1
|
Schacter DL, Kalinowski SE, Wilson JM. Emotional future simulations: neural and cognitive perspectives. Cereb Cortex 2025; 35:77-83. [PMID: 39385535 PMCID: PMC11712269 DOI: 10.1093/cercor/bhae388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/13/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
LeDoux's work on the emotional brain has had broad impact in neuroscience and psychology. Here, we discuss an aspect of the emotional brain that we have examined in our laboratory during the past two decades: emotional future simulations or constructed mental representations of positive and negative future experiences. Specifically, we consider research concerning (i) neural correlates of emotional future simulations, (ii) how emotional future simulations impact subsequent cognition and memory, (iii) the role of emotional future simulations in worry and anxiety, and (iv) individual differences in emotional future simulation related to narcissistic grandiosity. The intersection of emotion and future simulation is closely linked to some of LeDoux's primary scientific concerns.
Collapse
Affiliation(s)
- Daniel L Schacter
- Department of Psychology and Center for Brain Science, Harvard University, 33 Kirkland St., Cambridge, MA 02138, United States
| | - Sarah E Kalinowski
- Department of Psychology and Center for Brain Science, Harvard University, 33 Kirkland St., Cambridge, MA 02138, United States
| | - Jenna M Wilson
- Department of Psychology and Center for Brain Science, Harvard University, 33 Kirkland St., Cambridge, MA 02138, United States
| |
Collapse
|
2
|
Sambuco N. Cognition, emotion, and the default mode network. Brain Cogn 2024; 182:106229. [PMID: 39481259 DOI: 10.1016/j.bandc.2024.106229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024]
Abstract
The Default Mode Network (DMN) is increasingly recognized as a key hub where cognitive and emotional processes converge, particularly through its role in integrating episodic memory and emotional experiences. The current mini-review highlights three distinct patterns of brain activity within the DMN associated with emotional processing. The first pattern indicates that, while the ventromedial prefrontal cortex (vmPFC) encodes the pleasantness of memories, other DMN regions support episodic content construction. The second pattern suggests the interaction between the DMN and regions outside of it, such as the amygdala and anterior insula, which contribute to the emotional significance of memories. The third pattern shows widespread activation across the DMN for both pleasant and unpleasant events, challenging the notion of a modular organization of cognition and emotion. The first two patterns appear to result from methodological choices in some studies, while a non-modular view of cognition and emotion in the DMN has recently emerged as the most plausible. These findings support the integration of cognitive and emotional processes within the DMN, suggesting that it plays a fundamental role in constructing coherent and emotionally charged narratives.
Collapse
Affiliation(s)
- Nicola Sambuco
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124 Bari, Italy.
| |
Collapse
|
3
|
Yamakawa H, Fukawa A, Yairi IE, Matsuo Y. Brain-consistent architecture for imagination. Front Syst Neurosci 2024; 18:1302429. [PMID: 39229305 PMCID: PMC11368743 DOI: 10.3389/fnsys.2024.1302429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Background Imagination represents a pivotal capability of human intelligence. To develop human-like artificial intelligence, uncovering the computational architecture pertinent to imaginative capabilities through reverse engineering the brain's computational functions is essential. The existing Structure-Constrained Interface Decomposition (SCID) method, leverages the anatomical structure of the brain to extract computational architecture. However, its efficacy is limited to narrow brain regions, making it unsuitable for realizing the function of imagination, which involves diverse brain areas such as the neocortex, basal ganglia, thalamus, and hippocampus. Objective In this study, we proposed the Function-Oriented SCID method, an advancement over the existing SCID method, comprising four steps designed for reverse engineering broader brain areas. This method was applied to the brain's imaginative capabilities to design a hypothetical computational architecture. The implementation began with defining the human imaginative ability that we aspire to simulate. Subsequently, six critical requirements necessary for actualizing the defined imagination were identified. Constraints were established considering the unique representational capacity and the singularity of the neocortex's modes, a distributed memory structure responsible for executing imaginative functions. In line with these constraints, we developed five distinct functions to fulfill the requirements. We allocated specific components for each function, followed by an architectural proposal aligning each component with a corresponding brain organ. Results In the proposed architecture, the distributed memory component, associated with the neocortex, realizes the representation and execution function; the imaginary zone maker component, associated with the claustrum, accomplishes the dynamic-zone partitioning function; the routing conductor component, linked with the complex of thalamus and basal ganglia, performs the manipulation function; the mode memory component, related to the specific agranular neocortical area executes the mode maintenance function; and the recorder component, affiliated with the hippocampal formation, handles the history management function. Thus, we have provided a fundamental cognitive architecture of the brain that comprehensively covers the brain's imaginative capacities.
Collapse
Affiliation(s)
- Hiroshi Yamakawa
- School of Engineering, The University of Tokyo, Tokyo, Japan
- The Whole Brain Architecture Initiative, Tokyo, Japan
| | - Ayako Fukawa
- The Whole Brain Architecture Initiative, Tokyo, Japan
- Graduate School of Science and Technology, Sophia University, Tokyo, Japan
| | - Ikuko Eguchi Yairi
- Graduate School of Science and Technology, Sophia University, Tokyo, Japan
| | - Yutaka Matsuo
- School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Zhi S, Zhao W, Huang Y, Li Y, Wang X, Li J, Liu S, Xu Y. Neuroticism and openness exhibit an anti-correlation pattern to dissociable default mode network: using resting connectivity and structural equation modeling analysis. Brain Imaging Behav 2024; 18:753-763. [PMID: 38409462 DOI: 10.1007/s11682-024-00869-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 02/28/2024]
Abstract
The default mode network (DMN) can be subdivided into ventral and dorsal subsystems, which serve affective cognition and mental sense construction, respectively. An internally dissociated pattern of anti-correlations was observed between these two subsystems. Although numerous studies on neuroticism and openness have demonstrated the neurological functions of the DMN, little is known about whether different subsystems and hubs regions within the network are engaged in different functions in response to the two traits. We recruited 223 healthy volunteers in this study and collected their resting-state functional magnetic resonance imaging (fMRI) and NEO Five-Factor Inventory scores. We used independent component analysis (ICA) to obtain the DMN, before further decomposing it into the ventral and dorsal subsystems. Then, the network coherence of hubs regions within subsystems was extracted to construct two structural equation models (SEM) to explore the relationship between neuroticism and openness traits and DMN. We observed that the ventral DMN could significantly predict positive openness and negative neuroticism. The dorsal DMN was diametrically opposed. Additionally, the medial prefrontal cortex (mPFC) and middle temporal gyrus (MTG), both of which are core hubs of the subnetworks within the DMN, are significantly positively correlated with neuroticism and openness. These findings may point to a biological basis that neuroticism and openness are engaged in opposite mechanisms and support the hypothesis about the functional dissociation of the DMN.
Collapse
Affiliation(s)
- Shengwen Zhi
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, 030001, Taiyuan, P.R. China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Wentao Zhao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, 030001, Taiyuan, P.R. China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yifei Huang
- School of Humanities and Social Sciences, Shanxi Medical University, Taiyuan, China
| | - Yue Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, 030001, Taiyuan, P.R. China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiao Wang
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, 030001, Taiyuan, P.R. China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jing Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, 030001, Taiyuan, P.R. China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Sha Liu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, 030001, Taiyuan, P.R. China.
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.
| | - Yong Xu
- Department of Psychiatry, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| |
Collapse
|
5
|
Clancy KJ, Devignes Q, Ren B, Pollmann Y, Nielsen SR, Howell K, Kumar P, Belleau EL, Rosso IM. Spatiotemporal dynamics of hippocampal-cortical networks underlying the unique phenomenological properties of trauma-related intrusive memories. Mol Psychiatry 2024; 29:2161-2169. [PMID: 38454081 PMCID: PMC11408261 DOI: 10.1038/s41380-024-02486-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024]
Abstract
Trauma-related intrusive memories (TR-IMs) possess unique phenomenological properties that contribute to adverse post-traumatic outcomes, positioning them as critical intervention targets. However, transdiagnostic treatments for TR-IMs are scarce, as their underlying mechanisms have been investigated separate from their unique phenomenological properties. Extant models of more general episodic memory highlight dynamic hippocampal-cortical interactions that vary along the anterior-posterior axis of the hippocampus (HPC) to support different cognitive-affective and sensory-perceptual features of memory. Extending this work into the unique properties of TR-IMs, we conducted a study of eighty-four trauma-exposed adults who completed daily ecological momentary assessments of TR-IM properties followed by resting-state functional magnetic resonance imaging (rs-fMRI). Spatiotemporal dynamics of anterior and posterior hippocampal (a/pHPC)-cortical networks were assessed using co-activation pattern analysis to investigate their associations with different properties of TR-IMs. Emotional intensity of TR-IMs was inversely associated with the frequency and persistence of an aHPC-default mode network co-activation pattern. Conversely, sensory features of TR-IMs were associated with more frequent co-activation of the HPC with sensory cortices and the ventral attention network, and the reliving of TR-IMs in the "here-and-now" was associated with more persistent co-activation of the pHPC and the visual cortex. Notably, no associations were found between HPC-cortical network dynamics and conventional symptom measures, including TR-IM frequency or retrospective recall, underscoring the utility of ecological assessments of memory properties in identifying their neural substrates. These findings provide novel insights into the neural correlates of the unique features of TR-IMs that are critical for the development of individualized, transdiagnostic treatments for this pervasive, difficult-to-treat symptom.
Collapse
Affiliation(s)
- Kevin J Clancy
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Quentin Devignes
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Boyu Ren
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Laboratory for Psychiatric Biostatistics, McLean Hospital, Belmont, MA, USA
| | - Yara Pollmann
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA
| | - Sienna R Nielsen
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA
| | - Kristin Howell
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA
| | - Poornima Kumar
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Emily L Belleau
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Isabelle M Rosso
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Gurguryan L, Fenerci C, Ngo N, Sheldon S. The Neural Corelates of Constructing Conceptual and Perceptual Representations of Autobiographical Memories. J Cogn Neurosci 2024; 36:1350-1373. [PMID: 38683700 DOI: 10.1162/jocn_a_02170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Contemporary neurocognitive frameworks propose that conceptual and perceptual content of autobiographical memories-personal past experiences-are processed by dissociable neural systems. Other work has proposed a central role of the anterior hippocampus in initially constructing autobiographical memories, regardless of the content. Here, we report on an fMRI study that utilized a repeated retrieval paradigm to test these ideas. In an MRI scanner, participants retrieved autobiographical memories at three timepoints. During the third retrieval, participants either shifted their focus to the conceptual content of the memory, the perceptual content of the memory, or retrieved the memory as they had done so on previous trials. We observed stronger anterior hippocampal activity for the first retrieval compared with later retrievals, regardless of whether there was a shift in content in those later trials. We also found evidence for separate cortical systems when constructing autobiographical memories with a focus on conceptual or perceptual content. Finally, we found that there was common engagement between later retrievals that required a shift toward conceptual content and the initial retrieval of a memory. This final finding was explored further with a behavioral experiment that provided evidence that focusing on conceptual content of a memory guides memory construction, whereas perceptual content adds precision to a memory. Together, these findings suggest there are distinct content-oriented cortical systems that work with the anterior hippocampus to construct representations of autobiographical memories.
Collapse
Affiliation(s)
| | | | - Nguyet Ngo
- McGill University, Montréal, Quebec, Canada
| | | |
Collapse
|
7
|
Kroon E, Toenders YJ, Kuhns LN, Cousijn J, Filbey F. Resting state functional connectivity in dependent cannabis users: The moderating role of cannabis attitudes. Drug Alcohol Depend 2024; 256:111090. [PMID: 38301388 DOI: 10.1016/j.drugalcdep.2024.111090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND The global increase in lenient cannabis policy has been paralleled by reduced harm perception, which has been associated with cannabis use initiation and persistent use. However, it is unclear how cannabis attitudes might affect the brain processes underlying cannabis use. METHODS Resting state functional connectivity (RSFC) within and between the executive control network (ECN), salience network (SN), and default mode network (DMN) was assessed in 110 near-daily cannabis users with cannabis use disorder (CUD) and 79 controls from The Netherlands and Texas, USA. Participants completed a questionnaire assessing the perceived benefits and harms of cannabis use from their personal, friends-family's, and country-state's perspectives and reported on their cannabis use (gram/week), CUD severity, and cannabis-related problems. RESULTS RSFC within the dorsal SN was lower in cannabis users than controls, while no group differences in between-network RSFC were observed. Furthermore, heavier cannabis use was associated with lower dorsal SN RSFC in the cannabis group. Perceived benefits and harms of cannabis - from personal, friends-family's, and country-state's perspectives - moderated associations of cannabis use, CUD severity, and cannabis use-related problems with within-network RSFC of the SN, ECN, and DMN. Personal perceived benefits and country-state perceived harms moderated the association between CUD severity and RSFC between the ventral and dorsal DMN. CONCLUSIONS This study highlights the importance of considering individual differences in the perceived harms and benefits of cannabis use as a factor in the associations between brain functioning and cannabis use, CUD severity, and cannabis use-related problems.
Collapse
Affiliation(s)
- E Kroon
- Neuroscience of Addiction Lab, Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, the Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands.
| | - Y J Toenders
- Developmental and Educational Psychology, Leiden University, the Netherlands; Leiden Institute for Brain and Cognition, Leiden University, the Netherlands; Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, the Netherlands
| | - L N Kuhns
- Neuroscience of Addiction Lab, Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, the Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - J Cousijn
- Neuroscience of Addiction Lab, Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, the Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - F Filbey
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| |
Collapse
|
8
|
Martínez-Saez MC, Ros L, López-Cano M, Nieto M, Navarro B, Latorre JM. Effect of popular songs from the reminiscence bump as autobiographical memory cues in aging: a preliminary study using EEG. Front Neurosci 2024; 17:1300751. [PMID: 38264494 PMCID: PMC10803499 DOI: 10.3389/fnins.2023.1300751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction Music has the capacity to evoke emotions and memories. This capacity is influenced by whether or not the music is from the reminiscence bump (RB) period. However, research on the neural correlates of the processes of evoking autobiographical memories through songs is scant. The aim of this study was to analyze the differences at the level of frequency band activation in two situations: (1) whether or not the song is able to generate a memory; and (2) whether or not the song is from the RB period. Methods A total of 35 older adults (22 women, age range: 61-73 years) listened to 10 thirty-second musical clips that coincided with the period of their RB and 10 from the immediately subsequent 5 years (non-RB). To record the EEG signal, a brain-computer interface (BCI) with 14 channels was used. The signal was recorded during the 30-seconds of listening to each music clip. Results The results showed differences in the activation levels of the frequency bands in the frontal and temporal regions. It was also found that the non-retrieval of a memory in response to a song clip showed a greater activation of low frequency waves in the frontal region, compared to the trials that did generate a memory. Discussion These results suggest the importance of analyzing not only brain activation, but also neuronal functional connectivity at older ages, in order to better understand cognitive and emotional functions in aging.
Collapse
Affiliation(s)
- Maria Cruz Martínez-Saez
- Department of Psychology, Faculty of Medicine, University of Castilla La Mancha, Albacete, Spain
| | - Laura Ros
- Department of Psychology, Faculty of Medicine, University of Castilla La Mancha, Albacete, Spain
- Applied Cognitive Psychology Laboratory, Research Institute for Neurological Disabilities, University of Castilla La Mancha, Albacete, Spain
| | - Marco López-Cano
- Department of Psychology, Faculty of Medicine, University of Castilla La Mancha, Albacete, Spain
| | - Marta Nieto
- Department of Psychology, Faculty of Medicine, University of Castilla La Mancha, Albacete, Spain
- Applied Cognitive Psychology Laboratory, Research Institute for Neurological Disabilities, University of Castilla La Mancha, Albacete, Spain
| | - Beatriz Navarro
- Department of Psychology, Faculty of Medicine, University of Castilla La Mancha, Albacete, Spain
- Applied Cognitive Psychology Laboratory, Research Institute for Neurological Disabilities, University of Castilla La Mancha, Albacete, Spain
| | - Jose Miguel Latorre
- Department of Psychology, Faculty of Medicine, University of Castilla La Mancha, Albacete, Spain
- Applied Cognitive Psychology Laboratory, Research Institute for Neurological Disabilities, University of Castilla La Mancha, Albacete, Spain
| |
Collapse
|
9
|
Wong YS, Yu J. Left superior parietal lobe mediates the link between spontaneous mind-wandering tendency and task-switching performance. Biol Psychol 2024; 185:108726. [PMID: 38036262 DOI: 10.1016/j.biopsycho.2023.108726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/03/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
While increasing studies have documented the link between mind wandering and task switching, less is known about which brain regions mediate this relationship. Using the MPI-Leipzig Mind-Brain-Body dataset (N = 173), we investigated the association between trait-level tendencies of mind wandering, task-switching performance, structural connectivity, and resting-state functional connectivity. At the behavioral level, we found that higher spontaneous mind-wandering trait scores were associated with shorter reaction times on both repeat and switch trials. The whole brain cortical thickness analysis revealed a strong mediating role of the left superior parietal lobe, which is part of the dorsal attention network, in the link between spontaneous mind-wandering tendency and task-switching performance. The resting-state functional connectivity analysis further demonstrated that this association was partly mediated by the negative dorsal attention network-default mode network functional connectivity. No significant mediating effects were found for deliberate mind-wandering tendency. Overall, the findings highlight the pivotal role of the left superior parietal lobe in activating new mental set during mind-wandering and task-switching processes, providing another evidence in favor of a role for switching in mind wandering.
Collapse
Affiliation(s)
- Yi-Sheng Wong
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand; Science of Learning in Education Centre, Office of Education Research, National Institute of Education, Nanyang Technological University, Singapore.
| | - Junhong Yu
- Psychology, School of Social Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
10
|
Geissmann L, Coynel D, Papassotiropoulos A, de Quervain DJF. Neurofunctional underpinnings of individual differences in visual episodic memory performance. Nat Commun 2023; 14:5694. [PMID: 37709747 PMCID: PMC10502056 DOI: 10.1038/s41467-023-41380-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
Episodic memory, the ability to consciously recollect information and its context, varies substantially among individuals. While prior fMRI studies have identified certain brain regions linked to successful memory encoding at a group level, their role in explaining individual memory differences remains largely unexplored. Here, we analyze fMRI data of 1,498 adults participating in a picture encoding task in a single MRI scanner. We find that individual differences in responsivity of the hippocampus, orbitofrontal cortex, and posterior cingulate cortex account for individual variability in episodic memory performance. While these regions also emerge in our group-level analysis, other regions, predominantly within the lateral occipital cortex, are related to successful memory encoding but not to individual memory variation. Furthermore, our network-based approach reveals a link between the responsivity of nine functional connectivity networks and individual memory variability. Our work provides insights into the neurofunctional correlates of individual differences in visual episodic memory performance.
Collapse
Affiliation(s)
- Léonie Geissmann
- Division of Cognitive Neuroscience, Department of Biomedicine, University of Basel, Basel, Switzerland.
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland.
| | - David Coynel
- Division of Cognitive Neuroscience, Department of Biomedicine, University of Basel, Basel, Switzerland
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Andreas Papassotiropoulos
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- Division of Molecular Neuroscience, Department of Biomedicine, University of Basel, Basel, Switzerland
- University Psychiatric Clinics, University of Basel, Basel, Switzerland
| | - Dominique J F de Quervain
- Division of Cognitive Neuroscience, Department of Biomedicine, University of Basel, Basel, Switzerland.
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland.
- University Psychiatric Clinics, University of Basel, Basel, Switzerland.
| |
Collapse
|
11
|
Abstract
In a complex world, we are constantly faced with environmental stimuli that shape our moment-to-moment experiences. But just as rich and complex as the external world is the internal milieu-our imagination. Imagination offers a powerful vehicle for playing out hypothetical experiences in the mind's eye. It allows us to mentally time travel to behold what the future might bring, including our greatest desires or fears. Indeed, imagined experiences tend to be emotion-laden. How and why are humans capable of this remarkable feat? Based on psychological findings, we highlight the importance of imagination for emotional aspects of cognition and behavior, namely in the generation and regulation of emotions. Based on recent cognitive neuroscience work, we identify putative neural networks that are most critical for emotional imagination, with a major focus on the default mode network. Finally, we briefly highlight the possible functional implications of individual differences in imagination. Overall, we hope to address why humans have the capacity to simulate hypothetical emotional experiences and how this ability can be harnessed in adaptive (and sometimes maladaptive) ways. We end by discussing open questions.
Collapse
Affiliation(s)
- Chantelle M Cocquyt
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniela J Palombo
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
DiNicola LM, Ariyo OI, Buckner RL. Functional specialization of parallel distributed networks revealed by analysis of trial-to-trial variation in processing demands. J Neurophysiol 2023; 129:17-40. [PMID: 36197013 PMCID: PMC9799157 DOI: 10.1152/jn.00211.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Multiple large-scale networks populate human association cortex. Here, we explored the functional properties of these networks by exploiting trial-to-trial variation in component-processing demands. In two behavioral studies (n = 136 and n = 238), participants quantified strategies used to solve individual task trials that spanned remembering, imagining future scenarios, and various control trials. These trials were also all scanned in an independent sample of functional MRI participants (n = 10), each with sufficient data to precisely define within-individual networks. Stable latent factors varied across trials and correlated with trial-level functional responses selectively across networks. One network linked to parahippocampal cortex, labeled Default Network A (DN-A), tracked scene construction, including for control trials that possessed minimal episodic memory demands. To the degree, a trial encouraged participants to construct a mental scene with imagery and awareness about spatial locations of objects or places, the response in DN-A increased. The juxtaposed Default Network B (DN-B) showed no such response but varied in relation to social processing demands. Another adjacent network, labeled Frontoparietal Network B (FPN-B), robustly correlated with trial difficulty. These results support that DN-A and DN-B are specialized networks differentially supporting information processing within spatial and social domains. Both networks are dissociable from a closely juxtaposed domain-general control network that tracks cognitive effort.NEW & NOTEWORTHY Tasks shown to differentially recruit parallel association networks are multifaceted, leaving open questions about network processes. Here, examining trial-to-trial network response properties in relation to trial traits reveals new insights into network functions. In particular, processes linked to scene construction selectively recruit a distributed network with links to parahippocampal and retrosplenial cortices, including during trials designed not to rely on the personal past. Adjacent networks show distinct patterns, providing novel evidence of functional specialization.
Collapse
Affiliation(s)
- Lauren M. DiNicola
- 1Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts
| | - Oluwatobi I. Ariyo
- 1Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts
| | - Randy L. Buckner
- 1Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts,2Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts,3Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts
| |
Collapse
|
13
|
Ghandour K, Inokuchi K. Memory reactivations during sleep. Neurosci Res 2022; 189:60-65. [PMID: 36581176 DOI: 10.1016/j.neures.2022.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/27/2022]
Abstract
Neuronal activities that occur during awake periods are often reactivated again during sleep, to consolidate recently encoded memories, a process known as consolidation. In recent years, advanced tools, specially optical techniques and in-vivo live Ca2+ imaging, have revealed a deeper understanding to the offline periods' neuronal activities and their correspondence to later awake behavioral outputs. Recently, there is a growing consensus that sleep is more of an active process. Sleep has been associated with various functions, memory updating, future imaginations of possible familiar scenarios, decision making and planning by replaying past memories. Also, boosting insightful thoughts, creative thinking and problem solving by forming new associations and connections that were not present in awake states. Sleep activities have been directly associated with many "EUREKA" or "AHA" moments. Here, we describe recent views on memory reactivations during sleep and their implications on learning and memory.
Collapse
Affiliation(s)
- Khaled Ghandour
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama 930-0194, Japan; Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Kaoru Inokuchi
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama 930-0194, Japan.
| |
Collapse
|
14
|
Tarchi L, Damiani S, Fantoni T, Pisano T, Castellini G, Politi P, Ricca V. Centrality and interhemispheric coordination are related to different clinical/behavioral factors in attention deficit/hyperactivity disorder: a resting-state fMRI study. Brain Imaging Behav 2022; 16:2526-2542. [PMID: 35859076 PMCID: PMC9712307 DOI: 10.1007/s11682-022-00708-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2022] [Indexed: 11/26/2022]
Abstract
Eigenvector-Centrality (EC) has shown promising results in the field of Psychiatry, with early results also pertaining to ADHD. Parallel efforts have focused on the description of aberrant interhemispheric coordination in ADHD, as measured by Voxel-Mirrored-Homotopic-Connectivity (VMHC), with early evidence of altered Resting-State fMRI. A sample was collected from the ADHD200-NYU initiative: 86 neurotypicals and 89 participants with ADHD between 7 and 18 years old were included after quality control for motion. After preprocessing, voxel-wise EC and VMHC values between diagnostic groups were compared, and network-level values from 15 functional networks extracted. Age, ADHD severity (Connor's Parent Rating-Scale), IQ (Wechsler-Abbreviated-Scale), and right-hand dominance were correlated with EC/VMHC values in the whole sample and within groups, both at the voxel-wise and network-level. Motion was controlled by censoring time-points with Framewise-Displacement > 0.5 mm, as well as controlling for group differences in mean Framewise-Displacement values. EC was significantly higher in ADHD compared to neurotypicals in the left inferior Frontal lobe, Lingual gyri, Peri-Calcarine cortex, superior and middle Occipital lobes, right inferior Occipital lobe, right middle Temporal gyrus, Fusiform gyri, bilateral Cuneus, right Precuneus, and Cerebellum (FDR-corrected-p = 0.05). No differences were observed between groups in voxel-wise VMHC. EC was positively correlated with ADHD severity scores at the network level (at p-value < 0.01, Inattentive: Cerebellum rho = 0.273; Hyper/Impulsive: High-Visual Network rho = 0.242, Cerebellum rho = 0.273; Global Index Severity: High-Visual Network rho = 0.241, Cerebellum rho = 0.293). No differences were observed between groups for motion (p = 0.443). While EC was more related to ADHD psychopathology, VMHC was consistently and negatively correlated with age across all networks.
Collapse
Affiliation(s)
- Livio Tarchi
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, FI, Italy.
| | - Stefano Damiani
- Department of Brain and Behavioral Science, University of Pavia, 27100, Pavia, Italy
| | - Teresa Fantoni
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Tiziana Pisano
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Giovanni Castellini
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, FI, Italy
| | - Pierluigi Politi
- Department of Brain and Behavioral Science, University of Pavia, 27100, Pavia, Italy
| | - Valdo Ricca
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, FI, Italy
| |
Collapse
|
15
|
Lee S, Parthasarathi T, Cooper N, Zauberman G, Lerman C, Kable JW. A neural signature of the vividness of prospective thought is modulated by temporal proximity during intertemporal decision making. Proc Natl Acad Sci U S A 2022; 119:e2214072119. [PMID: 36279433 PMCID: PMC9636959 DOI: 10.1073/pnas.2214072119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
Why do people discount future rewards? Multiple theories in psychology argue that one reason is that future events are imagined less vividly than immediate events, thereby diminishing their perceived value. Here we provide neuroscientific evidence for this proposal. First, we construct a neural signature of the vividness of prospective thought, using an fMRI dataset where the vividness of imagined future events is orthogonal to their valence by design. Then, we apply this neural signature in two additional fMRI datasets, each using a different delay-discounting task, to show that neural measures of vividness decline as rewards are delayed farther into the future.
Collapse
Affiliation(s)
- Sangil Lee
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Nicole Cooper
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, PA 19104
| | - Gal Zauberman
- Yale School of Management, Yale University, New Haven, CT 06511
| | - Caryn Lerman
- University of Southern California Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033
| | - Joseph W. Kable
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
16
|
The traces of imagination: early attention bias toward positively imagined stimuli. PSYCHOLOGICAL RESEARCH 2022; 87:1475-1483. [PMID: 36125531 PMCID: PMC9485787 DOI: 10.1007/s00426-022-01737-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/05/2022] [Indexed: 10/26/2022]
Abstract
Positively imagined activities may capture visual attention due to an increase in positive value. Increasing attention toward activities, in turn, may prove useful for clinical interventions aiming to motivate behavioral engagement. Employing a within-subject experimental design, we examined the effect of positive imagery on attention using a visual probe task with concurrent eye tracking. Adults from the general population (N = 54) imagined performing activities involving visually presented objects in a positive (focusing on the positive emotional impact) or neutral (focusing on a neutral circumstance) manner. They then completed a visual probe task using picture stimuli depicting one object per type of imagery. Positive compared to neutral imagery increased self-reported behavioral motivation and biased the direction, but not the duration, of gaze toward objects associated with the imagined activities. An exploratory analysis showed a positive association between the direction bias and depressive symptoms. Our findings build on existing literature on positive imagery as a motivational amplifier by highlighting early attention as an underlying cognitive mechanism.
Collapse
|
17
|
Corr R, Glier S, Bizzell J, Pelletier-Baldelli A, Campbell A, Killian-Farrell C, Belger A. Triple Network Functional Connectivity During Acute Stress in Adolescents and the Influence of Polyvictimization. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:867-875. [PMID: 35292406 PMCID: PMC9464656 DOI: 10.1016/j.bpsc.2022.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Exposure to both chronic and acute stressors can disrupt functional connectivity (FC) of the default mode network (DMN), salience network (SN), and central executive network (CEN), increasing risk for negative health outcomes. During adolescence, these stress-sensitive triple networks undergo critical neuromaturation that is altered by chronic exposure to general forms of trauma or victimization. However, no work has directly examined how acute stress affects triple network FC in adolescents or whether polyvictimization-exposure to multiple categories/subtypes of victimization-influences adolescent triple network neural acute stress response. METHODS This functional magnetic resonance imaging study examined seed-to-voxel FC of the DMN, SN, and CEN during the Montreal Imaging Stress Task. Complete data from 73 participants aged 9 to 16 years (31 female) are reported. RESULTS During acute stress, FC was increased between DMN and CEN regions and decreased between the SN and the DMN and CEN. Greater polyvictimization was associated with reduced FC during acute stress exposure between the DMN seed and a cluster containing the left insula of the SN. CONCLUSIONS These results indicate that acute stress exposure alters FC between the DMN, SN, and CEN in adolescents. In addition, FC changes during stress between the DMN and SN are further moderated by polyvictimization exposure.
Collapse
Affiliation(s)
- Rachel Corr
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Duke-UNC Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina.
| | - Sarah Glier
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Duke-UNC Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina
| | - Joshua Bizzell
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Duke-UNC Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina
| | - Andrea Pelletier-Baldelli
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Duke-UNC Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina
| | - Alana Campbell
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Candace Killian-Farrell
- Department of Child and Adolescent Psychiatry & Behavioral Health Sciences, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Duke-UNC Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
18
|
Wu Q, Huang Q, Liu C, Wu H. Oxytocin modulates social brain network correlations in resting and task state. Cereb Cortex 2022; 33:3607-3620. [PMID: 36005833 DOI: 10.1093/cercor/bhac295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 11/13/2022] Open
Abstract
The effects of oxytocin (OT) on the social brain can be tracked upon assessing the neural activity in resting and task states, and developing a system-level framework for characterizing the state-based functional relationships of its distinct effect. Here, we contribute to this framework by examining how OT modulates social brain network correlations during resting and task states, using fMRI. First, we investigated network activation, followed by an analysis of the relationships between networks and individual differences. Subsequently, we evaluated the functional connectivity in both states. Finally, the relationship between networks across states was represented by the predictive power of networks in the resting state for task-evoked activities. The differences in the predicted accuracy between the subjects displayed individual variations in this relationship. Our results showed that the activity of the dorsal default mode network in the resting state had the largest predictive power for task-evoked activation of the precuneus network (PN) only in the OT group. The results also demonstrated that OT reduced the individual variation in PN in the prediction process. These findings suggest a distributed but modulatory effect of OT on the association between resting and task-dependent brain networks.
Collapse
Affiliation(s)
- Qingyuan Wu
- Centre for Cognitive and Brain Sciences and Department of Psychology, University of Macau, Macau 999078, China.,State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Qi Huang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Chao Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Haiyan Wu
- Centre for Cognitive and Brain Sciences and Department of Psychology, University of Macau, Macau 999078, China
| |
Collapse
|
19
|
Fenerci C, Gurguryan L, Spreng RN, Sheldon S. Comparing neural activity during autobiographical memory retrieval between younger and older adults: An ALE meta-analysis. Neurobiol Aging 2022; 119:8-21. [DOI: 10.1016/j.neurobiolaging.2022.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022]
|
20
|
Bradley MM, Sambuco N, Lang PJ. Neural correlates of repeated retrieval of emotional autobiographical events. Neuropsychologia 2022; 169:108203. [DOI: 10.1016/j.neuropsychologia.2022.108203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/29/2022]
|
21
|
Sambuco N, Bradley MM, Lang PJ. Narrative imagery: Emotional modulation in the default mode network. Neuropsychologia 2022; 164:108087. [PMID: 34785150 DOI: 10.1016/j.neuropsychologia.2021.108087] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 12/22/2022]
Abstract
The default mode network (DMN) is activated when constructing and imagining narrative events, with functional brain activity in the medial-prefrontal cortex hypothesized to be modulated during emotional processing by adding value (or pleasure) to the episodic representation. However, since enhanced reactivity during emotional, compared to neutral, content is a more frequent finding in both the brain and body in physiological, neural, and behavioral measures, the current study directly assesses the effects of pleasure and emotion during narrative imagery in the DMN by using a within-subject design to first identify the DMN during resting state and then assess activation during pleasant, neutral, or unpleasant imagery. Replicating previous findings, enhanced functional activity in the medial prefrontal cortex was found when imagining pleasant, compared to unpleasant, events. On the other hand, emotion-related activation was found when imagining either pleasant or unpleasant, compared to neutral, events in other nodes of the DMN including the posterior cingulate cortex (PCC), angular gyrus, anterior hippocampus, lateral temporal cortex, temporal pole, dorsomedial prefrontal cortex (dmPFC), and ventrolateral prefrontal cortex (vlPFC). Pervasive emotional modulation in the DMN is consistent with the view that a primary function of event retrieval and construction is to remember, recreate, and imagine motivationally relevant events important for planning adaptive behavior.
Collapse
Affiliation(s)
- Nicola Sambuco
- Center for the Study of Emotion and Attention, University of Florida, Gainesville, FL, USA.
| | - Margaret M Bradley
- Center for the Study of Emotion and Attention, University of Florida, Gainesville, FL, USA
| | - Peter J Lang
- Center for the Study of Emotion and Attention, University of Florida, Gainesville, FL, USA
| |
Collapse
|
22
|
Barnett AJ, Reilly W, Dimsdale-Zucker HR, Mizrak E, Reagh Z, Ranganath C. Intrinsic connectivity reveals functionally distinct cortico-hippocampal networks in the human brain. PLoS Biol 2021; 19:e3001275. [PMID: 34077415 PMCID: PMC8202937 DOI: 10.1371/journal.pbio.3001275] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 06/14/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Episodic memory depends on interactions between the hippocampus and interconnected neocortical regions. Here, using data-driven analyses of resting-state functional magnetic resonance imaging (fMRI) data, we identified the networks that interact with the hippocampus-the default mode network (DMN) and a "medial temporal network" (MTN) that included regions in the medial temporal lobe (MTL) and precuneus. We observed that the MTN plays a critical role in connecting the visual network to the DMN and hippocampus. The DMN could be further divided into 3 subnetworks: a "posterior medial" (PM) subnetwork comprised of posterior cingulate and lateral parietal cortices; an "anterior temporal" (AT) subnetwork comprised of regions in the temporopolar and dorsomedial prefrontal cortex; and a "medial prefrontal" (MP) subnetwork comprised of regions primarily in the medial prefrontal cortex (mPFC). These networks vary in their functional connectivity (FC) along the hippocampal long axis and represent different kinds of information during memory-guided decision-making. Finally, a Neurosynth meta-analysis of fMRI studies suggests new hypotheses regarding the functions of the MTN and DMN subnetworks, providing a framework to guide future research on the neural architecture of episodic memory.
Collapse
Affiliation(s)
- Alexander J. Barnett
- Center for Neuroscience, University of California at Davis, Davis, California, United States of America
| | - Walter Reilly
- Center for Neuroscience, University of California at Davis, Davis, California, United States of America
| | | | - Eda Mizrak
- Center for Neuroscience, University of California at Davis, Davis, California, United States of America
- Department of Psychology, University of Zurich, Zürich, Switzerland
| | - Zachariah Reagh
- Center for Neuroscience, University of California at Davis, Davis, California, United States of America
- Department of Neurology, University of California at Davis, Sacramento, California, United States of America
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Charan Ranganath
- Center for Neuroscience, University of California at Davis, Davis, California, United States of America
| |
Collapse
|