZ, Wang YX. HMGB1 in depression: An overview of microglial HMBG1 in the pathogenesis of depression. Brain Behav Immun Health 2023; 30:100641. [PMID: 37288063 PMCID: PMC10242493 DOI: 10.1016/j.bbih.2023.100641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/14/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023] Open
Abstract
Depression is a prevalent psychiatric disorder with elusive pathogenesis. Studies have proposed that enhancement and persistence of aseptic inflammation in the central nervous system (CNS) may be closely associated with the development of depressive disorder. High mobility group box 1 (HMGB1) has obtained significant attention as an evoking and regulating factor in various inflammation-related diseases. It is a non-histone DNA-binding protein that can be released as a pro-inflammatory cytokine by glial cells and neurons in the CNS. Microglia, as the immune cell of the brain, interacts with HMGB1 and induces neuroinflammation and neurodegeneration in the CNS. Therefore, in the current review, we aim to investigate the role of microglial HMGB1 in the pathogenetic process of depression.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
- Department of Anaesthesiology, West China Hospital of Sichuan University, Sichuan Province, Chengdu, 610041, China
| | - Bo Wang
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Occupational Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jing Yang
- Department of Anaesthesiology, West China Hospital of Sichuan University, Sichuan Province, Chengdu, 610041, China
| | - Yong-Jie Lian
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
| | - Hong-Zhang Yu
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
| | - Yun-Xia Wang
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
28
|
Sanchez K, Wu SL, Kakkar R, Darling JS, Harper CS, Fonken LK. Ovariectomy in mice primes hippocampal microglia to exacerbate behavioral sickness responses. Brain Behav Immun Health 2023; 30:100638. [PMID: 37256192 PMCID: PMC10225896 DOI: 10.1016/j.bbih.2023.100638] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/14/2023] [Accepted: 05/07/2023] [Indexed: 06/01/2023] Open
Abstract
Estrogens are a group of steroid hormones that promote the development and maintenance of the female reproductive system and secondary sex characteristics. Estrogens also modulate immune responses; estrogen loss at menopause increases the risk of inflammatory disorders. Elevated inflammatory responses in the brain can lead to affective behavioral changes, which are characteristic of menopause. Thus, here we examined whether loss of estrogens sensitizes microglia, the primary innate immune cell of the brain, leading to changes in affective behaviors. To test this question, adult C57BL/6 mice underwent an ovariectomy to remove endogenous estrogens and then received estradiol hormone replacement or vehicle. After a one-month recovery, mice received an immune challenge with lipopolysaccharide (LPS) or vehicle control treatment and underwent behavioral testing. Ovariectomized, saline-treated mice exhibited reduced social investigation compared to sham-operated mice. Furthermore, ovariectomized mice that received LPS exhibited an exacerbated decrease in sucrose preference, which was ameliorated by estradiol replacement. These results indicate that ovariectomy modulates affective behaviors at baseline and in response to an inflammatory challenge. Ovariectomy-related behavioral changes were associated with downregulation of Cx3cr1, a microglial receptor that limits activation, suggesting that estrogen loss can disinhibit microglia to immune stimuli. Indeed, estradiol treatment reduced ovariectomy-induced increases in Il1b and Il6 expression after an immune challenge. Changes in microglial reactivity following ovariectomy are likely subtle, as overt changes in microglial morphology (e.g., soma size and branching) were limited. Collectively, these results suggest that a lack of estrogens may allow microglia to confer exaggerated neuroimmune responses, thereby raising vulnerability to adverse affective- and sickness-related behavioral changes.
Collapse
Affiliation(s)
- Kevin Sanchez
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sienna L. Wu
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Reha Kakkar
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jeffrey S. Darling
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Claire S. Harper
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Laura K. Fonken
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
29
|
Corrigan M, O'Rourke A, Moran B, Fletcher J, Harkin A. Inflammation in the pathogenesis of depression: a disorder of neuroimmune origin. Neuronal Signal 2023; 7:NS20220054. [PMID: 37457896 PMCID: PMC10345431 DOI: 10.1042/ns20220054] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
There are several hypotheses concerning the underlying pathophysiological mechanisms of major depression, which centre largely around adaptive changes in neuronal transmission and plasticity, neurogenesis, and circuit and regional connectivity. The immune and endocrine systems are commonly implicated in driving these changes. An intricate interaction of stress hormones, innate immune cells and the actions of soluble mediators of immunity within the nervous system is described as being associated with the symptoms of depression. Bridging endocrine and immune processes to neurotransmission and signalling within key cortical and limbic brain circuits are critical to understanding depression as a disorder of neuroimmune origins. Emergent areas of research include a growing recognition of the adaptive immune system, advances in neuroimaging techniques and mechanistic insights gained from transgenic animals. Elucidation of glial-neuronal interactions is providing additional avenues into promising areas of research, the development of clinically relevant disease models and the discovery of novel therapies. This narrative review focuses on molecular and cellular mechanisms that are influenced by inflammation and stress. The aim of this review is to provide an overview of our current understanding of depression as a disorder of neuroimmune origin, focusing on neuroendocrine and neuroimmune dysregulation in depression pathophysiology. Advances in current understanding lie in pursuit of relevant biomarkers, as the potential of biomarker signatures to improve clinical outcomes is yet to be fully realised. Further investigations to expand biomarker panels including integration with neuroimaging, utilising individual symptoms to stratify patients into more homogenous subpopulations and targeting the immune system for new treatment approaches will help to address current unmet clinical need.
Collapse
Affiliation(s)
- Myles Corrigan
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences and Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- Transpharmation Ireland, Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Aoife M. O'Rourke
- School of Biochemistry and Immunology, Trinity Biosciences Institute, Trinity College, Dublin, Ireland
| | - Barry Moran
- School of Biochemistry and Immunology, Trinity Biosciences Institute, Trinity College, Dublin, Ireland
| | - Jean M. Fletcher
- School of Biochemistry and Immunology, Trinity Biosciences Institute, Trinity College, Dublin, Ireland
| | - Andrew Harkin
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences and Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| |
Collapse
|
30
|
Liao YQ, Min J, Wu ZX, Hu Z. Comparison of the effects of remimazolam and dexmedetomidine on early postoperative cognitive function in elderly patients with gastric cancer. Front Aging Neurosci 2023; 15:1123089. [PMID: 37342357 PMCID: PMC10277633 DOI: 10.3389/fnagi.2023.1123089] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/16/2023] [Indexed: 06/22/2023] Open
Abstract
Purpose To compare the effects of remimazolam and dexmedetomidine on early postoperative cognitive dysfunction (POCD) in aged gastric cancer patients. Methods From June to December 2022, 104 elderly patients (aged 65-80 years) received laparoscopic radical resection of gastric cancer at the First Affiliated Hospital of Nanchang University. Using the random number table approach, the patients were separated into three groups: remimazolam (Group R), dexmedetomidine (Group D), and saline (Group C). The primary outcome was the incidence of POCD, and secondary outcomes included TNF-α and S-100β protein concentrations, hemodynamics, VAS scores, anesthesia recovery indicators, and the occurrence of adverse events within 48 h postoperatively. Results At 3 and 7 days after surgery, there were no statistically significant differences in the incidence of POCD, the MMSE and MoCA scores between groups R and D (p > 0.05). However, compared to the saline group, both groups had higher MMSE and MoCA scores and decreased incidences of POCD. These differences were statistically significant (p < 0.05). Between group R and group D, there were no statistically significant changes (p > 0.05) in the levels of TNF-α and S-100β protein at the three time points (at the end of the surgery, 1 day later, and 3 days later). Even though neither group's concentration of the two factors was as high as that of the saline group, the differences were statistically significant (p < 0.05). At all three time points-following induction (T2), 30 min into the operation (T3), and at the conclusion of the surgery (T4)-the heart rate and blood pressure in group R were greater than those in groups D and C. Statistics showed that the differences were significant (p < 0.05). The incidence of intraoperative hypotension was highest in group D and lowest in group R (p < 0.05). The dose of propofol and remifentanil, group C > group R > group D. Extubation and PACU residence times did not differ statistically significantly (p > 0.05) between the three groups. There was no significant difference in VAS scores between groups R and D after 24 h postoperatively (p > 0.05), although both had lower scores than group C, and the difference was statistically significant (p < 0.05). The VAS scores between the three groups at 72 h (T6) and 7 days (T7) were not statistically significant (p > 0.05). Adverse reactions such as respiratory depression, hypotension, bradycardia, agitation, drowsiness, and nausea and vomiting had the lowest incidence in group R and the highest incidence in group C (p < 0.05). Conclusion Remimazolam is similarly beneficial as dexmedetomidine in lowering the incidence of early POCD in aged patients after radical gastric cancer resection, probably due to reduced inflammatory response.
Collapse
Affiliation(s)
| | - Jia Min
- Department of Anesthesiology, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | | | | |
Collapse
|
31
|
Carlson ER, Guerin SP, Nixon K, Fonken LK. The neuroimmune system - Where aging and excess alcohol intersect. Alcohol 2023; 107:153-167. [PMID: 36150610 PMCID: PMC10023388 DOI: 10.1016/j.alcohol.2022.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/21/2022] [Accepted: 08/31/2022] [Indexed: 01/05/2023]
Abstract
As the percentage of the global population over age 65 grows, and with it a subpopulation of individuals with alcohol use disorder (AUD), understanding the effect of alcohol on the aged brain is of utmost importance. Neuroinflammation is implicated in both natural aging as well as alcohol use, and its role in alterations to brain morphology and function may be exacerbated in aging individuals who drink alcohol to excess. The neuroimmune response to alcohol in aging is complex. The few studies investigating this issue have reported heightened basal activity and either hypo- or hyper-reactivity to an alcohol challenge. This review of preclinical research will first introduce key players of the immune system, then explore changes in neuroimmune function with aging or alcohol alone, with discussion of vulnerable brain regions, changes in cytokines, and varied reactions of microglia and astrocytes. We will then consider different levels of alcohol exposure, relevant animal models of AUD, and neuroimmune activation by alcohol across the lifespan. By identifying key findings, challenges, and targets for future research, we hope to bring more attention and resources to this underexplored area of inquiry.
Collapse
Affiliation(s)
- Erika R Carlson
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
| | - Steven P Guerin
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
| | - Kimberly Nixon
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
32
|
Yao XP, Ye J, Feng T, Jiang FC, Zhou P, Wang F, Chen JG, Wu PF. Adaptor protein MyD88 confers the susceptibility to stress via amplifying immune danger signals. Brain Behav Immun 2023; 108:204-220. [PMID: 36496170 PMCID: PMC9726649 DOI: 10.1016/j.bbi.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/27/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence supports the pathogenic role of neuroinflammation in psychiatric diseases, including major depressive disorder (MDD) and neuropsychiatric symptoms of Coronavirus disease 2019 (COVID-19); however, the precise mechanism and therapeutic strategy are poorly understood. Here, we report that myeloid differentiation factor 88 (MyD88), a pivotal adaptor that bridges toll-like receptors to their downstream signaling by recruiting the signaling complex called 'myddosome', was up-regulated in the medial prefrontal cortex (mPFC) after exposure to chronic social defeat stress (CSDS) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. The inducible expression of MyD88 in the mPFC primed neuroinflammation and conferred stress susceptibility via amplifying immune danger signals, such as high-mobility group box 1 and SARS-CoV-2 spike protein. Overexpression of MyD88 aggravated, whereas knockout or pharmacological inhibition of MyD88 ameliorated CSDS-induced depressive-like behavior. Notably, TJ-M2010-5, a novel synthesized targeting inhibitor of MyD88 dimerization, alleviated both CSDS- and SARS-CoV-2 spike protein-induced depressive-like behavior. Taken together, our findings indicate that inhibiting MyD88 signaling represents a promising therapeutic strategy for stress-related mental disorders, such as MDD and COVID-19-related neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Xia-Ping Yao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Ye
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Feng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng-Chao Jiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ping Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China; The Research Center for Depression, Tongji Medical College, Huazhong University of Science, 430030 Wuhan, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China.
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China; The Research Center for Depression, Tongji Medical College, Huazhong University of Science, 430030 Wuhan, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China.
| | - Peng-Fei Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China; The Research Center for Depression, Tongji Medical College, Huazhong University of Science, 430030 Wuhan, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China.
| |
Collapse
|
33
|
Muscat SM, Deems NP, Butler MJ, Scaria EA, Bettes MN, Cleary SP, Bockbrader RH, Maier SF, Barrientos RM. Selective TLR4 Antagonism Prevents and Reverses Morphine-Induced Persistent Postoperative Cognitive Dysfunction, Dysregulation of Synaptic Elements, and Impaired BDNF Signaling in Aged Male Rats. J Neurosci 2023; 43:155-172. [PMID: 36384680 PMCID: PMC9838714 DOI: 10.1523/jneurosci.1151-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 11/07/2022] [Accepted: 11/10/2023] [Indexed: 11/18/2022] Open
Abstract
Perioperative neurocognitive disorders (PNDs) are characterized by confusion, difficulty with executive function, and episodic memory impairment in the hours to months following a surgical procedure. Postoperative cognitive dysfunction (POCD) represents such impairments that last beyond 30 d postsurgery and is associated with increased risk of comorbidities, progression to dementia, and higher mortality. While it is clear that neuroinflammation plays a key role in PND development, what factors underlie shorter self-resolving versus persistent PNDs remains unclear. We have previously shown that postoperative morphine treatment extends POCD from 4 d (without morphine) to at least 8 weeks (with morphine) in aged male rats, and that this effect is likely dependent on the proinflammatory capabilities of morphine via activation of toll-like receptor 4 (TLR4). Here, we extend these findings to show that TLR4 blockade, using the selective TLR4 antagonist lipopolysaccharide from the bacterium Rhodobacter sphaeroides (LPS-RS Ultrapure), ameliorates morphine-induced POCD in aged male rats. Using either a single central preoperative treatment or a 1 week postoperative central treatment regimen, we demonstrate that TLR4 antagonism (1) prevents and reverses the long-term memory impairment associated with surgery and morphine treatment, (2) ameliorates morphine-induced dysregulation of the postsynaptic proteins postsynaptic density 95 and synaptopodin, (3) mitigates reductions in mature BDNF, and (4) prevents decreased activation of the BDNF receptor TrkB (tropomyosin-related kinase B), all at 4 weeks postsurgery. We also reveal that LPS-RS Ultrapure likely exerts its beneficial effects by preventing endogenous danger signal HMGB1 (high-mobility group box 1) from activating TLR4, rather than by blocking continuous activation by morphine or its metabolites. These findings suggest TLR4 as a promising therapeutic target to prevent or treat PNDs.SIGNIFICANCE STATEMENT With humans living longer than ever, it is crucial that we identify mechanisms that contribute to aging-related vulnerability to cognitive impairment. Here, we show that the innate immune receptor toll-like receptor 4 (TLR4) is a key mediator of cognitive dysfunction in aged rodents following surgery and postoperative morphine treatment. Inhibition of TLR4 both prevented and reversed surgery plus morphine-associated memory impairment, dysregulation of synaptic elements, and reduced BDNF signaling. Together, these findings implicate TLR4 in the development of postoperative cognitive dysfunction, providing mechanistic insight and novel therapeutic targets for the treatment of cognitive impairments following immune challenges such as surgery in older individuals.
Collapse
Affiliation(s)
- Stephanie M Muscat
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio 43210
| | - Nicholas P Deems
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
- Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio 43210
| | - Michael J Butler
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
| | - Emmanuel A Scaria
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
| | - Menaz N Bettes
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
| | - Sean P Cleary
- Campus Chemical Instrumentation Center, The Ohio State University, Columbus, Ohio 43210
| | - Ross H Bockbrader
- Pharmaceutical Sciences Graduate Program, Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210
| | - Steven F Maier
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, Ohio 43210
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
- Chronic Brain Injury Program, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
34
|
Harutyunyan KR, Abrahamyan HT, Adamyan SH, Mkrtchian S, Ter-Markosyan AS. Calcium-Regulating Hormonal System and HMGB1 in Cardiomyopathies. Endocr Metab Immune Disord Drug Targets 2023; 23:115-121. [PMID: 35980074 DOI: 10.2174/1871530322666220817110538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Calcium ions play a key role in the heart's functional activity. The steadystate levels of calcium are contingent on the calcium regulating hormonal system, impairment of which might result in the development of cardiac pathology. An important role in these processes is also attributed to the specific inflammatory mediator, HMGB1, one of the damage-associated molecular patterns (DAMPs) released by immune cells or cell damage. OBJECTIVE This study investigated the cardioprotective potential of the calcium-regulating hormonal system in cardiomyopathies with an emphasis on the possible role of HMGB1. METHODS Ca2+ and inorganic phosphate levels were determined in the serum using an electrolyte analyzer and spectrophotometric analyzer correspondingly. The 1-34 fragment of parathyroid hormone (PTH), calcitonin, vitamin D, and HMGB1 were detected using ELISA kits. RESULTS The levels of PTH, calcitonin, phosphate, and HMGB1 were found elevated in females suffering from cardiomyopathy. The same tendency was observed in men; however, statistically significant changes were registered only for PTH and phosphate. CONCLUSION It can be suggested that among other reasons, the decrease of the left ventricular function in cardiomyopathy patients can be linked to the high HMGB1, whereas the activation of the calciumregulating system as manifested by the elevated PTH aims at restoration of calcium homeostasis and thus have positive, i.e. cardioprotective consequences.
Collapse
|
35
|
Fonken LK, Gaudet AD. Neuroimmunology of healthy brain aging. Curr Opin Neurobiol 2022; 77:102649. [PMID: 36368270 PMCID: PMC9826730 DOI: 10.1016/j.conb.2022.102649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/10/2022]
Abstract
Aging involves progressive deterioration away from homeostasis. Whereas the healthy adult brain maintains neuroimmune cells in a surveillant and homeostatic state, aged glial cells have a hyperreactive phenotype. These age-related pro-inflammatory biases are driven in part by cell-intrinsic factors, including increased cell priming and pro-inflammatory cell states. In addition, the aged inflammatory milieu is shaped by an altered environment, such as amplified danger signals and cytokines and dysregulated glymphatic function. These cell-instrinsic and environmental factors conspire to heighten the age-related risk for neuroimmune activation and associated pathology. In this review, we discuss cellular and molecular neuroimmune shifts with "healthy" aging; how these age-related changes affect physiology and behavior; and how recent research has revealed neuroimmune pathways and targets for improving health span.
Collapse
Affiliation(s)
- Laura K Fonken
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX, USA.
| | - Andrew D Gaudet
- Department of Psychology, College of Liberal Arts, University of Texas at Austin, Austin, TX, USA; Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, USA. https://twitter.com/Gaudet_91
| |
Collapse
|
36
|
Saini A, Oh TH, Ghanem DA, Castro M, Butler M, Sin Fai Lam CC, Posporelis S, Lewis G, David AS, Rogers JP. Inflammatory and blood gas markers of COVID-19 delirium compared to non-COVID-19 delirium: a cross-sectional study. Aging Ment Health 2022; 26:2054-2061. [PMID: 34651536 DOI: 10.1080/13607863.2021.1989375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES We aimed to find the association of inflammation and respiratory failure with delirium in COVID-19 patients. We compare the inflammatory and arterial blood gas markers between patients with COVID-19 delirium and delirium in other medical disorders. METHODS This cross-sectional study used the CHART-DEL, a validated research tool, to screen patients for delirium retrospectively from clinical notes. Inflammatory markers C-reactive protein (CRP) and white cell count (WBC), and the partial pressures of oxygen (PO2) and carbon dioxide (PCO2) were compared between patients with COVID-19 delirium and delirium in other medical disorders. RESULTS In bivariate analysis, CRP (mg/L) was significantly higher in the COVID-19 group, (81.7 ± 80.0 vs. 58.8 ± 87.7, p = 0.04), and WBC (109/L) was significantly lower (7.44 ± 3.42 vs. 9.71 ± 5.45, p = 0.04). The geometric mean of CRP in the COVID-19 group was 140% higher in multiple linear regression (95% CI = 7-439%, p = 0.03) with age and sex as covariates. There were no significant differences in pO2 or pCO2 across groups. CONCLUSION The association between higher CRP and COVID-19 in patients with delirium may suggest an inflammatory basis for delirium in COVID-19. Our findings may assist clinicians in establishing whether delirium is due to COVID-19, which may improve management and outcomes of infected patients.
Collapse
Affiliation(s)
- Aman Saini
- Medical School, University College London, London, UK
| | - Tae Hyun Oh
- Department of Psychological Medicine, King's College London, London, UK
| | | | - Megan Castro
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Matthew Butler
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - Sotiris Posporelis
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,South London and Maudsley NHS Foundation Trust, London, UK
| | - Glyn Lewis
- Division of Psychiatry, University College London, London, UK
| | - Anthony S David
- Institute of Mental Health, University College London, London, UK
| | - Jonathan P Rogers
- South London and Maudsley NHS Foundation Trust, London, UK.,Division of Psychiatry, University College London, London, UK
| |
Collapse
|
37
|
Squillace S, Salvemini D. Toll-like receptor-mediated neuroinflammation: relevance for cognitive dysfunctions. Trends Pharmacol Sci 2022; 43:726-739. [PMID: 35753845 PMCID: PMC9378500 DOI: 10.1016/j.tips.2022.05.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/13/2022] [Accepted: 05/27/2022] [Indexed: 10/17/2022]
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors (PRRs) with a well-documented role in the innate and adaptive immune responses. Interestingly, TLR activation has also been linked to several brain functions including neurogenesis and synaptogenesis. Increasing evidence supports TLR involvement in peripheral and central inflammation underlying normal aging and the pathogenesis of clinical conditions characterized by cognitive decline. These include not only major neurodegenerative diseases but also traumatic brain injuries, surgeries, and alcohol consumption- and chemotherapy-induced cognitive impairment. We first summarize the physiological roles of TLRs in the nervous system, and then illustrate the emerging involvement of TLRs in cognitive functions, pointing to these receptors as novel enticing pharmacological targets to develop more efficient drugs for the treatment of cognitive impairment.
Collapse
Affiliation(s)
- Silvia Squillace
- Department of Pharmacology and Physiology, and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, MO 63104, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, MO 63104, USA.
| |
Collapse
|
38
|
Wendimu MY, Hooks SB. Microglia Phenotypes in Aging and Neurodegenerative Diseases. Cells 2022; 11:2091. [PMID: 35805174 PMCID: PMC9266143 DOI: 10.3390/cells11132091] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/08/2023] Open
Abstract
Neuroinflammation is a hallmark of many neurodegenerative diseases (NDs) and plays a fundamental role in mediating the onset and progression of disease. Microglia, which function as first-line immune guardians of the central nervous system (CNS), are the central drivers of neuroinflammation. Numerous human postmortem studies and in vivo imaging analyses have shown chronically activated microglia in patients with various acute and chronic neuropathological diseases. While microglial activation is a common feature of many NDs, the exact role of microglia in various pathological states is complex and often contradictory. However, there is a consensus that microglia play a biphasic role in pathological conditions, with detrimental and protective phenotypes, and the overall response of microglia and the activation of different phenotypes depends on the nature and duration of the inflammatory insult, as well as the stage of disease development. This review provides a comprehensive overview of current research on the various microglia phenotypes and inflammatory responses in health, aging, and NDs, with a special emphasis on the heterogeneous phenotypic response of microglia in acute and chronic diseases such as hemorrhagic stroke (HS), Alzheimer's disease (AD), and Parkinson's disease (PD). The primary focus is translational research in preclinical animal models and bulk/single-cell transcriptome studies in human postmortem samples. Additionally, this review covers key microglial receptors and signaling pathways that are potential therapeutic targets to regulate microglial inflammatory responses during aging and in NDs. Additionally, age-, sex-, and species-specific microglial differences will be briefly reviewed.
Collapse
Affiliation(s)
| | - Shelley B. Hooks
- Hooks Lab, Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
39
|
Saxena S, Rodts C, Nuyens V, Seidel L, Albert A, Boogaerts J, Kruys V, Maze M, Vamecq J. Early postoperative risk prediction of neurocognitive decline. Br J Anaesth 2022; 128:e266-e267. [DOI: 10.1016/j.bja.2021.12.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 11/30/2022] Open
|
40
|
Increased high-mobility group box 1 levels are associated with depression after acute ischemic stroke. Neurol Sci 2021; 43:3131-3137. [PMID: 34800198 DOI: 10.1007/s10072-021-05571-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/15/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND PURPOSE Increased high-mobility group box 1 (HMGB1) levels were found in patients after acute ischemic stroke. The aim of this study was to examine whether the circulating HMGB1 levels could predict the 3-month post-stroke depression (PSD). METHODS The subjects were first-ever ischemic stroke patients who were hospitalized during the period from July 2020 to December 2020. HMGB1 concentrations were measured by enzyme-linked immunosorbent assay after admission. A 24-item Hamilton Depression Rating Scale was performed to evaluate PSD at 3 months after stroke. RESULTS The analyses included 324 participants (mean age, 63.7 years; 171 male). Ninety-four patients (29.0%) were diagnosed as having PSD at 3 months. The median serum HMGB1 levels at admission was 7.5 ng/mL (IQR, 4.4-11.3 ng/mL). The PSD distribution across the HMGB1 quartiles ranged between 17.5% (first quartile) and 57.5% (fourth quartile). After covariate adjustments, the fourth quartile of HMGB1 was found to be associated with a higher risk of PSD (as compared with first HMGB1 quartile, odd ratio, 1.26; 95% confidence interval [CI], 1.17-1.35; P < 0.001). The area under the receiver operating characteristic curve of HMGB1 was 0.726 (95% CI 0.660-0.792) for PSD. Similar results were found when HMGB1 was analyzed as continuous variable. Furthermore, the optimal cutoff point of circulating HMGB1 levels was 8.6 ng/mL, with a sensitivity of 69.2% and a specificity of 73.9%. CONCLUSIONS This study demonstrated that higher HMGB1 levels in the acute phase of ischemic stroke were associated with increased risk of PSD.
Collapse
|
41
|
Melbourne JK, Chandler CM, Van Doorn CE, Bardo MT, Pauly JR, Peng H, Nixon K. Primed for addiction: A critical review of the role of microglia in the neurodevelopmental consequences of adolescent alcohol drinking. Alcohol Clin Exp Res 2021; 45:1908-1926. [PMID: 34486128 PMCID: PMC8793635 DOI: 10.1111/acer.14694] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022]
Abstract
Alcohol is one of the most widely used recreational substances worldwide, with drinking frequently initiated during adolescence. The developmental state of the adolescent brain makes it vulnerable to initiating alcohol use, often in high doses, and particularly susceptible to alcohol-induced brain changes. Microglia, the brain parenchymal macrophages, have been implicated in mediating some of these effects, though the role that these cells play in the progression from alcohol drinking to dependence remains unclear. Microglia are uniquely positioned to sense and respond to central nervous system insult, and are now understood to exhibit innate immune memory, or "priming," altering their future functional responses based on prior exposures. In alcohol use disorders (AUDs), the role of microglia is debated. Whereas microglial activation can be pathogenic, contributing to neuroinflammation, tissue damage, and behavioral changes, or protective, it can also engage protective functions, providing support and mediating the resolution of damage. Understanding the role of microglia in adolescent AUDs is complicated by the fact that microglia are thought to be involved in developmental processes such as synaptic refinement and myelination, which underlie the functional maturation of multiple brain systems in adolescence. Thus, the role microglia play in the impact of alcohol use in adolescence is likely multifaceted. Long-term sequelae may be due to a failure to recover from EtOH-induced tissue damage, altered neurodevelopmental trajectories, and/or persistent changes to microglial responsivity and function. Here, we review critically the literature surrounding the effects of alcohol on microglia in models of adolescent alcohol misuse. We attempt to disentangle what is known about microglia from other neuroimmune effectors, to which we apply recent discoveries on the role of microglia in development and plasticity. Considered altogether, these studies challenge assumptions that proinflammatory microglia drive addiction. Alcohol priming microglia and thereby perturbing their homeostatic roles in neurodevelopment, especially during critical periods of plasticity such as adolescence, may have more serious implications for the neuropathogenesis of AUDs in adolescents.
Collapse
Affiliation(s)
- Jennifer K. Melbourne
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Cassie M. Chandler
- Department of Psychology, University of Kentucky, Lexington, Kentucky, USA
| | | | - Michael T. Bardo
- Department of Psychology, University of Kentucky, Lexington, Kentucky, USA
| | - James R. Pauly
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Hui Peng
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Kimberly Nixon
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
42
|
Amro Z, Yool AJ, Collins-Praino LE. The potential role of glial cells in driving the prion-like transcellular propagation of tau in tauopathies. Brain Behav Immun Health 2021; 14:100242. [PMID: 34589757 PMCID: PMC8474563 DOI: 10.1016/j.bbih.2021.100242] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 02/08/2023] Open
Abstract
Dementia is one of the leading causes of death worldwide, with tauopathies, a class of diseases defined by pathology associated with the microtubule-enriched protein, tau, as the major contributor. Although tauopathies, such as Alzheimer's disease and Frontotemporal dementia, are common amongst the ageing population, current effective treatment options are scarce, primarily due to the incomplete understanding of disease pathogenesis. The mechanisms via which aggregated forms of tau are able to propagate from one anatomical area to another to cause disease spread and progression is yet unknown. The prion-like hypothesis of tau propagation proposes that tau can propagate along neighbouring anatomical areas in a similar manner to prion proteins in prion diseases, such as Creutzfeldt-Jacob disease. This hypothesis has been supported by a plethora of studies that note the ability of tau to be actively secreted by neurons, propagated and internalised by neighbouring neuronal cells, causing disease spread. Surfacing research suggests a role of reactive astrocytes and microglia in early pre-clinical stages of tauopathy through their inflammatory actions. Furthermore, both glial types are able to internalise and secrete tau from the extracellular space, suggesting a potential role in tau propagation; although understanding the physiological mechanisms by which this can occur remains poorly understood. This review will discuss the current literature around the prion-like propagation of tau, with particular emphasis on glial-mediated neuroinflammation and the contribution it may play in this propagation process.
Collapse
Affiliation(s)
- Zein Amro
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | | |
Collapse
|
43
|
Gaudet AD, Fonken LK, Ayala MT, Maier SF, Watkins LR. Aging and miR-155 in mice influence survival and neuropathic pain after spinal cord injury. Brain Behav Immun 2021; 97:365-370. [PMID: 34284114 PMCID: PMC8453092 DOI: 10.1016/j.bbi.2021.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/18/2021] [Accepted: 07/03/2021] [Indexed: 12/24/2022] Open
Abstract
Spinal cord injury (SCI) elicits chronic pain in 65% of individuals. In addition, SCI afflicts an increasing number of aged individuals, and those with SCI are predisposed to shorter lifespan. Our group previously identified that deletion of the microRNA miR-155 reduced neuroinflammation and locomotor deficits after SCI. Here, we hypothesized that aged mice would be more susceptible to pain symptoms and death soon after SCI, and that miR-155 deletion would reduce pain symptoms in adult and aged mice and improve survival. Adult (2 month-old) and aged (20 month-old) female wildtype (WT) and miR-155 knockout (KO) mice received T9 contusion SCI. Aged WT mice displayed reduced survival and increased autotomy - a symptom of spontaneous pain. In contrast, aged miR-155 KO mice after SCI were less susceptible to death or spontaneous pain. Evoked pain symptoms were tested using heat (Hargreaves test) and mechanical (von Frey) stimuli. At baseline, aged mice showed heightened heat sensitivity. After SCI, adult and aged WT and miR-155 KO mice all exhibited heat and mechanical hypersensitivity at all timepoints. miR-155 deletion in adult (but not aged) mice reduced mechanical hypersensitivity at 7 and 14 d post-SCI. Therefore, aging predisposes mice to SCI-elicited spontaneous pain and expedited mortality. miR-155 deletion in adult mice reduces evoked pain symptoms, and miR-155 deletion in aged mice reduces spontaneous pain and expedited mortality post-SCI. This study highlights the importance of studying geriatric models of SCI, and that inflammatory mediators such as miR-155 are promising targets after SCI for improving pain relief and longevity.
Collapse
Affiliation(s)
- Andrew D Gaudet
- Department of Psychology, College of Liberal Arts, University of Texas at Austin, Austin, TX 78712, USA; Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA; Center for Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA.
| | - Laura K Fonken
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX 78712, USA; Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA; Center for Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA.
| | - Monica T Ayala
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA; Center for Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA.
| | - Steven F Maier
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA; Center for Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA.
| | - Linda R Watkins
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA; Center for Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA.
| |
Collapse
|
44
|
Necroptosis increases with age in the brain and contributes to age-related neuroinflammation. GeroScience 2021; 43:2345-2361. [PMID: 34515928 PMCID: PMC8599532 DOI: 10.1007/s11357-021-00448-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammation of the central nervous system (CNS), termed neuroinflammation, is a hallmark of aging and a proposed mediator of cognitive decline associated with aging. Neuroinflammation is characterized by the persistent activation of microglia, the innate immune cells of the CNS, with damage-associated molecular patterns (DAMPs) being one of the well-known activators of microglia. Because necroptosis is a cell death pathway that induces inflammation through the release of DAMPs, we hypothesized that an age-associated increase in necroptosis contributes to increased neuroinflammation with age. The marker of necroptosis, phosphorylated form of MLKL (P-MLKL), and kinases in the necroptosis pathway (RIPK1, RIPK3, and MLKL) showed a region-specific increase in the brain with age, specifically in the cortex layer V and the CA3 region of the hippocampus of mice. Similarly, MLKL-oligomers, which cause membrane binding and permeabilization, were significantly increased in the cortex and hippocampus of old mice relative to young mice. Nearly 70 to 80% of P-MLKL immunoreactivity was localized to neurons and less than 10% was localized to microglia, whereas no P-MLKL was detected in astrocytes. P-MLKL expression in neurons was detected in the soma, not in the processes. Blocking necroptosis using Mlkl−/− mice reduced markers of neuroinflammation (Iba-1 and GFAP) in the brains of old mice, and short-term treatment with the necroptosis inhibitor, necrostatin-1s, reduced expression of proinflammatory cytokines, IL-6 and IL-1β, in the hippocampus of old mice. Thus, our data demonstrate for the first time that brain necroptosis increases with age and contributes to age-related neuroinflammation in mice.
Collapse
|
45
|
Muscat SM, Barrientos RM. The Perfect Cytokine Storm: How Peripheral Immune Challenges Impact Brain Plasticity & Memory Function in Aging. Brain Plast 2021; 7:47-60. [PMID: 34631420 PMCID: PMC8461734 DOI: 10.3233/bpl-210127] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Precipitous declines in cognitive function can occur in older individuals following a variety of peripheral immune insults, such as surgery, infection, injury, and unhealthy diet. Aging is associated with numerous changes to the immune system that shed some light on why this abrupt cognitive deterioration may occur. Normally, peripheral-to-brain immune signaling is tightly regulated and advantageous; communication between the two systems is bi-directional, via either humoral or neural routes. Following an immune challenge, production, secretion, and translocation of cytokines into the brain is critical to the development of adaptive sickness behaviors. However, aging is normally associated with neuroinflammatory priming, notably microglial sensitization. Microglia are the brain's innate immune cells and become sensitized with advanced age, such that upon immune stimulation they will mount more exaggerated neuroimmune responses. The resultant elevation of pro-inflammatory cytokine expression, namely IL-1β, has profound effects on synaptic plasticity and, consequentially, cognition. In this review, we (1) investigate the processes which lead to aberrantly elevated inflammatory cytokine expression in the aged brain and (2) examine the impact of the pro-inflammatory cytokine IL-1β on brain plasticity mechanisms, including its effects on BDNF, AMPA and NMDA receptor-mediated long-term potentiation.
Collapse
Affiliation(s)
- Stephanie M Muscat
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Program, Discovery Themes Initiative, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
46
|
Gaikwad S, Puangmalai N, Bittar A, Montalbano M, Garcia S, McAllen S, Bhatt N, Sonawane M, Sengupta U, Kayed R. Tau oligomer induced HMGB1 release contributes to cellular senescence and neuropathology linked to Alzheimer's disease and frontotemporal dementia. Cell Rep 2021; 36:109419. [PMID: 34289368 PMCID: PMC8341760 DOI: 10.1016/j.celrep.2021.109419] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/03/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023] Open
Abstract
Aging, pathological tau oligomers (TauO), and chronic inflammation in the brain play a central role in tauopathies, including Alzheimer's disease (AD) and frontotemporal dementia (FTD). However, the underlying mechanism of TauO-induced aging-related neuroinflammation remains unclear. Here, we show that TauO-associated astrocytes display a senescence-like phenotype in the brains of patients with AD and FTD. TauO exposure triggers astrocyte senescence through high mobility group box 1 (HMGB1) release and inflammatory senescence-associated secretory phenotype (SASP), which mediates paracrine senescence in adjacent cells. HMGB1 release inhibition using ethyl pyruvate (EP) and glycyrrhizic acid (GA) prevents TauO-induced senescence through inhibition of p38-mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB)-the essential signaling pathways for SASP development. Despite the developed tauopathy in 12-month-old hTau mice, EP+GA treatment significantly decreases TauO and senescent cell loads in the brain, reduces neuroinflammation, and thus ameliorates cognitive functions. Collectively, TauO-induced HMGB1 release promotes cellular senescence and neuropathology, which could represent an important common pathomechanism in tauopathies including AD and FTD.
Collapse
Affiliation(s)
- Sagar Gaikwad
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nicha Puangmalai
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alice Bittar
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mauro Montalbano
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Stephanie Garcia
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Salome McAllen
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nemil Bhatt
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Minal Sonawane
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
47
|
Wilke JBH, Hindermann M, Moussavi A, Butt UJ, Dadarwal R, Berghoff SA, Sarcheshmeh AK, Ronnenberg A, Zihsler S, Arinrad S, Hardeland R, Seidel J, Lühder F, Nave KA, Boretius S, Ehrenreich H. Inducing sterile pyramidal neuronal death in mice to model distinct aspects of gray matter encephalitis. Acta Neuropathol Commun 2021; 9:121. [PMID: 34215338 PMCID: PMC8253243 DOI: 10.1186/s40478-021-01214-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Up to one person in a population of 10,000 is diagnosed once in lifetime with an encephalitis, in 50-70% of unknown origin. Recognized causes amount to 20-50% viral infections. Approximately one third of affected subjects develops moderate and severe subsequent damage. Several neurotropic viruses can directly infect pyramidal neurons and induce neuronal death in cortex and hippocampus. The resulting encephalitic syndromes are frequently associated with cognitive deterioration and dementia, but involve numerous parallel and downstream cellular and molecular events that make the interpretation of direct consequences of sudden pyramidal neuronal loss difficult. This, however, would be pivotal for understanding how neuroinflammatory processes initiate the development of neurodegeneration, and thus for targeted prophylactic and therapeutic interventions. Here we utilized adult male NexCreERT2xRosa26-eGFP-DTA (= 'DTA') mice for the induction of a sterile encephalitis by diphtheria toxin-mediated ablation of cortical and hippocampal pyramidal neurons which also recruits immune cells into gray matter. We report multifaceted aftereffects of this defined process, including the expected pathology of classical hippocampal behaviors, evaluated in Morris water maze, but also of (pre)frontal circuit function, assessed by prepulse inhibition. Importantly, we modelled in encephalitis mice novel translationally relevant sequelae, namely altered social interaction/cognition, accompanied by compromised thermoreaction to social stimuli as convenient readout of parallel autonomic nervous system (dys)function. High resolution magnetic resonance imaging disclosed distinct abnormalities in brain dimensions, including cortical and hippocampal layering, as well as of cerebral blood flow and volume. Fluorescent tracer injection, immunohistochemistry and brain flow cytometry revealed persistent blood-brain-barrier perturbance and chronic brain inflammation. Surprisingly, blood flow cytometry showed no abnormalities in circulating major immune cell subsets and plasma high-mobility group box 1 (HMGB1) as proinflammatory marker remained unchanged. The present experimental work, analyzing multidimensional outcomes of direct pyramidal neuronal loss, will open new avenues for urgently needed encephalitis research.
Collapse
Affiliation(s)
- Justus B H Wilke
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str.3, 37075, Göttingen, Germany
| | - Martin Hindermann
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str.3, 37075, Göttingen, Germany
| | - Amir Moussavi
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| | - Umer Javed Butt
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str.3, 37075, Göttingen, Germany
| | - Rakshit Dadarwal
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- Georg August University, Göttingen, Germany
| | - Stefan A Berghoff
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Aref Kalantari Sarcheshmeh
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| | - Anja Ronnenberg
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str.3, 37075, Göttingen, Germany
| | - Svenja Zihsler
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str.3, 37075, Göttingen, Germany
| | - Sahab Arinrad
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str.3, 37075, Göttingen, Germany
| | - Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology & Anthropology, University of Göttingen, Göttingen, Germany
| | - Jan Seidel
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str.3, 37075, Göttingen, Germany
| | - Fred Lühder
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Susann Boretius
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany.
- Georg August University, Göttingen, Germany.
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str.3, 37075, Göttingen, Germany.
| |
Collapse
|
48
|
Bai H, Zhang Q. Role of N4-acetylcytidine for continuously activating NLRP3 inflammosome by HMGB1 pathway in microglia. Neural Regen Res 2021; 16:1427-1428. [PMID: 33318439 PMCID: PMC8284255 DOI: 10.4103/1673-5374.301006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/14/2020] [Accepted: 10/11/2020] [Indexed: 11/04/2022] Open
Affiliation(s)
- Hua Bai
- Department of Neurology, Medical Experimental Center, the Third Affiliated Hospital of Guizhou Medical University, Duyun; Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Qifang Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou Province, China
| |
Collapse
|
49
|
Machin A, Susilo I, Purwanto DA. Green tea and its active compound epigallocathechin-3-gallate (EGCG) inhibit neuronal apoptosis in a middle cerebral artery occlusion (MCAO) model. J Basic Clin Physiol Pharmacol 2021; 32:319-325. [PMID: 34214383 DOI: 10.1515/jbcpp-2020-0454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/20/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVES To determine the effect of green tea with the active ingredient epigallocathechin-3-gallate (EGCG) on the inhibition of apoptosis in the middle cerebral artery occlusion (MCAO) model. METHODS Four month old male Rattus norvegicus rats with a body weight of 200-275 g was used for the MCAO model and divided into five groups, and the treatment was carried out for 7 days. Before being sacrificed, the subject had 1 cc of blood drawn for high mobility group box 1 (HMGB-1) examination using enzyme-linked immunosorbent assay (ELISA), and after being sacrificed, the brain tissue specimen was taken to examine caspase-3 and B-cell lymphoma 3 (BCL-3) using immunohistochemistry methods. RESULTS There was no significant difference in HMGB-1 results for the treatment group compared to the control group (P1: 384.20 ± 231.72 [p = 0.553]; P2: 379.11 ± 268.4 [p = 0.526]; P3: 284, 87 ± 276.19 [p = 0.140]; P4: 435.32 ± 279.95 [p = 0.912]). There is a significant increase in BCL-2 expression between the treatment group compared to the control group (P1: 2.58 ± 0.51 [p = 0.04]; P2: 3.36 ± 0.50 [p<0.001]; P3: 4.00 ± 0.42 [p<0.001]; P4: 3.60 ± 0.52 [p<0.001]). There was a significant difference in caspase-3 expression compared to the control group in the P3 group (P1: 4.33 ± 0.49 [p = 0.652]; P2: 4.09 ± 0.30 [p = 0.136]; P3: 3.58 ± 0.51 [p = 0.01]; P4: 3.89 ± 0.42 [p = 0.063]). There is no correlation between HMGB-1 and caspase-3 (r = -0.063; p = 0.613) or BCL-2 (r = -0.106; p = 0.396). There is significant negative correlation between caspase-3 and BCL-2 (r = -0.459; p = 0.000). CONCLUSIONS Green tea with the active ingredient EGCG can inhibit neuronal cell death through the apoptotic pathway and not through the activation of HMGB-1.
Collapse
Affiliation(s)
- Abdulloh Machin
- Department Neurology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Imam Susilo
- Department Clinical Pathology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Djoko A Purwanto
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
50
|
Peek V, Harden LM, Damm J, Aslani F, Leisengang S, Roth J, Gerstberger R, Meurer M, von Köckritz-Blickwede M, Schulz S, Spengler B, Rummel C. LPS Primes Brain Responsiveness to High Mobility Group Box-1 Protein. Pharmaceuticals (Basel) 2021; 14:ph14060558. [PMID: 34208101 PMCID: PMC8230749 DOI: 10.3390/ph14060558] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022] Open
Abstract
High mobility group box (HMGB)1 action contributes to late phases of sepsis, but the effects of increased endogenous plasma HMGB1 levels on brain cells during inflammation are unclear. Here, we aimed to further investigate the role of HMGB1 in the brain during septic-like lipopolysaccharide-induced inflammation in rats (LPS, 10 mg/kg, i.p.). HMGB-1 mRNA expression and release were measured in the periphery/brain by RT-PCR, immunohistochemistry and ELISA. In vitro experiments with disulfide-HMGB1 in primary neuro-glial cell cultures of the area postrema (AP), a circumventricular organ with a leaky blood–brain barrier and direct access to circulating mediators like HMGB1 and LPS, were performed to determine the direct influence of HMGB1 on this pivotal brain structure for immune-to-brain communication. Indeed, HMGB1 plasma levels stayed elevated after LPS injection. Immunohistochemistry of brains and AP cultures confirmed LPS-stimulated cytoplasmatic translocation of HMGB1 indicative of local HMGB1 release. Moreover, disulfide-HMGB1 stimulation induced nuclear factor (NF)-κB activation and a significant release of interleukin-6, but not tumor necrosis factor α, into AP culture supernatants. However, only a few AP cells directly responded to HMGB1 with increased intracellular calcium concentration. Interestingly, priming with LPS induced a seven-fold higher percentage of responsive cells to HMGB1. We conclude that, as a humoral and local mediator, HMGB1 enhances brain inflammatory responses, after LPS priming, linked to sustained sepsis symptoms.
Collapse
Affiliation(s)
- Verena Peek
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (V.P.); (J.D.); (S.L.); (J.R.); (R.G.)
| | - Lois M. Harden
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2193, South Africa;
| | - Jelena Damm
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (V.P.); (J.D.); (S.L.); (J.R.); (R.G.)
| | - Ferial Aslani
- Institute of Anatomy and Cell Biology of the Medical Faculty, Justus Liebig University, 35392 Giessen, Germany;
| | - Stephan Leisengang
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (V.P.); (J.D.); (S.L.); (J.R.); (R.G.)
| | - Joachim Roth
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (V.P.); (J.D.); (S.L.); (J.R.); (R.G.)
| | - Rüdiger Gerstberger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (V.P.); (J.D.); (S.L.); (J.R.); (R.G.)
| | - Marita Meurer
- Department of Biochemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany and Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (M.M.); (M.v.K.-B.)
| | - Maren von Köckritz-Blickwede
- Department of Biochemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany and Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (M.M.); (M.v.K.-B.)
| | - Sabine Schulz
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (S.S.); (B.S.)
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (S.S.); (B.S.)
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (V.P.); (J.D.); (S.L.); (J.R.); (R.G.)
- Correspondence:
| |
Collapse
|